[Key questions are marked with an obelus \dagger. Expansion questions are marked with a star *.]

1. Properties of finite p-groups. Let P be a non-trivial finite group of order a power of the prime p.
$\dagger(\mathrm{i})$ By considering the action of P on itself by conjugation, prove that P has non-trivial centre.
\dagger (ii) Prove that P admits a surjective map to \mathbb{F}_{p}.
(iii) Prove that P has a chief series: a sequence of normal subgroups $P_{i} \triangleleft P$,

$$
\{1\}=P_{0} \subseteq P_{1} \subseteq P_{2} \subseteq \cdots \subseteq P_{N}=P
$$

such that every quotient group P_{k} / P_{k+1} has order p.
2. (i) Prove by induction that $\gamma_{n}(G)$ is a fully characteristic subgroup of G in the sense that, for any group homomorphism $f: G \rightarrow H$, we have $f\left(\gamma_{n}(G)\right) \subseteq \gamma_{n}(H)$. Deduce that any subgroup of a nilpotent group is nilpotent.
(ii) Prove that any quotient of a nilpotent group is nilpotent.
(iii) Let A be an abelian central subgroup of G, and assume that G / A is nilpotent of class c. Show that G is nilpotent of class at most $c+1$.
(iv) Deduce that a finite p-group is nilpotent. Show that the lower central p-series of a finite p-group terminates, i.e. $\gamma_{n}^{(p)}(G)=1$ for some p.
(v) Find an example to show that the conclusion of part (ii) need not hold if A is only assumed to be an abelian normal subgroup.
3. Many of the properties or inductive arguments we have used with p-groups simply rely on the existence of non-trivial centres. As we have seen, nilpotent groups also have non-trivial centre, so one could ask why we are studying p-groups and pro- p groups rather than nilpotent groups and pro-(finite nilpotent) groups. This exercise shows why: finite nilpotent groups are simply products of p-groups.
(i) Let $\left(G_{n}\right)$ be the lower central series of G. Show that G_{n-1} / G_{n} is central in G / G_{n}. In particular if G is nilpotent then $Z(G) \neq\{1\}$. Show that if G is nilpotent then the process of repeatedly factoring out centres eventually terminates in the trivial group.
(ii) Let G be a group and let H be a proper subgroup of G. Show that

$$
N_{G}(H)=\left\{g \in G: g^{-1} H g=H\right\}
$$

is a subgroup of G which contains H. If G is nilpotent show that $H \neq N_{G}(H)$.
(iii) Let G be a finite group and let P be a p-Sylow subgroup of G. Show that $N_{G}\left(N_{G}(P)\right)=N_{G}(P)$. Deduce that if G is nilpotent then P is a normal subgroup of G.
(iv) Show that a finite nilpotent group is the direct product of its p-Sylow subgroups.
*4. An infinitely generated pro-p group with a finite index subgroup which is not open. The pro-p group we will consider is a very simple one: the group $(\mathbb{Z} / 2)^{\mathbb{N}}=\left\{\left(g_{n}\right)_{n \in \mathbb{N}} \mid g_{n} \in \mathbb{Z} / 2\right\}$ with the product topology. This is a pro-2 group which is the inverse limit $\lim (\mathbb{Z} / 2)^{n}$, where the maps $(\mathbb{Z} / 2)^{\mathbb{N}} \rightarrow(\mathbb{Z} / 2)^{n}$ are the projection maps.
Let \mathcal{F} be a family of subsets of \mathbb{N} with the following properties.
(a) $\emptyset \notin \mathcal{F}$
(b) For $A, B \subseteq \mathbb{N}$, if $A \in \mathcal{F}$ and $B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$.
(c) For $A, B \subseteq \mathbb{N}$, if $A \in \mathcal{F}$ and $A \subseteq B$ then $B \in \mathcal{F}$
(d) For $A \subseteq \mathbb{N}$, either $A \in \mathcal{F}$ or $(\mathbb{N} \backslash A) \in \mathcal{F}$.
(e) If $\mathbb{N} \backslash A$ is finite then $A \in \mathcal{F}$.

A family \mathcal{F} with properties (a)-(d) is called an ultrafilter. The existence of an \mathcal{F} with all the properties (a)-(e) follows from the Axiom of Choice, and may be assumed for this question.
Let H be the set of elements $\left(g_{n}\right)_{n \in \mathbb{N}} \in(\mathbb{Z} / 2)^{\mathbb{N}}$ such that $\left\{n: g_{n}=0\right\} \in \mathcal{F}$.
(i) Prove that H is a subgroup of $(\mathbb{Z} / 2)^{\mathbb{N}}$.
(ii) Let $\underline{1}$ be the element of $(\mathbb{Z} / 2)^{\mathbb{N}}$ which is the constant sequence $\underline{1}=$ $(1)_{n \in \mathbb{N}}$. Prove that for any $g \in(\mathbb{Z} / 2)^{\mathbb{N}}$ either $g \in H$ or $\underline{1}+g \in H$, so that H has index 2 in $(\mathbb{Z} / 2)^{\mathbb{N}}$.
(iii) Show that H is dense in $(\mathbb{Z} / 2)^{\mathbb{N}}$, and deduce that it is not open.
5. For each pair $\left(n, p^{k}\right)$ below find square roots of n modulo p^{k}.
(i) $n=14$ modulo $p^{k}=121=11^{2}$
(ii) $n=44$ modulo $p^{k}=343=7^{2}$
(iii) $n=31$ modulo $p^{k}=625=5^{4}$
\dagger 6. Find all solutions of $f(x)=x^{2}-2 x+2$ modulo 125 .
$\dagger 7$. Let $p \neq 2$. Prove that if $a \in \mathbb{Z}_{p}$ is not congruent to 0 modulo p then there exist at most two square roots of any $a \in \mathbb{Z} / p^{k} \mathbb{Z}$ for any k. Show that any $a \in \mathbb{Z}_{p}$ has at most two square roots in \mathbb{Z}_{p}. Show that 1 has four square roots in $\mathbb{Z} / 15 \mathbb{Z}$. Show that p^{2} has $2 p$ distinct roots in $\mathbb{Z} / p^{3} \mathbb{Z}$.
8. The assumption that an element is a non-zero square modulo p in the square roots version of Hensel's Lemma is unnecessarily restrictive. Characterise exactly which elements of \mathbb{Z}_{p} have square roots (for $p \neq 2$).
9. (Square roots when $p=2$.)
(a) Show that if $\lambda \in \mathbb{Z}_{2}$ is a non-zero square then $\lambda=2^{2 r}(1+8 a)$ for some $r \in \mathbb{Z}$ and $a \in \mathbb{Z}_{2}$.
(b) Let $\lambda=1+8 a$. Show that $x^{2}=\lambda$ if and only if $y=(1+x) / 2$ satisfies the equation $y^{2}-y-2 a=0$.
(c) Deduce that $\lambda \in \mathbb{Z}_{2} \backslash\{0\}$ is a square number if and only if $\lambda=2^{2 r}(1+$ $8 a$) for some $r \in \mathbb{Z}$ and $a \in \mathbb{Z}_{2}$.
\dagger 10. Invertible elements of \mathbb{Z}_{p}. The ring \mathbb{Z} has only two invertible elements, ± 1. We have seen already that \mathbb{Z}_{p} has many more. In this exercise we will show the exact structure of the group of invertible elements \mathbb{Z}_{p}^{\times}. Let $p \neq 2$ be prime.
(i) Let $f(x)$ be a non-zero polynomial of degree $\leq d$ over a field \mathbb{F}. Show that $f(x)$ has at most d roots in f.
(ii) By considering solutions of the equation $x^{q}=1$ in \mathbb{F}_{p} for primes $q \mid(p-$ 1), use the classification of abelian groups to deduce that the abelian group \mathbb{F}_{p}^{\times}is cyclic.
(iii) Show that there exists $\sigma \in \mathbb{Z}_{p}^{\times}$such that $\sigma^{p-1}=1$ but $\sigma^{n} \neq 1$ for $0<n<p-1$.
(iv) Show that $(1+p)^{(p-1) p^{k}} \equiv 1+(p-1) p^{k+1}$ modulo p^{k+2}.
(v) Let $\tau=1+p \in \mathbb{Z}_{p}^{\times}$. Show that the reduction modulo p^{n} of $\sigma \tau$ has order $(p-1) p^{n-1}$ in the group $\mathbb{Z} / p^{n} \mathbb{Z}$. Deduce that $\sigma \tau$ generates $\mathbb{Z} / p^{n} \mathbb{Z}$, and hence that $\sigma \tau$ topologically generates \mathbb{Z}_{p}^{\times}.
(vi) Show that $\mathbb{Z}_{p}^{\times} \cong C_{p-1} \times \mathbb{Z}_{p}$, where C_{p-1} is a cyclic group of order $p-1$.
*(vii) Show that $\mathbb{Z}_{2}^{\times} \cong C_{2} \times \mathbb{Z}_{2}=\langle-1\rangle \times\langle 1+4\rangle$.
11. Show, for a 2×2 matrix A over a commutative ring with determinant 1 , that

$$
A^{3}=\left((\operatorname{tr} A)^{2}-1\right) A-(\operatorname{tr} A) I
$$

Deduce that the matrix

$$
\left(\begin{array}{cc}
82 & 9 \\
9 & 1
\end{array}\right)=1+9\left(\begin{array}{ll}
9 & 1 \\
1 & 0
\end{array}\right)
$$

has no cube root in $\mathrm{SL}_{2}(\mathbb{Z})$. Show that the equation

$$
83=x^{3}-3 x
$$

does have a solution in \mathbb{Z}_{3}.
12. Let $a_{1}, \ldots, a_{N^{2}}$ be a generating set of $\mathrm{GL}_{N}^{(1)}\left(\mathbb{Z}_{p}\right)$. Show that

$$
\mathrm{GL}_{N}^{(1)}\left(\mathbb{Z}_{p}\right)=\overline{\left\langle a_{1}\right\rangle} \cdot \overline{\left\langle a_{2}\right\rangle} \cdots \overline{\left\langle a_{N^{2}}\right\rangle}
$$

That is, for any $g \in \operatorname{GL}_{N}^{(1)}\left(\mathbb{Z}_{p}\right)$ there exist $\lambda_{1}, \ldots, \lambda_{N^{2}} \in \mathbb{Z}_{p}$ such that

$$
g=a_{1}^{\lambda_{1}} \cdots a_{N^{2}}^{\lambda_{N^{2}}} .
$$

