
Profinite Groups, Exercise Sheet 4 Lent 2021

[Key questions are marked with an obelus �. Expansion questions are marked
with a star *.]

1. Let G be a group.

(i) Show that each basis element g ∈ G is a unit in the ring ZG.

(ii) Show that if g is a finite order element of G then g− 1 is a zero-divisor
in ZG.

Remark. It is an open question (one of the Kaplansky conjectures) whether
these are the only units in ZG, and whether ZG can have any zero divisors
if G is torsion-free.

2. (Invariants of a module). Let G be a group and let M be a G-module. Define
the invariants of M to be the set

MG = {m ∈M : g ·m = m∀g ∈ G}

(i) Prove that MG is a submodule of M .

(ii) Let α : M1 →M2 be a morphism of G-modules. Show that α restricts
to a map α : MG

1 →MG
2 (i.e. that α(MG

1 ) ⊆MG
2 ).

(iii) Consider a short exact sequence of G-modules

0 M1 M2 M3 0α β

Show that the sequence

0 MG
1 MG

2 MG
3

α β

is exact.

[Note the absence of the ‘→ 0’ at the end: there is no condition to check
at MG

3 .]

(iv) Find an example to show that MG
2 →MG

3 need not be surjective.

3. Let E = M oG.

(i) Let s : G→ E be a group homomorphism such that G→ E → G is the
identity—i.e. a splitting of the extension E. Define ψs : G→M by

s(g) = (ψs(g), g) ∈M oG.

Show that ψs ∈ Z1(G,M).

(ii) Let s and s′ be group homomorphisms as above. Show that ψs and ψs′

differ by a 1-coboundary if and only if there exists m ∈M such that

(m, 1)s(g)(m, 1)−1 = s′(g)

for all g ∈ G. We call this relation M -conjugacy.

(iii) Given a 1-cocycle φ ∈ Z1(G,M), construct a splitting s : G → E such
that φ = ψs.
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(iv) Deduce that M -conjugacy classes of splittings are in bijection with
elements of H1(G,M).

�4. (Functorial behaviour of extensions). Let G be a group and let M be a G-
module. Let E be an extension of G by M , representing a cohomology class
ζ ∈ H2(G,M).

(i) Let α : M →M ′ be a G-linear map. Let E act on M ′ via the quotient
E → G, and form the semidirect product M ′ o E.

Prove that N = {(α(m),m−1) | m ∈ M} is a normal subgroup of
M ′ o E.

[Note: in E we use multiplicative notation, and in M and M ′ we use
additive notation. This has the unfortunate effect that when m ∈M is
thought of as an element of E, its inverse is m−1. The map α then has
the property α(m−1) = −α(m).]

Define the group E′ to be the quotient of M ′×E by the above normal
subgroup. Show that E′ is an extension of G by M ′, that there is a
commuting diagram

0 M E G 1

0 M ′ E′

α

and that E′ represents the image α∗(ζ) of ζ under the map

α∗ : H2(G,M)→ H2(G,M ′).

(ii) Let f : G′ → G be a group homomorphism. Let G′ act on M in the
usual way, by the formula g′ ·m = f(g′) ·m. Find an extension E′ of
G′ by M which represents the cohomology class f∗(ζ) ∈ H2(G′,M).

5. Let G be a cyclic group of order n. Let t be a generator of G.

�(i) Show that the sequence

· · · ZG ZG ZG ZG Z 0
β α β α ε

is a free resolution of Z by G-modules, where α and β are the maps

α(x) = x(t− 1), β(x) = x(1 + t+ · · ·+ tn−1)

and ε is the map given by sending g 7→ 1 for all g ∈ G.

�(ii) Show that

Hk(G,Z) ∼=


Z if k = 0

0 if k is odd

Z/nZ if k ≥ 2 is even

where Z has the trivial G-action.

(iii) Suppose n = pq for integers p and q. Let M = Zp and let G act on M
via cyclic permutation of the basis elements. Find Hk(G,M).
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(iv) Suppose n = 2. Let M = Z where G acts via the map 1 7→ −1. Find
Hk(G,M).

�(v) Construct, as in Theorem 5.2.1, a chain map fn in dimensions at most
2 from the bar resolution to the above resolution:

ZG{G(2)} ZG{G(1)} ZG{G(0)} Z 0

ZG ZG ZG Z 0

d2

f2

d1

f1

ε

id

β α ε

Hence find a 2-cocycle φ : G × G → Z representing a generator of
H2(G,Z) ∼= Z. (It is not necessary to check that it is a cocycle.)

[Hint: denote the elements of G by {tk : 0 ≤ k < n}. When construct-
ing the chain map f2 on generators [tk|tl] you will need to distinguish
between the cases k + l < n and k + l ≥ n.]

�(vi) Write down the group structure of the extension of G by Z correspond-
ing to a generator of H2(G,Z). Prove that this extension is isomorphic
to Z.

(vii) By using Question 4, or otherwise, find explicit forms for all equivalence
classes of central extensions of G by Z. How many isomorphism types
are there?

6. Let G be a finite group and let M be a G-module.

(i) Let φ ∈ Zn(G,M), and define

ψ(g2, . . . , gn) =
∑
γ∈G

γ−1 · φ(γ, g2, . . . , gn)

Prove that
dn−1ψ = |G| · φ

�(ii) Assume that M is finitely generated as an abelian group. Show that
Hn(G,M) is a finite abelian group whose order divides some power of
|G|.

�(iii) Assume that M is finite and suppose |G| is coprime to |M |. Show that
Hn(G,M) = 0 for all n.

(iv) Suppose a finite group E has an abelian normal subgroup M such that
|M | is coprime to |E/M |. Show that E has a subgroup isomorphic to
E/M , and show that all such subgroups are conjugate.

7. (a) Let A and B be G-modules. Show that a G-module M is isomorphic
to the direct sum A⊕B if and only if there exist maps

iA : A→M, pA : M → A, iB : B →M, pB : M → B

such that iApA + iBpB = idM , pAiA = idA, pBiB = idB , pAiB = 0 and
pBiA = 0.

(b) Let M1 and M2 be G-modules. Prove that

Hn(G,M1 ⊕M2) ∼= Hn(G,M1)⊕Hn(G,M2)

for all n.
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8. Let G be a group and let K be a subgroup of G. Let M be a K-module.
Define the coinduced module1 to be the abelian group

coindKG (M) = HomK(ZG,M),

with G-action given by
(g · f)(x) = f(xg)

where f ∈ HomK(ZG,M) and x ∈ ZG.

(i) Prove that the above formula is a valid action of G on HomK(ZG,M).

(ii) Let F be a G-module. Show that the map

Ψ: HomK(F,M)→ HomG(F, coindKG (M))

defined by
Ψ(h)(p) : x 7→ h(xp)

for h ∈ HomK(F,M), p ∈ F , x ∈ ZG is a well-defined map of abelian
groups. By constructing an inverse, or otherwise, show that it is an
isomorphism.

(iii) Show that if F is a free G-module then F is also free as a K-module.

(iv) Prove Shapiro’s Lemma:

Hn(K,M) = Hn(G, coindKG (M))

(v) Deduce that cd(K) ≤ cd(G). Show that if a group has finite coho-
mological dimension then it is torsion-free (i.e. does not contain any
elements of finite order except the identity).

�9. Let G be a pro-p group and let M be a finite p-primary G-module. Assume
that M is simple.

(i) Show that M is killed by p—i.e. that pm = 0 for all m ∈M .

(ii) Let z be an element of G such that zp acts trivially on M . Show that
M 〈z〉 is non-trivial.

(iii) Let H be a group and let N be an H-module. Suppose that x is central
in H. Show that N 〈x〉 is an H-submodule of N .

(iv) Show that G acts trivially on M , and deduce that M is isomorphic to
Fp with the trivial G-action.

*10. Let G be a profinite group. A discrete torsion G-module is an abelian group
M , equipped with the discrete topology, in which every element has finite
order, equipped with a continuous map G×M →M describing a G-action.

(i) Prove that a contnuous function from a compact space to a discrete
space has finite image.

(ii) Prove that a discrete torsion module M is the union of its finite sub-
modules.

1Also called the induced module in the literature. Because life is unfair sometimes.
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(iii) Let (Ai) be a directed system of abelian groups. Show that any element
of the directed limit

lim−→Ai =
⊕

Ai/〈ai ∼ φij(aj)〉)

is the image of an element of one of the Ai under the natural map.

[see Exercise Sheet 1 for the construction of the direct limit lim−→]

(iv) Let M =
⋃
Mi be a discrete torsion module, expressed as a union of

finite submodules. Show that there is a natural isomorphism

Cn(G,M) ∼= lim−→Cn(G,Mi).

Deduce that
Hn(G,M) ∼= lim−→Hn(G,Mi).

(v) Let i ∈ I be an inductive system. Let

0 Ai Bi Ci 0
αi βi

be a short exact sequence of abelian groups for every i ∈ I, such that
for all i � j we have a diagram of transition maps

0 Ai Bi Ci 0

0 Aj Bj Cj 0

αi

φA
ji

βi

φB
ji φC

ji

αj βj

making each of (Ai), (Bi), (Ci) into a directed system. Prove that we
have an exact sequence

0 lim−→Ai lim−→Bi lim−→Ci 0α β

These limiting properties mean, in effect, that properties of cohomology with co-
efficients in discrete torsion modules can be derived from the equivalent properties
for finite modules. This makes cohomology theory well-behaved if we allow discrete
torsion modules.

(vi) Let A be a compact abelian group and let M be a discrete torsion
abelian group. Show that the group of continuous homomorphisms
Hom(A,M) is a torsion abelian group.

This sort of proposition ultimately allows one to define the correct replacement for
coinduced modules in the cohomology theory of profinite groups, filling one of the
gaps in the technology used to establish the Course Convention properly.
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