[Key questions are marked with an obelus **†**. Expansion questions are marked with a star *.]

1. (Pullbacks) Pullbacks are the dual construction to push-outs. Consider the category J with three objects 0, 1, 2 and two non-identity arrows $1 \rightarrow 0$ and $2 \rightarrow 0$. A diagram of shape J in Grps consists of groups G_0, G_1, G_2 and homomorphisms $\phi_{10}: G_1 \rightarrow G_0$ and $\phi_{20}: G_2 \rightarrow G_0$. Give an explicit description of the limit of such a diagram.

[*Hint:* Pushouts are quotients of coproducts. What sort of construction should be dual to that?]

2. Let J be the category with two objects 1 and 2 and two morphisms $1 \rightarrow 2$. Consider the diagram of shape J in Grps shown below.

$$G_1 \xrightarrow{\phi} G_2$$

where ϕ is a group homomorphism and 1 denotes the trivial homomorphism. What is the limit of this diagram? What is the colimit?

3. Let (J, \preceq) be a totally ordered set. What is the product of two objects *i* and *j* in the poset category J? What is the colimit?

If J is now merely a *partially* ordered set, how would you describe the product of two objects of J? Does it always have to exist?

4. Let $J = \mathbb{N}$, with the partial ordering $n \leq m$ if and only if $n \geq m$. Consider the diagram of shape J in Sets shown below, and assume that all the transition maps ϕ_{nm} are *inclusions*. What is the inverse limit of the X_n ?

$$\cdots \longrightarrow X_3 \xrightarrow{\phi_{32}} X_2 \xrightarrow{\phi_{21}} X_1 \xrightarrow{\phi_{10}} X_0$$

- *5. (Direct limits) Work in the category AbGrp of abelian groups for this question.
 - (i) Let J be a category consisting of a set J of objects, with no morphisms other than the necessary identities. What is the colimit of a diagram $X: J \rightarrow AbGrp$?
 - (ii) Now let J be a poset category. Suppose that J is a directed system in the sense that for any i, j ∈ Obj(J) there exists some k ∈ Obj(J) such that i ≤ k and j ≤ k. Find an explicit form, akin to Proposition 1.2.8, for the colimit of a diagram X: J → AbGrp. Such a diagram is called a directed system of abelian groups, and its colimit is called the direct limit¹ lim X_j.
 - (iii) Let J be the poset category whose objects are the positive natural numbers with the ordering $n \preceq m$ if n|m. Let $X_n = \mathbb{Z}/n\mathbb{Z}$ and let $\phi_{nm} \colon X_n \to X_m$ be the inclusion map given by $1 \mapsto m/n$ for n|m. Show that $\lim_{n \to \infty} X_n \cong \mathbb{Q}/\mathbb{Z}$.

¹Don't blame me, I didn't choose the name...

- **†6.** Let G_j $(j \in J)$ be a family of finite groups, each with the discrete topology. Let $G = \prod G_j$ be the product and let $p_j : G \to G_j$ be the projection maps. Recall that the subbasic open sets on the product $\prod G_j$ are by definition $U_{j,x} = p_j^{-1}(x)$ for $j \in J$, $x \in G_j$.
 - (i) Let m: G × G → G be the multiplication map and let i: G → G be the inversion map. Prove that i and m are continuous. For any g ∈ G, prove that the left-multiplication map μ_g: G → G, h → gh is continuous.

It follows that if $(G_j)_{j \in J}$ is an inverse system of finite groups, the restrictions of these maps to the inverse limit $\widehat{G} = \varprojlim G_j$ are also continuous, so that \widehat{G} is a topological group.

- (ii) Prove that \widehat{G} is also the limit of the G_j in the category of topological groups: that is, if H is a topological group admitting continuous homomorphisms to all G_j compatible with the transition maps, then the canonical homomorphism $H \to \widehat{G}$ is also continuous.
- (iii) Show that if $f: \Gamma \to \Delta$ is a group homomorphism, then there is a natural continuous homomorphism $\hat{f}: \widehat{\Gamma} \to \widehat{\Delta}$ between the profinite completions, such that $\iota \circ f = \hat{f} \circ \iota$.

[Some of the concepts assumed here may perhaps not have made it into the Metric Spaces and Topology course. There is an supplementary document on Moodle.]

- **†7.** Let $(X_j)_{j \in J}$ be an inverse system of finite groups such that all transition maps are surjective. Prove that all the projections $p_k \colon \varprojlim X_j \to X_k$ are surjective. Prove that a subset $Z \subseteq \varprojlim X_j$ is dense if and only if $p_j(Z) = X_j$ for all $j \in J$.
- **†8.** Let G be a compact topological group. Prove that a subgroup of G is open if and only if it has finite index and is closed.
- **9.** Prove that $\{0,2\}^{\mathbb{N}}$ is homeomorphic to a Cantor set.

Let $(X_j)_{j \in J}$ be an inverse system of finite sets. Assume J is countably infinite. Construct a countable set I and a continuous injective function $\lim_{i \to J} X_j \to \{0, 1\}^I$. Deduce that $\lim_{i \to J} X_j$ is homeomorphic to a closed subset of a Cantor set.

†10. Let (J, \preceq) be an inverse system, where J is countable. Show that there exists a linearly ordered cofinal subsystem J' of J.

Let $(G_j)_{j \in J}$ be an inverse system of finite groups where J is countably infinite and linearly ordered. Assume that the transition maps are surjective. Prove that $\lim G_j$ is uncountable or finite.

- **†11.** Show that the ring \mathbb{Z}_p has no zero-divisors.
- *12. The *p*-adic rationals \mathbb{Q}_p . Recall that the field of fractions of the integral domain \mathbb{Z}_p is defined to be the set

$$\mathbb{Q}_p = \left\{ (a, b) \mid a, b \in \mathbb{Z}_p, b \neq 0 \right\} / \sim$$

with the equivalence relation

$$(a,b) \sim (c,d) \quad \Leftrightarrow \quad ad = bc$$

Of course the equivalence class of (a, b) is denoted by $\frac{a}{b}$. Addition and multiplication are defined by the usual formulae

$$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}, \quad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

The ring \mathbb{Z}_p is considered to be contained in \mathbb{Q}_p in the usual way a = a/1.

(i) Show that any non-zero element α of \mathbb{Q}_p may be written uniquely as $\alpha = p^k \alpha'$ for some $\alpha' \in \mathbb{Z}_p^{\times}$ and some $k \in \mathbb{Z}$ (where for $k < 0, p^k$ of course means $1/p^{-k}$).

Define the *p*-adic norm on \mathbb{Q}_p by

$$|\alpha|_p = p^{-k}$$
 where $\alpha = p^k \alpha'$ for $\alpha' \in \mathbb{Z}_p^{\times}$

and by $|0|_p = 0$, and define a function $d: \mathbb{Q}_p \times \mathbb{Q}_p \to \mathbb{R}$ by $d(\alpha, \beta) = |\alpha - \beta|_p$. Note that d is the usual metric on \mathbb{Z}_p .

(ii) Show that d is a metric on \mathbb{Q}_p . Show that the sets

 $\{\alpha \in \mathbb{Q}_p \text{ such that } |\alpha|_p = p^{-k}\}, \quad \{\alpha \in \mathbb{Q}_p \text{ such that } |\alpha|_p \le p^{-k}\}$

are both open and closed, for any k.

- (iii) Show that \mathbb{Q}_p is complete but not compact. [You may use the fact that \mathbb{Z}_p is complete].
- (iv) Show that the addition and multiplication maps $\mathbb{Q}_p \times \mathbb{Q}_p \to \mathbb{Q}_p$ and the inversion map $\mathbb{Q}_p \setminus \{0\} \to \mathbb{Q}_p$ are continuous with this metric.
- 13. Procyclic groups. A procyclic group is an inverse limit of finite cyclic groups. You have already seen the procyclic groups $\mathbb{Z}/m\mathbb{Z}$, \mathbb{Z}_p and $\widehat{\mathbb{Z}}$. In this question you will classify all of the procyclic groups.
 - (i) Show that a closed subgroup of a procyclic group is procyclic.
 - (ii) Exhibit a procyclic group G and a subgroup H which is isomorphic to \mathbb{Z}^2 (and is of course not a closed subgroup).
 - (iii) Let $G = \varprojlim_{j \in J} G_j$ be the inverse limit of a surjective inverse system of finite cyclic groups whose orders are powers of a fixed prime p. If $i \leq j$ show that for any generator x_j of G_j every preimage $x_i \in \phi_{ij}^{-1}(x_j)$ is a generator of G_i . Show that there is a choice of generator $x_i \in G_i$ for all $i \in I$ such that $\phi_{ij}(x_i) = x_j$ for every $i \leq j$. Deduce that there is a surjective continuous homomorphism $\mathbb{Z}_p \to G$.
 - (iv) Prove that the only infinite index closed subgroup of \mathbb{Z}_p is the trivial subgroup. Show that any finite index open subgroup of \mathbb{Z}_p is equal to $\ker(\mathbb{Z}_p \to \mathbb{Z}/p^e\mathbb{Z})$ for some $e \ge 0$.
 - (v) Use the Chinese Remainder Theorem to show that any procyclic group G has the form $\prod_{p \text{ prime}} G_p$ where G_p is a continuous quotient of \mathbb{Z}_p . Deduce a classification of all procyclic groups.