
Profinite Groups, Exercise Sheet 3 Lent 2021

[Key questions are marked with an obelus �. Expansion questions are marked
with a star *.]

1. Properties of finite p-groups. Let P be a non-trivial finite group of order
a power of the prime p.

�(i) By considering the action of P on itself by conjugation, prove that P
has non-trivial centre.

�(ii) Prove that P admits a surjective map to Fp.
(iii) Prove that P has a chief series: a sequence of normal subgroups Pi /P ,

{1} = P0 ⊆ P1 ⊆ P2 ⊆ · · · ⊆ PN = P

such that every quotient group Pk/Pk+1 has order p.

2. (i) Prove by induction that γn(G) is a fully characteristic subgroup of G
in the sense that, for any group homomorphism f : G → H, we have
f(γn(G)) ⊆ γn(H). Deduce that any subgroup of a nilpotent group is
nilpotent.

(ii) Prove that any quotient of a nilpotent group is nilpotent.

(iii) Let A be an abelian central subgroup of G, and assume that G/A is
nilpotent of class c. Show that G is nilpotent of class at most c+ 1.

(iv) Deduce that a finite p-group is nilpotent. Show that the lower central

p-series of a finite p-group terminates, i.e. γ
(p)
n (G) = 1 for some p.

(v) Find an example to show that the conclusion of part (ii) need not hold
if A is only assumed to be an abelian normal subgroup.

3. Many of the properties or inductive arguments we have used with p-groups
simply rely on the existence of non-trivial centres. As we have seen, nilpotent
groups also have non-trivial centre, so one could ask why we are studying
p-groups and pro-p groups rather than nilpotent groups and pro-(finite nilpo-
tent) groups. This exercise shows why: finite nilpotent groups are simply
products of p-groups.

(i) Let (Gn) be the lower central series of G. Show that Gn−1/Gn is central
in G/Gn. In particular if G is nilpotent then Z(G) 6= {1}. Show that
if G is nilpotent then the process of repeatedly factoring out centres
eventually terminates in the trivial group.

(ii) Let G be a group and let H be a proper subgroup of G. Show that

NG(H) = {g ∈ G : g−1Hg = H}

is a subgroup of G which contains H. If G is nilpotent show that
H 6= NG(H).

(iii) Let G be a finite group and let P be a p-Sylow subgroup of G. Show
that NG(NG(P )) = NG(P ). Deduce that if G is nilpotent then P is a
normal subgroup of G.
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(iv) Show that a finite nilpotent group is the direct product of its p-Sylow
subgroups.

*4. An infinitely generated pro-p group with a finite index subgroup
which is not open. The pro-p group we will consider is a very simple
one: the group (Z/2)N = {(gn)n∈N | gn ∈ Z/2} with the product topology.
This is a pro-2 group which is the inverse limit lim←−(Z/2)n, where the maps

(Z/2)N → (Z/2)n are the projection maps.

Let F be a family of subsets of N with the following properties.

(a) ∅ /∈ F
(b) For A,B ⊆ N, if A ∈ F and B ∈ F then A ∩B ∈ F .

(c) For A,B ⊆ N, if A ∈ F and A ⊆ B then B ∈ F
(d) For A ⊆ N, either A ∈ F or (NrA) ∈ F .

(e) If NrA is finite then A ∈ F .

A family F with properties (a)–(d) is called an ultrafilter. The existence of
an F with all the properties (a)–(e) follows from the Axiom of Choice, and
may be assumed for this question.

Let H be the set of elements (gn)n∈N ∈ (Z/2)N such that {n : gn = 0} ∈ F .

(i) Prove that H is a subgroup of (Z/2)N.

(ii) Let 1 be the element of (Z/2)N which is the constant sequence 1 =
(1)n∈N. Prove that for any g ∈ (Z/2)N either g ∈ H or 1 + g ∈ H, so
that H has index 2 in (Z/2)N.

(iii) Show that H is dense in (Z/2)N, and deduce that it is not open.

5. For each pair (n, pk) below find square roots of n modulo pk.

(i) n = 14 modulo pk = 121 = 112

(ii) n = 44 modulo pk = 343 = 72

(iii) n = 31 modulo pk = 625 = 54

�6. Find all solutions of f(x) = x2 − 2x+ 2 modulo 125.

�7. Let p 6= 2. Prove that if a ∈ Zp is not congruent to 0 modulo p then there
exist at most two square roots of any a ∈ Z/pkZ for any k. Show that any
a ∈ Zp has at most two square roots in Zp. Show that 1 has four square
roots in Z/15Z. Show that p2 has 2p distinct roots in Z/p3Z.

8. The assumption that an element is a non-zero square modulo p in the square
roots version of Hensel’s Lemma is unnecessarily restrictive. Characterise
exactly which elements of Zp have square roots (for p 6= 2).

9. (Square roots when p = 2.)

(a) Show that if λ ∈ Z2 is a non-zero square then λ = 22r(1 + 8a) for some
r ∈ Z and a ∈ Z2.

(b) Let λ = 1 + 8a. Show that x2 = λ if and only if y = (1 + x)/2 satisfies
the equation y2 − y − 2a = 0.
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(c) Deduce that λ ∈ Z2r {0} is a square number if and only if λ = 22r(1 +
8a) for some r ∈ Z and a ∈ Z2.

�10. Invertible elements of Zp. The ring Z has only two invertible elements,
±1. We have seen already that Zp has many more. In this exercise we will
show the exact structure of the group of invertible elements Z×p . Let p 6= 2
be prime.

(i) Let f(x) be a non-zero polynomial of degree ≤ d over a field F. Show
that f(x) has at most d roots in f .

(ii) By considering solutions of the equation xq = 1 in Fp for primes q|(p−
1), use the classification of abelian groups to deduce that the abelian
group F×p is cyclic.

(iii) Show that there exists σ ∈ Z×p such that σp−1 = 1 but σn 6= 1 for
0 < n < p− 1.

(iv) Show that (1 + p)(p−1)p
k ≡ 1 + (p− 1)pk+1 modulo pk+2.

(v) Let τ = 1+p ∈ Z×p . Show that the reduction modulo pn of στ has order
(p−1)pn−1 in the group Z/pnZ. Deduce that στ generates Z/pnZ, and
hence that στ topologically generates Z×p .

(vi) Show that Z×p ∼= Cp−1×Zp, where Cp−1 is a cyclic group of order p−1.

*(vii) Show that Z×2 ∼= C2 × Z2 = 〈−1〉 × 〈1 + 4〉.

11. Show, for a 2×2 matrix A over a commutative ring with determinant 1, that

A3 = ((trA)2 − 1)A− (trA)I

Deduce that the matrix (
82 9
9 1

)
= 1 + 9

(
9 1
1 0

)
has no cube root in SL2(Z). Show that the equation

83 = x3 − 3x

does have a solution in Z3.

12. Let a1, . . . , aN2 be a generating set of GL
(1)
N (Zp). Show that

GL
(1)
N (Zp) = 〈a1〉 · 〈a2〉 · · · 〈aN2〉

That is, for any g ∈ GL
(1)
N (Zp) there exist λ1, . . . , λN2 ∈ Zp such that

g = aλ1
1 · · · a

λN2

N2 .
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