
Supplementary Background Material

This course relies on various concepts from Topology, Algebraic Topology and
Group Theory with which you may be unfamiliar or perhaps simply a bit rusty.
This document will serve as a reference for some of these things. It is entirely
possible that I have missed out some things, or assumed incorrectly that they
are well-known to you; if so, contact me and I may expand this document to
include them.

Bases and sub-bases

Let X be a set and let T be a topology on X—that is, T is the set of open
subsets of X.

Definition 1. A basis for the topology T is a set B ⊆ T of open subsets of X,
such that every element of T can be written as a union of elements of B. We
may say that T is generated by B.

A neighbourhood basis1 at a point x ∈ X is a collection Bx of open subsets of
X, all containing x, such that any open subset of X which contains x contains
some element of Bx.

If X is a metric space, a standard example of a basis is given by the collection
of open balls

B = {B(x, r) | x ∈ X, r > 0}

in X. A neighbourhood basis at x in a metric space would be

Bx = {B(x, r) | r > 0}

The property of ‘being a basis’ may be defined intrinsically.

Proposition 2. Let X be a set and let B be a collection of subsets of X. Then
there is a (unique) topology on X for which B is a basis if and only if:

� for every x ∈ X there exists some B ∈ B such that x ∈ B; and

� for all B1, B2 ∈ B and for all x ∈ B1 ∩B2 there exists some B3 ∈ B such
that x ∈ B3 ⊆ B1 ∩B2.

Proof. One direction is true by definition. For the other direction, if B satisfies
the two properties above, then define T to be the collection of all subsets of
X which are unions of elements of B. It is not difficult to check that T is a
topology.

There is also a somewhat weaker notion of a sub-basis.

Definition 3. A sub-basis for the topology T is a set S ⊆ T of open subsets of
X, such that the set B of all finite intersections of elements of S forms a basis
for T .

1Actually, the correct word is probably ‘base’. Many mathematicians confuse ‘base’ and
‘basis’ in this context, possibly because of the influence of Linear Algebra. I personally use
the mistaken form ‘basis’ so often in speech and text that I’ve just given up and decided to
use ‘basis’ throughout.
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The main use of this notion is to make it easier to check that maps are
continuous.

Proposition 4. Let Y and X be topological spaces and let S be a sub-basis for
X. A function f : Y → X is continuous if and only if f−1(S) is open in Y for
all S ∈ S.

Proof. One direction is clear. Suppose that the preimage of every sub-basic
open set is open in Y .

Let B be the set of finite intersections of elements of S. If B ∈ B, write

B =

n⋂
i=1

Si

where Si ∈ S. Then

f−1(B) =

n⋂
i=1

f−1(Si)

is an open set.
Let U be an open subset of X. Since B is a basis of X, we may write U as

a union
U =

⋃
i∈I

Bi

of elements of B, where I is a potentially infinite set. Then

f−1(U) =
⋃
i∈I

f−1(Bi)

is a union of open sets, hence open. Thus f is continuous.

Compactness

Compactness should be familiar from IB Matric and Topological Spaces, so I
will just recall a few useful properties here without troubling to prove them.

Definition 5. A topological space is compact if, for every family {Ui}i∈I of
open sets of X such that X =

⋃
i∈I Ui, there exists a finite subset F ⊆ I such

that X =
⋃

f∈F Uf .

Proposition 6. A closed subset of a compact space is compact. A compact
subset of a Hausdorff topological space is closed.

Proposition 7. The image of a compact space under a continuous map is
compact.

Proposition 8. Let X be a compact space and Y be a Hausdorff space. Let
f : X → Y be a continuous bijection. Then f is a homeomorphism.

Proposition 9 (Finite Intersection Property2). Let X be a topological space.
The X is compact if and only if X has the finite intersection property:

if {Ci}i∈I is a collection of closed subsets of X such that
⋂

f∈F Cf

is non-empty for every finite subset F ⊆ I, then
⋂

i∈I Ci 6= ∅.
2Technically I’m wrong to call this result ‘the Finite Intersection Property’. According

to correct usage it is the family of sets Ci that has the Finite Intersection Property, not the
compact space X. But I think this is silly so I choose to ignore it.
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Products

You will have seen in your first topology course the definition of the product of
a finite number of topological spaces. In this course we will need to deal with
infinite products. This is similar, but there is a subtlety in the definition.

Definition 10. Let {Xi}i∈I be a collection of topological spaces indexed by a
set I. The product topology on

∏
Xi is the topology whose basis consists of sets

of the form ∏
f∈F

Uf ×
∏

i∈IrF

Xi

where F ⊆ I is a finite set and Uf is an open subset of Xf .
An alternative way of describing this basis is via projection maps. Let

pi :
∏
Xi → Xi be the projection map. Then a basic open set of

∏
Xi is a

finite intersection ⋂
f∈F

p−1f (Uf )

where F ⊆ I is a finite set and Uf is an open subset of Xf .

The sets p−1i (Ui) themselves form a sub-basis for the product topology.
The obvious question that comes to mind when one sees this definition is

‘Why are the basic open sets not those of the form∏
i∈I

Ui

for Ui open in Xi?’. Well, this is a perfectly valid topology, and it is occasionally
studied under the name ‘box topology’. However mathematical concepts are
defined because they are useful, and the power and usefulness of the true product
topology are shown by the next two propositions.

Proposition 11. Let Z be a topological space and let {Xi}i∈I be a collection
of topological spaces. The product topology is the unique topology on

∏
Xi with

the following property:

a function f : Z →
∏
Xi is continuous if and only if all the compo-

sitions pi ◦ f are continuous.

Proof. First let us show that the product topology has the given property. The
projection maps pi are continuous directly from the definition, so if f : Z →∏
Xi is continuous then the compositions pif are continuous. On the other

hand, if all the compositions pif are continuous, then for any sub-basic set
S = p−1i (Ui) in the product topology we have

f−1(S) = (pif)−1(Ui)

which is open. Hence f is continuous.
Now we note the uniqueness part of the proposition. Let T and U be two

topologies on
∏
Xi with the given property, and let Y and Z denote the topo-

logical spaces (
∏
Xi, T ) and (

∏
Xi,U) respectively.

The identity maps Y → Y and Z → Z are automatically continuous, so
by the given property the projection maps pYi : Y → Xi and pZi : Z → Xi are
continuous.
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Let ι : Y → Z be the identity function from
∏
Xi to itself. Then ι◦pZi = pYi

is continuous for all i, hence ι is continuous. By symmetry ι−1 is continuous
also, so ι is a homeomorphism and there is a unique topology on

∏
Xi with the

given property.

The property given in this proposition should remind you of the categorical
definition of a product.

The most important property of the product topology for our needs is the
following theorem. The proof is beyond the scope of this pamphlet, but I will
just mention that this is a fundamental theorem which is in fact equivalent to
the Axiom of Choice. It has been described as ‘the most important theorem of
topology’.

Theorem 12 (Tychonoff’s Theorem). Let Xi be a collection of compact topo-
logical spaces. Then

∏
Xi is compact.

A much easier result is the analoguous statement for the Hasudorff property.

Proposition 13. If all Xi are Hausdorff, then
∏
Xi is Hausdorff.

Proof. Let (xi)i∈I , (yi)i∈I ∈
∏
Xi be distinct points. There exists i such that

xi 6= yi. Since Xi is Hausdorff there exist disjoint open sets Ui, Vi ⊆ Xi such
that xi ∈ Ui and yi ∈ Vi. Then p−1i (Ui) and p−1i (Vi) are disjoint open sets
separating (xi) and (yi), showing that

∏
Xi is Hausdorff.

Covering spaces

The following theorem is referred to in the Lecture Notes, but the proof is really
too much about covering spaces to be included in lectures, so we deal with it
here.

Theorem 14 (Nielsen-Schrier Theorem). Let F be a free group of rank r and
let H be a subgroup of F of index n. Then H is a free group of rank n(r−1)+1.

Proof. Let X be a graph with one vertex and r edges, so that F ∼= π1X. By the
theory of covering spaces, H is isomorphic to the fundamental group of some
covering space Y of X of degree n. Then Y is a graph with n vertices and nr
edges.

Let T be a maximal subtree of Y . Then T contains all n vertices of Y and
has n − 1 edges. Let Z be the graph obtained from Y by contracting T to a
point. This is a homotopy equivalence so π1Z ∼= π1Y ∼= H. However Z is a
graph with a single vertex and with nr − (n − 1) edges. Hence π1Z is a free
group of rank nr − n+ 1.

Free subgroups of linear groups

In this course I will make occasional reference to the fact that SL2(Z) contains
a free subgroup of rank 2, or that a free group injectively maps into SL2(Z).
This is not really essential knowledge for the course, so there is no particular
need for you to see a proof. But it may be of interest to some of you, so it is
included here.

Lemma 15 (Ping-Pong Lemma). Suppose a group G acts on a set X. Let
a, b ∈ G. Suppose that X has non-empty disjoint subsets U and V such that:
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� ak · u ∈ V for all k 6= 0 and all u ∈ U ; and

� bk · v ∈ U for all k 6= 0 and all v ∈ V .

Then 〈a, b〉 is free.

Proof. Let F be a free group on two generators x and y. We have a homomor-
phism f : F → G sending x to a and y to b. We wish to show that f is injective.
Take an element w ∈ F , thought of as a word in x and y. To show f(w) 6= 1
it is sufficient to show f(gwg−1) 6= 1 for some g ∈ F , so we may conjugate w
by a suitable power of x to ensure that the new word w′ starts and ends with a
power of x. Now f(w′) is an element of G of the form

ak1bk2 · · · bkn−1akn

where the ki are non-zero integers.
To show that f(w′) 6= 1, consider its action on a point u ∈ U . The akn

factor sends u to some element of V . The bkn−1 part then sends it back to U .
This ‘ping-pong’ repeats until at last the final ak1 sends our element back to V .
So f(w′) · u ∈ V . Since V and U are disjoint, this means f(w′) · u 6= u, hence
f(w′) 6= 1 as required.

Proposition 16. There is a free subgroup of SL2(Z).

Proof. We will apply the Ping-Pong Lemma to the standard action of SL2(Z)
on R2. Let

a =

(
1 2
0 1

)
, b =

(
1 0
2 0

)
and define subsets

U =

{(
x
y

)
such that |y| > |x|

}
, V =

{(
x
y

)
such that |x| > |y|

}
of R2. Certainly U and V are non-empty and disjoint.

Let k 6= 0 and let u = (x, y) ∈ U , so that |y| > |x|. Then

ak · u =

(
1 2k
0 1

)(
x
y

)
=

(
x+ 2ky

y

)
Since we have

|x+ 2ky| ≥ |2ky| − |x| > (2|k| − 1)|y| ≥ |y|

we find that ak · u ∈ V . Similarly bk · v ∈ U for all v ∈ V . Hence the Ping-Pong
Lemma applies and 〈a, b〉 is a free subgroup of SL2(Z).

There is nothing particularly special about the choice of a and b here. There
are many free subgroups inside SL2(Z), but this is perhaps the most common
one.
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