[Key questions are marked with an obelus **†**. Expansion questions are marked with a star *.]

- 1. Properties of finite *p*-groups. Let *P* be a non-trivial finite group of order a power of the prime *p*.
 - \dagger (i) By considering the action of P on itself by conjugation, prove that P has non-trivial centre.
 - \dagger (ii) Prove that *P* admits a surjective map to \mathbb{F}_p .
 - (iii) Prove that P has a *chief series*: a sequence of normal subgroups $P_i \triangleleft P$,

$$\{1\} = P_0 \subseteq P_1 \subseteq P_2 \subseteq \cdots \subseteq P_N = P$$

such that every quotient group P_k/P_{k+1} has order p.

- (i) Prove by induction that γ_n(G) is a *fully characteristic* subgroup of G in the sense that, for any group homomorphism f: G → H, we have f(γ_n(G)) ⊆ γ_n(H). Deduce that any subgroup of a nilpotent group is nilpotent.
 - (ii) Prove that any quotient of a nilpotent group is nilpotent.
 - (iii) Let A be an abelian central subgroup of G, and assume that G/A is nilpotent of class c. Show that G is nilpotent of class at most c + 1.
 - (iv) Deduce that a finite *p*-group is nilpotent. Show that the lower central *p*-series of a finite *p*-group terminates, i.e. $\gamma_n^{(p)}(G) = 1$ for some *p*.
 - (v) Find an example to show that the conclusion of part (ii) need not hold if A is only assumed to be an abelian *normal* subgroup.
- **3.** Many of the properties or inductive arguments we have used with *p*-groups simply rely on the existence of non-trivial centres. As we have seen, nilpotent groups also have non-trivial centre, so one could ask why we are studying *p*-groups and pro-*p* groups rather than nilpotent groups and pro-(finite nilpotent) groups. This exercise shows why: finite nilpotent groups are simply products of *p*-groups.
 - (i) Let (G_n) be the lower central series of G. Show that G_{n-1}/G_n is central in G/G_n . In particular if G is nilpotent then $Z(G) \neq \{1\}$. Show that if G is nilpotent then the process of repeatedly factoring out centres eventually terminates in the trivial group.
 - (ii) Let G be a group and let H be a proper subgroup of G. Show that

$$N_G(H) = \{g \in G : g^{-1}Hg = H\}$$

is a subgroup of G which contains H. If G is nilpotent show that $H \neq N_G(H)$.

(iii) Let G be a finite group and let P be a p-Sylow subgroup of G. Show that $N_G(N_G(P)) = N_G(P)$. Deduce that if G is nilpotent then P is a normal subgroup of G.

- (iv) Show that a finite nilpotent group is the direct product of its p-Sylow subgroups.
- *4. An infinitely generated pro-*p* group with a finite index subgroup which is not open. The pro-*p* group we will consider is a very simple one: the group $(\mathbb{Z}/2)^{\mathbb{N}} = \{(g_n)_{n \in \mathbb{N}} \mid g_n \in \mathbb{Z}/2\}$ with the product topology. This is a pro-2 group which is the inverse limit $\varprojlim (\mathbb{Z}/2)^n$, where the maps $(\mathbb{Z}/2)^{\mathbb{N}} \to (\mathbb{Z}/2)^n$ are the projection maps.

Let \mathcal{F} be a family of subsets of \mathbb{N} with the following properties.

- (a) $\emptyset \notin \mathcal{F}$
- (b) For $A, B \subseteq \mathbb{N}$, if $A \in \mathcal{F}$ and $B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$.
- (c) For $A, B \subseteq \mathbb{N}$, if $A \in \mathcal{F}$ and $A \subseteq B$ then $B \in \mathcal{F}$
- (d) For $A \subseteq \mathbb{N}$, either $A \in \mathcal{F}$ or $(\mathbb{N} \setminus A) \in \mathcal{F}$.
- (e) If $\mathbb{N} \setminus A$ is finite then $A \in \mathcal{F}$.

A family \mathcal{F} with properties (a)–(d) is called an *ultrafilter*. The existence of an \mathcal{F} with all the properties (a)–(e) follows from the Axiom of Choice, and may be assumed for this question.

Let *H* be the set of elements $(g_n)_{n \in \mathbb{N}} \in (\mathbb{Z}/2)^{\mathbb{N}}$ such that $\{n : g_n = 0\} \in \mathcal{F}$.

- (i) Prove that H is a subgroup of $(\mathbb{Z}/2)^{\mathbb{N}}$.
- (ii) Let $\underline{1}$ be the element of $(\mathbb{Z}/2)^{\mathbb{N}}$ which is the constant sequence $\underline{1} = (1)_{n \in \mathbb{N}}$. Prove that for any $g \in (\mathbb{Z}/2)^{\mathbb{N}}$ either $g \in H$ or $\underline{1} + g \in H$, so that H has index 2 in $(\mathbb{Z}/2)^{\mathbb{N}}$.
- (iii) Show that H is dense in $(\mathbb{Z}/2)^{\mathbb{N}}$, and deduce that it is not open.
- 5. For each pair (n, p^k) below find square roots of n modulo p^k .
 - (i) $n = 14 \mod p^k = 121 = 11^2$
 - (ii) $n = 44 \mod p^k = 343 = 7^2$
 - (iii) $n = 31 \mod p^k = 625 = 5^4$
- **†6.** Find all solutions of $f(x) = x^2 2x + 2$ modulo 125.
- **†7.** Let $p \neq 2$. Prove that if $a \in \mathbb{Z}_p$ is not congruent to 0 modulo p then there exist at most two square roots of any $a \in \mathbb{Z}/p^k\mathbb{Z}$ for any k. Show that any $a \in \mathbb{Z}_p$ has at most two square roots in \mathbb{Z}_p . Show that 1 has four square roots in $\mathbb{Z}/15\mathbb{Z}$. Show that p^2 has 2p distinct roots in $\mathbb{Z}/p^3\mathbb{Z}$.
- 8. The assumption that an element is a *non-zero* square modulo p in the square roots version of Hensel's Lemma is unnecessarily restrictive. Characterise exactly which elements of \mathbb{Z}_p have square roots (for $p \neq 2$).
- 9. (Square roots when p = 2.)
 - (a) Show that if $\lambda \in \mathbb{Z}_2$ is a non-zero square then $\lambda = 2^{2r}(1+8a)$ for some $r \in \mathbb{Z}$ and $a \in \mathbb{Z}_2$.
 - (b) Let $\lambda = 1 + 8a$. Show that $x^2 = \lambda$ if and only if y = (1 + x)/2 satisfies the equation $y^2 y 2a = 0$.

- (c) Deduce that $\lambda \in \mathbb{Z}_2 \setminus \{0\}$ is a square number if and only if $\lambda = 2^{2r}(1 + 8a)$ for some $r \in \mathbb{Z}$ and $a \in \mathbb{Z}_2$.
- **†10. Invertible elements of** \mathbb{Z}_p . The ring \mathbb{Z} has only two invertible elements, ± 1 . We have seen already that \mathbb{Z}_p has many more. In this exercise we will show the exact structure of the group of invertible elements \mathbb{Z}_p^{\times} . Let $p \neq 2$ be prime.
 - (i) Let f(x) be a non-zero polynomial of degree $\leq d$ over a field \mathbb{F} . Show that f(x) has at most d roots in f.
 - (ii) By considering solutions of the equation x^q = 1 in F_p for primes q|(p − 1), use the classification of abelian groups to deduce that the abelian group F[×]_p is cyclic.
 - (iii) Show that there exists $\sigma \in \mathbb{Z}_p^{\times}$ such that $\sigma^{p-1} = 1$ but $\sigma^n \neq 1$ for 0 < n < p-1.
 - (iv) Show that $(1+p)^{(p-1)p^k} \equiv 1 + (p-1)p^{k+1}$ modulo p^{k+2} .
 - (v) Let $\tau = 1 + p \in \mathbb{Z}_p^{\times}$. Show that the reduction modulo p^n of $\sigma\tau$ has order $(p-1)p^{n-1}$ in the group $\mathbb{Z}/p^n\mathbb{Z}$. Deduce that $\sigma\tau$ generates $\mathbb{Z}/p^n\mathbb{Z}$, and hence that $\sigma\tau$ topologically generates \mathbb{Z}_p^{\times} .
 - (vi) Show that $\mathbb{Z}_p^{\times} \cong C_{p-1} \times \mathbb{Z}_p$, where C_{p-1} is a cyclic group of order p-1.
 - *(vii) Show that $\mathbb{Z}_2^{\times} \cong C_2 \times \mathbb{Z}_2 = \langle -1 \rangle \times \langle 1+4 \rangle$.
 - **11.** Show, for a 2×2 matrix A over a commutative ring with determinant 1, that

$$A^{3} = ((\operatorname{tr} A)^{2} - 1)A - (\operatorname{tr} A)I$$

Deduce that the matrix

$$\begin{pmatrix} 82 & 9 \\ 9 & 1 \end{pmatrix} = 1 + 9 \begin{pmatrix} 9 & 1 \\ 1 & 0 \end{pmatrix}$$

has no cube root in $SL_2(\mathbb{Z})$. Show that the equation

$$83 = x^3 - 3x$$

does have a solution in \mathbb{Z}_3 .

12. Let a_1, \ldots, a_{N^2} be a generating set of $\operatorname{GL}_N^{(1)}(\mathbb{Z}_p)$. Show that

$$\operatorname{GL}_N^{(1)}(\mathbb{Z}_p) = \overline{\langle a_1 \rangle} \cdot \overline{\langle a_2 \rangle} \cdots \overline{\langle a_{N^2} \rangle}$$

That is, for any $g \in \operatorname{GL}_N^{(1)}(\mathbb{Z}_p)$ there exist $\lambda_1, \ldots, \lambda_{N^2} \in \mathbb{Z}_p$ such that

$$g = a_1^{\lambda_1} \cdots a_{N^2}^{\lambda_{N^2}}.$$