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1 (a) Let (Xi) be a system of finite sets with transition maps φij : Xi → Xj for i � j,
indexed over a poset (I,�).

(i) Define what it means for a poset (I,�) to be an inverse system.

(ii) Give two definitons of the limit lim
←−

Xi: a definition by a universal property,
and an explicit definition. [You need not prove that these definitions are
equivalent.]

(iii) Show that if I is an inverse system then lim
←−

Xi is non-empty.

(b) Let (J,�) be a poset with six elements 1, 2, 3, a, b, c, related by:

c � 1 c � 2 b � 1 b � 3

a � 2 a � 3

and with no other non-trivial relations.

(i) Is J an inverse system? [Include your reasons in your answer.]

(ii) Find a system of finite sets (Xj)j∈J indexed over J , such that all transition
maps φij : Xi → Xj for i � j are surjective, but such that the limit lim

←−
Xi

is the empty set.

(c) Consider the abstract group

Γ = 〈a, b | ba2b−1 = a3〉 .

(i) Let Q be a finite group and let f : Γ→ Q be a surjective homomorphism.
Show that the order of f(a) is coprime to 6.

(ii) If n is an integer coprime to 6, construct a finite group Qn and a surjective
homomorphism fn : Γ→ Q such that f(a) has order n.

(iii) Let ι : Γ → Γ̂ be the canonical map from Γ to its profinite completion.
Prove that

〈ι(a)〉 ∼=
∏

p 6=2,3

Zp

where p ranges over the prime numbers not equal to 2 or 3.

[You may use any theorems from lectures provided you state them clearly.]
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2 (a) Let G = lim
←−

Gj be a profinite group, where (Gj)j∈J is an inverse ststem of finite
groups.

(i) Define what is meant by a topological generating set for G.

(ii) Let S be a subset of G. State a criterion, in terms of the Gj , for S to be a
topological generating set for G.

(iii) Give an example of a profinite group G, a finitely generated abstract
subgroup Γ 6 G, and a subset S of Γ such that S is not an abstract
generating set for Γ but is a topological generating set for G. [You need
not give a detailed proof that your example works.]

(b)

(i) State and prove Gaschutz’s Lemma for Finite Groups.

(ii) Deduce Gaschutz’s Lemma for Profinite Groups.

[You may assume any standard results concerning inverse systems.]

(c)

(i) Let F be a finitely generated free group, let Q be a finite group and let
f : F → Q be a surjective homomorphism. Let f̂ : F̂ → Q be the extension
of f to F̂ . Show that for any automorphism φ ∈ Aut(Q) there exists a
continuous automorphism φ̂ ∈ Aut(F̂ ) such that f̂ φ̂ = φf̂ .

[You may freely use standard properties of profinite groups and of F̂
provided you state them clearly.]

(ii) Give an example of F , Q, and f such that there is no automorphism
φ̃ ∈ Aut(F ) such that fφ̃ = φf .
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3 Let G be a group. Define a topology T on G whose basic open sets are those of
the form

UQ,f,q = f−1(q)

where Q is a finite group, f : G→ Q is a group homomorphism, and q ∈ Q.

(a)

(i) Define what it means for (G,T ) to be a topological group.

(ii) Define what it means for G to be residually finite. Show that G is residually
finite if and only if (G,T ) is a Hausdorff topological space.

(b) A subset X of G is called separable in G if for every g ∈ G rX there exists a
finite group Q and a group homomorphism f : G→ Q such that f(g) /∈ f(X).

(i) Show that X is separable in G if and only if X is closed in (G,T ).

(ii) Show that X = Gr {1} is separable if and only if G is finite.

(iii) Let H be a subgroup of G and suppose there exists a homomorphism
ρ : G→ H such that ρ(h) = h for all h ∈ H. Show that the map

σ : G→ G, σ(g) = ρ(g)g−1

is continuous. [You may assume that (G,T ) is a topological group.]

If G is residually finite, prove that H is separable in G.

(c) Let F be a free group on two generators a and b.

(i) Show that the subgroups 〈a〉 and 〈ab〉 are separable in F .

(ii) Show that the subgroup 〈an〉 is separable in F for any n > 0.

(iii) Let w = a−1b2a2b−1a ∈ F . Using the method of Stallings folding, or
otherwise, produce an explicit homomorphism f : F → Q to a finite group
Q such that f(b) /∈ f(〈w〉).
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4 (a) Let (I,�) be an inverse system and let (Gi)i∈I be an inverse system of finite
groups indexed over I. Let G = lim

←−
Gi and let pi : G→ Gi be the natural projection map.

(i) Give a basis of open sets for the topology on G.

(ii) Let X ⊆ G, H ⊆ G be subsets. Show that H ⊆ X if and only if
pi(H) ⊆ pi(X) for all i ∈ I.

(b) For a commutative ring R with unity, define

T (R) =

{(
a b
0 d

)
∈ SL2(R)

}
.

(i) Show that there exists κ ∈ Z3 such that 2κ = 1. [Do not assume Gaschutz’s
Lemma.]

(ii) Show that T (Z) is not dense in T (Z3).

(iii) Show that T (Z3) ⊆ SL2(Z).

[You may assume without proof that SL2(Z3) = lim
←−

SL2(Z/3
n
Z).]

(c) State and prove Hensel’s Lemma for Square Roots.

(d) Find an integer matrix A ∈ GL2(Z3) such that

A3 ≡

(
82 9
9 1

)
mod 81 .

[It is sufficient to express A in terms of explicit integer matrices; you are not required
to simplify such an expression.]
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5 (a) Let G be a group and let M be a (left) G-module.

(i) Consider the homomorphism of abelian groups

Φ: HomZG((ZG)
r,M)→M r

Φ(f) =
(
f(e1) f(e2) . . . f(er)

)Tr

where ei is the element of (ZG)r with a 1 in the ith place and zero elsewhere.

Show that Φ is an isomorphism.

(ii) Write elements of (ZG)r as row vectors and elements of M r as column
vectors. Suppose that ψ : (ZG)3 → (ZG)2 is a morphism of G-modules
given by right-multiplication by a matrix A = (aij):

ψ(x, y, z) =
(
x y z

)


a11 a12
a21 a22
a31 a32




where aij ∈ ZG. Let

ψ∗ : HomZG((ZG)
2,M)→ HomZG((ZG)

3,M)

be the dual map.

For f ∈ HomZG((ZG)
2,M), let Φ(f) =

(
f1 f2

)Tr
. Show that

Φ(ψ∗(f)) = A ·

(
f1
f2

)
= A · Φ(f)

(b) Let G be the group defined by the presentation

G = 〈a, b | a6 = 1, b4 = 1, a3b2 = 1〉.

(i) Define what it means for a sequence of G-modules

C2

ψ
−→ C1

φ
−→ C0

ǫ
−→ Z→ 0

to be a chain complex. Define what it means for the sequence to be exact.

(ii) Let ψ : (ZG)3 → (ZG)2 be the map defined by

ψ(x, y, z) =
(
x y z

)


1 + a+ a2 + a3 + a4 + a5 0

0 1 + b+ b2 + b3

1 + a+ a2 a3(1 + b)




=:
(
x y z

)
C,

let φ : (ZG)2 → (ZG) be given by

φ(u, v) =
(
u v

)(a− 1
b− 1

)

=:
(
u v

)
D
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and let ǫ : ZG→ Z be the augmentation map.

Show that the sequence

(ZG)3
ψ
−→ (ZG)2

φ
−→ ZG

ǫ
−→ Z→ 0 (1)

is a chain complex.

(c) Assume now that there is a free resolution of Z by ZG-modules whose final four
terms are the sequence (1).

(i) Compute H1(G,Z) and H1(G,Z/12Z), where each coefficient module has
trivial G-action.

(ii) Write down, without proof, a long exact sequence corresponding to the
exact sequence of G-modules

0→ Z
12
−→ Z −→ Z/12Z→ 0.

Deduce that H2(G,Z) 6= 0.

[You do not need to describe the maps in the long exact sequence.]

END OF PAPER
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