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Introduction

Much of the story of pure mathematics can be expressed as a desire to answer
the question ‘When are two objects different?’. Showing that two objects are
‘the same’ in some sense may be considerably easier than proving the contrary.
For example, the theory of infinite cardinal numbers may be seen as answering
the question ‘why is the set of real numbers different from the set of rational
numbers?’. In this context it is considerably easier, for example, to exhibit a
bijection between Z and Q than to show that no bijection between Q and R
can possibly exist.

In many cases we show that objects are different by defining ‘invariants’:
quantities which (ideally) may be computed, are preserved under isomorphism,
and are easier to tell apart than the original object. Some examples of invariants
you may have met are given below.

� For a (finite-dimensional) vector space V , the base field F and the dimen-
sion dimF(V ) determine V up to linear isomrphism.

� For an algebraic field extension K/Q, the degree [K : Q] and, under some
conditions, the Galois group of K over Q.

� For a topological space X, the properties of compactness, connectedness,
and path-connectedness may be considered to be invariants.

� For a simplicial complex X, the homology groups H∗(X).

� For a path-connected topological space X, the fundamental group π1X.

This last example is a somewhat odd invariant. It is extremely powerful and
often gives fine control over the space X. However, groups are in general just
as difficult to distinguish as spaces. In fact, to some extent, they are impossible
to distinguish, even for groups that are given by finite presentations: it is even
known (by the Adian-Rabin Theorem) that there can be no algorithm that
takes as input a finite presentation and decides whether the presentation gives
the trivial group. Never mind the harder question of an algorithm taking in two
finite presentations and deciding if they give isomorphic groups.

This theorem does not stop us from attempting to design algorithms that
distinguish between groups under certain additional conditions. For example,
one class of groups for which it is definitely possible to decide isomorphism is the
class of finite groups: between any two finite groups there are only finitely many
possible bijections, so one can just check all possible bijections to see whether
they’re isomorphisms. This would be a pretty terrible algorithm, but it would
eventually decide the question.
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For infinite finitely presented groups, this suggests one conceivable way to
tell two groups apart. One can begin to list finite quotients of the two groups
and compare the two lists. If these lists differ at some point (that is, there is
a finite group which is a quotient of one but not the other), then we will have
proved that the two groups are not isomorphic. Of course, we know that this
procedure cannot always work—but it is still worthwhile to investigate when it
does.

For theoretical purposes, one does not really want to work with such an
unwieldy object as ‘the set of all finite quotients’ of a group G. Instead one
combines these finite groups into one limiting object, the profinite completion
of the group. Such a ‘limit of finite groups’ is the central object of the course,
a profinite group.

Most of the time we will be studying profinite groups as interesting ob-
jects in their own right, or as the profinite completion of a known group. It is
worthwhile, however, to mention in the introductory section two other areas of
mathematics where profinite groups arise naturally. Neither of these areas is a
course pre-requisite, so we will not see these concepts further in this course and
can be ignored for those without the precise necessary background.

One key area in which profinite groups arise naturally (and indeed, in which
they were first defined) is Galois theory: specifically, the Galois group of an
infinite Galois extension of fields is naturally a profinite group. Let us see one
example. Consider the field extension K obtained from Q by adjoining all pn-
th roots of unity for some fixed prime p, as n varies over N. Define also the
extension KN of Q by adjoining all pn-th roots for n ≤ N . Then the KN form
an increasing union of subfields of K such that K =

⋃
KN . Each extension

K/KN is Galois, as are the extensions KN/Q and K/Q. It follows that there
are natural quotient homomorphisms

Gal(K/Q)→ Gal(KN/Q) ∼= (Z/pNZ)×.

The Galois group Gal(K/Q) may be considered to be a ‘limit’ of these finite
groups in a certain sense (to be defined soon). This behaviour is typical: every
Galois group of an infinite Galois extension may be considered to be a limit of
finite Galois groups.

I will also mention that profinite groups also appear in algebraic geometry
in the guise of étale fundamental groups, though to be perfectly honest I’m not
qualified to expand upon this remark further.

The second part of this course also concerns a certain ‘invariant’ intended
to distinguish groups from one another, the theory of group cohomology. As the
name may suggest, this theory is intimately connected with the homology theory
of spaces as studied in Part II Algebraic Topology, but has its own indepedent
strengths and weaknesses. Much like the homology group of a space, we will
take a group G and define a collection of abelian groups depending on G, called
the cohomology groups of G. These can be powerful theoretical tools in many
contexts. As one key application we will show how cohomology groups provide
a solution to the following natural question:

Given a group G and an abelian group A, how many groups E can
there be such that A / E and E/A = G?

It is readily seen that a good answer to this question would allow one in principle
to classify all groups with order pn, or more generally all solvable groups, so this
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particular application of cohomology theory may be seen as carrying on some
of the story from IB Group Theory.

At the conclusion of the course we will combine our two main threads into the
cohomology theory of profinite groups, and establish some remarkably strong
theorems which show that in some ways our profinite groups are actually better
behaved than normal groups!

First however, we must lower our sights back down to fundamentals. We
begin with some category theory.



Chapter 1

Inverse limits

1.1 Categories and limits

As was mentioned in the introductory section, we will be seeking to combine
the information contained in, for example, the set of finite quotients of a given
group into one object which we can study. Let us see some basic constructions
which combine several objects into one.

Let A and B be two sets, with no particular relationship between them. How
might these be combined into one object? Two constructions should come to
mind fairly quickly: the product A × B and the disjoint union A t B. What
properties of A×B and A tB describe their relationship to A and B?

The disjoint union comes equipped with inclusion maps iA : A→ AtB and
iB : B → A t B. Furthermore, it is in some sense the ‘minimal’ object that
sensibly contains both A and B: for any other set Z with maps jA : A→ Z and
jB : B → Z, there is a unique function f : AtB → Z which restricts to jA and
jB , defined simply by f(a) = jA(a) for a ∈ A and f(b) = jB(b) for b ∈ B. This
situation would be represented diagrammatically as follows:

A A tB B

Z

iA

jA
∃! f

iB

jB

(1.1)

This diagram commutes in the sense that ‘following the arrows’ gives the same
result whatever path is taken—for example, f ◦ iA = jA. The sort of property
described above—where some data (e.g. the set Z and the functions jA and
jB) implies the unique existence of something else (here, the map f) is called a
universal property.

We see that the disjoint union tells us about maps leaving A and B. What
about maps to A and B? This is where the product comes in. The product A×B
is equipped with the usual projection maps pA : A×B → A and pB : A×B → B.
Once again, there is a ‘universality’ condition too. Given a set Z and maps
qA : Z → A and qB : Z → B, there is a unique map g : Z → A × B such that
pA ◦ g = qA and pB ◦ g = qB , defined by g(c) = (qA(c), qB(c)). In the form of a
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diagram:

Z

A A×B B

qA ∃! g qB

pA pB

(1.2)

Note the similarity between these two diagrams: one is obtained from the other
by reversing the direction of the arrows. We say that the product and disjoint
union of sets are dual to one another. Duality in this situation is often denoted
by the prefix ‘co-’; the disjoint union may thus also be called a coproduct.

Let us now move back to group theory, and insist that all our functions are
group homomorphisms. We can still ask what groups may play the roles of AtB
and A× B in the diagrams above. The product A× B is of course a perfectly
sensible group, and satisfies the same universal property: the projection maps
pA and pB are group homomorphisms, and provided we assume Z is a group
and qA and qB are homomorphisms, then so is g = (qA, qB). So in ‘the category
of groups’, the product A × B is still a product in the sense of the universal
property.

What about a coproduct? Given two groups A and B, there is no sensible
way to put a group structure on the disjoint union A t B. Is there a group
which could replace it?

It turns out that the answer is the free product A ∗ B, which you met in
Part II Algebraic Topology. Indeed, this was essentially the definition of free
product that was given. In Algebraic Topology, this was viewed as a special
case of another universal property: the pushout. For a pushout, the given data
is not just two unrelated groups A and B, but also a third group C and maps
φA : C → A and φB : C → B. The pushout A qC B was defined to be a
group equipped with maps iA : A → A qC B and iB : B → A qC B, such that
iA ◦ φA = iB ◦ φB , and such that for any other group Z with maps jA : A→ Z
and jB : B → Z such that jA ◦ φA = jB ◦ φB , there is a unique homomorphism
f : AqC B → Z such that f ◦ iA = jA and f ◦ iB = jB .

This blizzard of notation is rather better described with the commutative
diagram below.

C A

B AqC B

Z

φA

φB iA

jA
iB

jB
∃!f

(1.3)

The language which unifies these situations is the language of category the-
ory. This is not primarily a course in category theory, so we will only introduce
the minimum level of terminology required for our needs, and not worry too
much about developing things in the abstract.

Definition 1.1.1. A category C consists of:

� a collection of ‘objects’ Obj(C);
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� a collection of ‘morphisms’ (or ‘arrows’) Mor(C), where each morphism f
has a domain X and a codomain Y in Obj(C)—denoted by ‘f : X → Y ’;

� for each X ∈ Obj(C), an ‘identity morphism’ idX : X → X;

� for each pair of morphisms f : X → Y , g : Y → Z, a ‘composition mor-
phism’ g ◦ f : X → Z

such that:

� for all f : X → Y , f = idY ◦f = f ◦ idX ; and

� composition is associative—that is, if f : W → X, g : X → Y , and h : Y →
Z then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

It will be seen that this is a pretty loose set of axioms, and there are a huge
range of examples of categories.

The word ‘morphism’ is used here because in the case of most categories we
will meet, each element of Obj(C) is some sort of set and the morphisms between
them are functions saisfying some conditions. However nothing in the definition
of ‘category’ requires us to have this extra structure. In more abstract category
theory the word ‘arrow’ is more appropriate. We generally stick to ‘morphism’ in
this course, except sometimes for a poset category (see Definition 1.1.4 below).

There a many natural categories which are familiar.

� Sets, the category whose objects are sets and whose morphisms are func-
tions;

� Grps, the category of groups and group homomorphisms;

� Grpsfin, the category of finite groups and group homomorphisms;

� TopGrps, the category of topological groups and continuous group homo-
morphisms (see Definition 1.2.21);

� Vectk, the vector spaces and linear maps over a field k;

� R-Mod, the category of modules over a ring R, whose morphisms are R-
linear maps.

Many more could be listed, along with variations of the above—for instance,
one could ask for all homomorphisms to be injective, or insist that all groups
are abelian. One important example slightly different to the above is a poset
category (short for ‘partially ordered set category’).

Definition 1.1.2. A partial ordering � on a set J is a binary relation such
that:

� i � i for all i ∈ J ;

� if i � j and j � i then i = j;

� if i � j and j � k then i � k.

A poset is a set J equipped with a partial ordering.
If, for every i, j ∈ J , one of i � j and j � i must hold, then � is a total

ordering.
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Remark 1.1.3. I suppose logically a set with a total ordering ought to be called
a toset, but no one seems to use this word.

Definition 1.1.4. Let (J,�) be a poset. The corresponding poset category is a
category J defined by setting Obj(J) = J , and with a unique morphism/arrow
i→ j if i � j (and no morphism i→ j if i 6� j).

The transitivity property of a partial ordering ensures that compostion in
this category makes sense. The identity morphisms are of course the unique
arrow i→ i given by i � i.

The advantage of category theory in our context is that it allows a definition
via universal property to be made, and its basic principles established, once and
for all rather than making it once for sets, once for groups, etc etc. For example,
a product is defined as follows.

Definition 1.1.5. Let C be a category. A product of two objects A,B ∈ Obj(C)
is an object P equipped with morphisms pA : P → A and pB : P → B, such that
for any object Z and morphisms qA : Z → A and qB : Z → B, there is a unique
morphism g : Z → P such that pA ◦ g = qA and pB ◦ g = qB .

Z

A P B

qA ∃! g qB

pA pB

(1.4)

Remark 1.1.6. It is standard to talk about ‘the product P ’, but this is not
totally accurate: the product consists both of P and the maps pA and pB .

Remark 1.1.7. This is just a definition; nothing here says that such a P exists.
For instance, in the category of groups of order at most 4, there is no product
of Z/2Z and Z/3Z. However, universal product definitions do usually force
uniqueness, up to a point.

Definition 1.1.8. Objects A and B in a category C are isomorphic if there are
morphisms f : A→ B and g : B → A such that g ◦ f = idA and f ◦ g = idB .

Proposition 1.1.9. Let C be a category and let A and B be objects of C. If a
product of A and B exists, then it is unique up to unique isomorphism.

Proof. Let P with maps pA and pB be a product of A and B, and let P ′,
with maps p′A and p′B , be another product of A and B. Applying the universal
property (1.4) to P , with Z = P ′, yields a unique map f : P ′ → P such that
pA ◦ f = p′A and pB ◦ f = p′B . Applying it to P ′, with Z = P gives g : P → P ′

such that p′A ◦ g = pA and p′B ◦ g = pB . Now consider f ◦ g : P → P . This
satisies pA ◦ f ◦ g = pA and pB ◦ f ◦ g = pB . The identity idP also satisfies these
conditions, so by the uniqueness part of Definition 1.1.5, we have idP = f ◦ g.
Similarly idP ′ = g ◦ f , so P and P ′ are isomorphic.

Remark 1.1.10. Basically all proofs that a universal property gives uniqueness
up to isomorphism follow this pattern, so we shall not trouble to write them out.
Note that the uniqueness statement is about the whole product structure—i.e.
both the object P and the maps pA and pB . For instance, there are many
isomorphisms from Z × Z to itself, but only the identity preserves both the
projection maps.
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Remark 1.1.11. Having established uniqueness up to isomorphism, we are free
to fix some notation and say that the product object P will be denoted A×B.

The dual notion to the product, the coproduct, unifies disjoint unions of sets
and free products of groups.

Definition 1.1.12. Let C be a category. A coproduct of two objects A,B ∈
Obj(C) is an object A q B equipped with morphisms iA : A → A q B and
iB : B → A q B, and such that for any other object Z with maps jA : A → Z
and jB : B → Z, there is a unique morphism f : AqB → Z such that f ◦iA = jA
and f ◦ iB = jB .

A AqB B

Z

iA

jA
∃! f

iB

jB

(1.5)

Products are the first example of what category theorists call a limit. Co-
products are therefore colimits. We will give a formal definition because, while
slightly painful, it is easier in the long run than trying to avoid the proper ter-
minology. However, as with the notion of ‘category’, we will deal more with
concrete settings than the abstract theory.

We begin with the natural notion of morphism of categories.

Definition 1.1.13. Let C and D be categories. A functor F : C→ D associates
an object F(X) ∈ Obj(D) to each X ∈ Obj(C), and a morphism F(f) : F(X)→
F(Y ) for each (f : X → Y ) ∈ Mor(C), such that F(idX) = idF(X) for all X and
F(g ◦ f) = F(g) ◦ F(f) for all f : X → Y and g : Y → Z.

Definition 1.1.14. Let J and C be categories. A diagram of shape J in C is a
functor X : J→ C. We may denote X(j) = Xj for j ∈ Obj(J).

Example 1.1.15. 1. If J is the category with two objects 1 and 2 and no
morphisms other than the required identity morphisms, a diagram of shape
J in C is a choice of two objects X1 and X2 of C.

2. If J is the category with three objects 0, 1 and 2, a morphism 0→ 1 and
a morphism 0→ 2 (and no other non-trivial morphisms), then a diagram
of type J would be three objects X0, X1 and X2 and choices of morphisms
X0 → X1 and X0 → X2.

Definition 1.1.16. A cone on a diagram X : J→ C is an object C in C together
with morphisms pj : C → Xj for each j ∈ Obj(J), such that for any α : i→ j in
J, we have X(α) ◦ pi = pj .

C

Xi Xj

pi pj

X(α)
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A limit of a diagram X : J→ C is a cone L (with morphisms pj), such that for
any other cone Z (with morphisms qj), there is a unique morphism f : Z → L
such that pj ◦ f = qj for all j ∈ Obj(J).

Z

L

Xi Xj

qi qj

∃! f

pi pj

X(α)

(1.6)

Once again, this is merely a definition: no claim is made that limits always
exist.

Example 1.1.17. For the two-point category J from Example 1.1.15(1), a limit
of a diagram of type J is a product X1×X2. Compare (1.6) with Diagram (1.4).

As with all universal properties, there is a dual notion.

Definition 1.1.18. A cocone on a diagram X : J → C is an object C in C
together with morphisms pj : Xj → C for each j ∈ Obj(J), such that for any
α : i→ j in J, we have pi = pj ◦X(α).

Xj Xj

C

pi

X(α)

pj

A colimit of a diagram X : J → C is a cocone L (with morphisms pj), such
that for any other cocone Z (with morphisms qj), there is a unique morphism
f : L→ Z such that f ◦ pj = qj for all j ∈ Obj(J).

Xi Xj

L

Z

pi

X(α)

qi

pj

qj

∃! f

(1.7)

Proposition 1.1.19. Limits and colimits, if they exist, are unique up to iso-
morphism.

Proof. The proof is, mutatus mutandi, the same as Proposition 1.1.9.
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Example 1.1.20. 1. For the two-point category J from Example 1.1.15(1), a
colimit of a diagram of type J is a coproduct X1 qX2.

2. For the three-point category J from Example 1.1.15(2), a colimit of a
diagram of type J is a pushout X1 qX0 X2 (defined as in Diagram (1.3)).

Remark 1.1.21. Diagram (1.3) may not look quite like the diagram (1.7)
defining a colimit—limits and colimits are defined in terms of commuting
triangles, whereas the pushout diagram has a commuting square. The
reason for this is simply that we omitted the map iC = iBφB = iAφA
from the pushout diagram.

We are now in a position to begin to define the eponymous objects of the
course. We began this course by asking how the various finite quotients of a
group may be assembled into some coherent object which can be studied. Armed
with the notion of a limit we may now proceed with this.

1.2 Inverse limits and profinite groups

Let G be a group. The set of finite index normal subgroups N of G form a
partially ordered set, where the ordering is given by inclusion: N1 � N2 if and
only if N1 ⊆ N2. Let N be the corresponding poset category. Define a functor
N → Grps by sending each normal subgroup N ∈ Obj(N) to the group G/N ,
and sending each arrow (N1 → N2) ∈ Mor(N)—which means N1 ⊆ N2—to the
natural quotient map φN1N2

: G/N1 → G/N2. This is a diagram of shape N
in Grps, so we can ask what its limit is. This limit is the object we seek, that
contains precisely the knowledge of the finite quotients of G (this statement will
be made precise in Theorem 3.1.12 later in the course).

Since this is a key definition of the course, we spell out the definition more
explicitly.

Definition 1.2.1. Let G be a group. The profinite completion of G, denoted
Ĝ, is a group Ĝ admitting homomorphisms pN : Ĝ→ G/N for every finite index
normal subgroup N of G, such that:

� whenever N1 ⊆ N2, we have φN1N2 ◦ pN1 = pN2 ; and

� if Z is any group admitting homomorphisms qN : Z → G/N such that
φN1N2

◦ qN1
= qN2

whenever N1 ⊆ N2, then there is a unique homomor-

phism f : Z → Ĝ such that pN ◦ f = qN for all N .

Z

Ĝ

G/N1 G/N2

qN1
qN2

∃! f

pN1
pN2

φN1N2

(1.8)
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Remark 1.2.2. One group that obviously satisfies the properties of Z in the
above diagram is G itself, so there is a natural homomorphism ι : G → Ĝ.
This is called simply ‘the canonical morphism’, or sometimes ‘the canonical
inclusion’—although it is not always an inclusion.

Remark 1.2.3. The word ‘profinite’ refers to taking a limit of finite objects. The
rationale for the word ‘completion’ will be seen in more detail later: it turns
out that Ĝ has a natural topology, and may be considered as a complete metric
space, in which ι(G) is dense.

We have not yet shown that any such object Ĝ actually has the courtesy to
exist. We will prove this shortly, but in a slightly broader context which saves
duplication of effort. It is overly restrictive for us to insist that the collection
of finite groups in the limit actually arises as the set of finite quotients {G/N}
for some fixed group G. So instead we pick out some properties of this family
of finite groups, and use them to make a more flexible definition.

Definition 1.2.4. A poset (J,�) is an inverse system if for any i, j ∈ J there
is some k ∈ J such that k � i and k � j.

An inverse system of groups consists of an inverse system (J,�) and a functor
from the corresponding poset category J to Grps: that is, we have a group Gj
for each j ∈ J and, whenever i � j, we have some homomorphism φij : Gi → Gj
such that φii = idGi and φjk ◦ φij = φik when i � j � k.

We will usually abbreviate this notation to ‘the inverse system of groups
(Gj)j∈J ’. The maps φij are called ‘transition maps’.

The inverse limit of an inverse system of groups (more informally, the inverse
limit of the groups Gj) is the limit of this functor J → Grps. It is denoted
lim←−j∈J Gj .

Again, let us explicitly write out the universal property of lim←−j∈J Gj . It

comes equipped with maps pi : lim←−Gj → Gi such that φijpi = pj ; and for any
group Z with maps qi : Z → Gi such that φijqi = qj , there is a unique map
f : Z → lim←−Gj such that pi ◦ f = qi.

Z

lim←−Gj

Gi Gj

qi qj

∃! f

pi pj

φij

(1.9)

Remark 1.2.5. There is absolutely nothing special about groups in this defini-
tion. Groups are the focus of the course so the definition was made for groups.
An inverse system of sets, or modules, or objects in any category, is a functor
from J to Sets or whatever category is relevant. The inverse limit is then a limit
in that category.

Remark 1.2.6. At this point a mathematician must grimace and apologise for
the notation that has become too standard to change over the centuries. Quite
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apart from the order of composition in ‘φjk ◦ φij = φik‘, we must cope with
the fact that an ‘inverse limit’ is a limit, not a colimit. The dual notion to an
inverse limit is called a ‘direct limit’, which is a colimit.

There is no good way to scream in formal mathematical writing, but I would
avail myself of it here if there were.

Definition 1.2.7. A profinite group is the inverse limit of an inverse system of
finite groups.

Our first task is to show that these limits actually exist; we do this by
giving an explicit description. Recall that limits are only really defined up to
isomorphism, so what we give is, strictly speaking, some choice of limit—but
this distinction is not worth worrying about.

Proposition 1.2.8. Let (Gj)j∈J be an inverse system of groups. Then the
inverse limit of (Gj) exists, and is given by

lim←−Gj =

(gj)j∈J ∈
∏
j∈J

Gj such that φij(gi) = gj for all i � j

 .

Proof. First note that, since φij is a group homomorphism, the set L on the
right hand side above is actually a group, being a subgroup of the direct product.
Furthermore, the projection maps

∏
Gj → Gi for each i ∈ J restrict to give

maps pi : L→ Gi which, by definition, satisfy φij ◦ pi = pj for i � j.
Now let Z be any group with maps qi : Z → Gi such that φij ◦ qi = qj

whenever i � j. Define f : Z →
∏
Gj by f(z) = (qj(z))j∈J . By the given

property of the qi, the image of this map is contained in L, so we consider f
to be a map Z → L. Note that pi ◦ f = qi and the definition of the product∏
Gj ensures that f is uniquely defined by this property. Hence L satisfies the

definition of lim←−Gj .

Remark 1.2.9. This proposition actually used barely any of the hypotheses in
the statement. The fact that we have an inverse system is irrelevant. One key
reason that we consider inverse systems rather than general limits will be seen
in Proposition 1.2.14 below. We also used very few properties of the category of
groups: only the existence of products and certain subgroups. Essentially the
same proof thus applies to inverse limits of sets, which we record below as it
may be useful.

Proposition 1.2.10. Let (Xj)j∈J be an inverse system of sets. Then the in-
verse limit of (Xj) exists, and is given by

lim←−Xj =

(xj)j∈J ∈
∏
j∈J

Xj such that φij(xi) = xj for all i � j

 .

Remark 1.2.11. The explicit form of limit presented by the above proposition
will be our primary means of study of profinite groups. The categorical notions
are sometimes more elegant for stating properties, and are necessary for a full
treatment of the subject.
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This explicit description allows us to define a topology on a profinite group.
The fact that this topology is well-behaved is what allows much of the theory
to take place. As abstract groups, profinite groups are quite unpleasant—unless
they are finite, they are actually uncountable (see Exercise Sheet 1). The exis-
tence of a useful topology is a key point of the theory, so that a profinite group
is almost never considered as an abstract group divorced from its topology.

Definition 1.2.12 (Topology of a profinite group). Let (Gj)j∈J be an inverse
system of finite groups. Endow each Gj with the discrete topology, and give∏
Gj the product topology. The topology on lim←−Gj ⊆

∏
Gj is the subspace

topology.

By Tychonoff’s Theorem,
∏
Gj is compact and Hausdorff. Each condition

φij(gi) = gj describes a closed subset of
∏
Gj , and the intersection of all these

subsets is lim←−Gj . Thus the inverse limit, endowed with the subspace topology,
is a closed subspace of

∏
Gj . Note that lim←−Gj is thus a compact Hausdorff

space.

Proposition 1.2.13. A profinite group is a compact Hausdorff space.

Before delving any further into the structure of profinite groups, we had
perhaps better have a way to check that they are non-trivial. Compactness
provides such a way.

Proposition 1.2.14. Let (Xj)j∈J be an inverse system of non-empty finite
sets. Then X = lim←−Xj is non-empty.

Proof. Since
∏
Xj is compact, we may use the finite intersection property. Let

I1 ⊆ J be any finite subset. Define

YI1 =

(xj)j∈J ∈
∏
j∈J

Xj s.t. φij(xi) = xj ∀i, j ∈ I1 with i � j


Note that each YI1 is closed in

∏
Xj , and that

YI1 ∩ · · · ∩ YIn ⊇ YI1∪···∪In

We show that each YI1 is non-empty. Since J is an inverse system and I1 is
finite, there exists some i0 ∈ J such that i0 � i for all i ∈ I1. Choose some
xi0 ∈ Xi0 . Set xj = φi0j(xi0) for j � i0, and choose xj arbitrarily elsewhere.
This produces an element (xj) ∈

∏
Xj , which by construction lies in YI1 since

if i, j ∈ I1 and i � j then

xj = φi0j(xi0) = φijφi0i(xi0) = φij(xi).

We now apply the finite intersection property to the YI1 to conclude that
their intersection is non-empty; this intersection is exactly lim←−Xj so we are
done.

The topology of a profinite group is even better behaved under a restriction
on the inverse system J .
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Proposition 1.2.15. Let J be a countable set and let (XJ)j∈J be a family of
finite sets. Then the product X =

∏
Xj is metrizable: there exists a metric d

on X such that the metric topology agrees with the product topology.

Proof. Without loss of generality assume J = N. Give each space Xn the
discrete metric dn defined by

dn(x, y) =

{
0 if x = y

1 if x 6= y

Define the function d on X ×X by

d((xn), (yn)) =

∞∑
n=1

1

3n
· dn(xn, yn).

It is an easy exercise to show that this defines a metric on X.
Consider the ‘identity function’

f : (X, Tprod)→ (X, d), f(x) = x

from X equipped with the product topology to X equipped with the metric
topology. We claim that this is a homeomorphism. It is a bijection from the
compact space (X, Tprod) to the Hausdorff space (X, d), so it is enough to show
that f is continuous.

A basis for the metric topology consists of open balls B(x, 1/3n) for x ∈ X
and n ∈ N . Note that

d((xn), (yn)) <
1

3n
if and only if xk = yk ∀k ≤ n

Hence, denoting by pn the projection maps pn : X → Xn, we have

f−1(B((xn), 1/3n)) = {y = (yn) | yk = xk ∀k ≤ n} =

n⋂
k=1

p−1
k (xk)

which is an open set in the product topology. Hence f is a homeomorphism and
we are done.

Remark 1.2.16. This metric itself doesn’t have a great deal to do with the
group structure of a profinite group, so won’t appear much. It is nevertheless
comforting to know that the topology on a profinite group is as well-behaved as
a compact metric space.

Remark 1.2.17. The condition that an inverse system is countable will appear
in various places through the course as a convenient simplification. It is also a
fairly natural one: in group theory the reasonable groups to consider are usually
the finitely generated ones, and in the context of finitely generated groups we
will always be able to use countable inverse systems. We will see other useful
consequences of countability of the inverse system later.

Lemma 1.2.18. Let G be a finitely generated group. For each n ∈ N, there are
only finitely many subgroups of G of index n.
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Proof. For each subgroup H of G of index n, we may find a homomorphism from
G to the symmetric group Sn by labelling the right cosets H, g2H, . . . , gnH of H
in G by the symbols 1, . . . , n and letting G act on the right cosets by translation.
The subgroup H may be recovered as the stabiliser of 1 (i.e. of the coset H)
under this action. So there are at most as many subgroups of index n as there
are homomorphisms G→ Sn. A homomorphism is determined by the image of
some finite generating set of G, so there are only finitely many homomorphisms
G→ Sn for fixed n and thus only finitely many subgroups of G of index n.

Proposition 1.2.19. Let G be a finitely generated group. The family of finite-
index normal subgroups N / G is countable.

Proof. There are only finitely many subgroups of G of each given index, hence
there are only countably many finite index normal subgroups of G.

It is important to note that the group theory and the topology are not
unrelated: profinite groups are topological groups in the following sense.

Proposition 1.2.20. Let G be a profinite group with the above topology. The
multiplication map m : G×G→ G, (g, h) 7→ gh and the inversion map i : G→
G, g 7→ g−1 are continuous.

Proof. To be completed on Exercise Sheet 1.

Definition 1.2.21. A topological group is a group G endowed with a topology
such that the multiplication and inversion maps are continuous.

Definition 1.2.22. Let G and H be topological groups. We say G and H are
topologically isomorphic or isomorphic as topological groups if there is a bijective
function f : G → H which is both a homeomorphism and an isomorphism of
groups.

Remark 1.2.23. When discussing profinite groups, we shall usually only consider
continuous homomorphisms. It is not impossible that a fallible lecturer will fail
to mention the word ‘continuous’ or may simply refer to ‘maps of profinite
groups’, but it should be assumed that maps are continuous homomorphisms.
An exception to this will be in Section 4.3, where we shall prove a surprising
theorem that all homomorphisms between certain types of profinite groups are
in fact continuous.

Remark 1.2.24. One of the most pleasing results of elementary topology is that
‘a continuous bijection from a compact space to a Hausdorff space is a home-
omorphism’. Profinite groups are compact and Hausdorff, so this result makes
life much easier when verfiying that maps are homeomorphisms. It will often
be used without specific reference to avoid repetition. In particular, for profi-
nite groups, the notion of ‘topological isomorphism’ reduces to ‘there exists a
continuous group isomorphism’.

We also note that there is an easy way to check whether a homomorphim of
profinite groups is continuous.

Proposition 1.2.25. Let H be a topological group and let G = lim←−Gj be an
inverse limit of finite groups. Let pj : G→ Gj be the projections. A homomor-
phism f : H → G is continuous if and only if every map fj = pj ◦ f : H → Gj
is continuous.
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Proof. Consider the map f : H → G ⊆
∏
Gj . This function is continuous if and

only if its composition with every pj is continuous by definition of the product
topology.

Proposition 1.2.26. Let f : H → Gj be a homomorphism from a topological
group to a finite group (equipped with the discrete topology). Then f is contin-
uous if and only if ker(fj) is an open subgroup of H.

Proof. Since {1} is an open subset in the discrete topology on Gj , if f is con-
tinuous then ker(f) = f−1(1) is open.

Assume f−1(1) is open. Since multiplication on topological groups is con-
tinuous, it follows that f−1(g) is open for any g ∈ Gj . Taking unions, we find
that f−1(U) is open for any subset U of Gj , so f is continuous.

Proposition 1.2.27. Let G be a compact topological group. A subgroup of G
is open if and only if it has finite index and is closed.

Proof. Exercise.

It is immediate from the definition of a profinite group G = lim←−Gj that G has
a good supply of open subgroups: the kernels Uj of the maps pj : G → Gj . In
fact the topology of a profinite group is entirely governed by its open subgroups.

Proposition 1.2.28. Let (Gj)j∈J be an inverse system of finite groups with
inverse limit G. The open subgroups Uj = ker(G → Gj) form a basis of open
neighbourhoods of the identity in the sense that any open set V ⊆ G which
contains the identity contains some Uj.

Proof. Let V be an open subset of G containing the identity. By definition of
the product topology, V is a union of basic open sets of the form p−1

j1
(Xj1) ∩

· · · p−1
jn

(Xjn) for some j1, . . . , jn ∈ J and Xji ⊆ Gji . Fix one such basic open
set which contains the idenity. Then certainly 1 ∈ Xji for each i. So we have

1 ∈ p−1
j1

(1) ∩ · · · p−1
jn

(1) = Uj1 ∩ · · · ∩ Ujn ⊆ V

To turn this intersection into a single Uj , we use the definition of inverse system
to find k ∈ J such that k � ji for all i. Since pji = φkji ◦ pk where φkji
is a transition map, we have ker pk ⊆ ker pji : hence Uk ⊆ Uji for all i, and
1 ∈ Uk ⊆ V as required.

Because multiplication in a topological group is continuous, we immediately
acquire neighbourhood bases of the other points of G as well.

Corollary 1.2.29. Let (Gj)j∈J be an inverse system of finite groups with in-
verse limit G. Let g = (gj) ∈ G. The open cosets gUj = p−1

j (gj) form a basis
of open neighbourhoods of g in the sense that for any open set V ⊆ G which
contains g there exists some j such that g ∈ gUj ⊆ V .

Corollary 1.2.30. Let (Gj)j∈J be an inverse system of finite groups with in-
verse limit G. A subset X ⊆ G is dense in G if and only if pj(X) = pj(G) for
all j ∈ J .
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Proof. Suppose X is not dense in G. Then there exists a non-empty open set U
which does not intersect X. By shrinking U we may assume that U is a basic
open set of the form U = p−1

j (gj) for some j ∈ J and some gj ∈ Gj . Since U
is non-empty, gj ∈ pj(G), and since U ∩X = ∅, we have gj /∈ pj(X) and thus
pj(X) 6= pj(G) as required.

On the other hand, if X is dense then for any gj ∈ pj(G), the open set
p−1
j (gj) is non-empty and thus intersects X. So gj ∈ pj(X) also and we have
pj(G) ⊆ pj(X). The other containment is obvious.

Corollary 1.2.31. Let (Gj)j∈J be an inverse system of finite groups with in-
verse limit G. Let X be a compact topological space and let f : X → G be a
continuous map. Then f is surjective if and only if pj(f(X)) = pj(G) for all
j ∈ J .

Proof. The ‘only if’ direction is obvious. For the ‘if’ direction, by the previous
corollary we know that f(X) is dense in G. Since X is compact, f(X) is compact
and hence closed. Hence f(X) is a closed dense set, i.e. all of G.

We also record a useful characterisation of the closure of a set.

Proposition 1.2.32. Let G be a profinite group and let X ⊆ G be a subset.
Then the closure of G is equal to

X =
⋂

N≤oG

XN

where the intersection is taken over the open subgroups of G.

Proof. Each set XN is a union of N -cosets, hence is open and closed in G and
contains X—so X ⊆ XN for all N .

Now, if g /∈ X then there is some open set U ⊆ G such that g ∈ U and
X ∩U = ∅. Then by Corollary 1.2.29 there exists some open subgroup N = Gj
of G such that g ∈ gN ⊆ U . Then g /∈ XN : for if g = xn then x = gn−1 ∈
gN ⊆ U , a contradiction. This completes the proof.

We also note that there is a converse to Proposition 1.2.28.

Proposition 1.2.33. Let G be a profinite group and let U be a collection of
open normal subgroups of G forming a neighbourhood basis at the identity. Then
G = lim←−U∈U G/U .

Proof. The surjective quotient maps G → G/U yield a surjective continuous
homomorphism f : G → lim←−G/U . Since U is a neighbourhood base, if g ∈
G r {1} there is U ∈ U such that g /∈ U . It follows that f is injective and we
are done.

1.3 Change of inverse system

It can often be convenient to place additional assumptions on, or otherwise
modify, an inverse system. One very useful modification is an analogue of the
notion of ‘passing to a subsequence’.
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Definition 1.3.1. Let (J,�) be an inverse system. A cofinal subsystem of J is
a subset I ⊆ J such that for all j ∈ J there is some i ∈ I such that i � j.

Remark 1.3.2. A cofinal subsystem of an inverse system is itself an inverse
system.

Example 1.3.3. Let J be an inverse system and let k ∈ J . The set

J�k = {j ∈ J | j � k}

is a cofinal subsystem of J . We may refer to this as a principal cofinal subsystem.

A key property of passing to a subsequence of a convergent subsequence is
that the limit does not change. Indeed the notion of subsequence would be
pretty useless otherwise.

Proposition 1.3.4. Let (Gj)j∈J be an inverse limit of finite groups, and let I ⊆
J be cofinal. Then H = lim←−i∈I Gi is topologically isomorphic to G = lim←−j∈J Gj.

Proof. The projection map
∏
j∈J Gj →

∏
i∈I Gi is a continuous group homo-

morphism, and clearly restricts to a continuous homomorphism f : G→ H. We
need only check that f is bijective.

Let (gj)j∈J ∈ G and assume f(g) = 1—that is, gi = 1 for all i ∈ I. Since I
is cofinal, any j ∈ J has some i ∈ I such that i � j. Then gj = φij(gi) = 1, so
that g is the identity. Hence f is injective.

Finally we show that f is surjective. Let h = (hi)i∈I ∈ H, and define an
element g = (gj)j∈J ∈

∏
j∈J Gj by setting gj to be φij(hi) for some i ∈ I such

that i � j. Since I is cofinal, this defines an element gj for every j ∈ J .
Note that it is immaterial which i is chosen for a given j. If i1 � j and

i2 � j, take k ∈ I such that k � i1 and k � i2. Since (hi) ∈ H, we have

φi1j(hi1) = φi1jφki1(hk) = φkj(hk) = φi2j(hi2)

as claimed.
It follows also that (gj) is a valid element of G = lim←−j∈J Gj : if j1 � j2,

choose i � j1. Then we have

φj1j2(gj1) = φj1j2φij1(hi) = φij2(hi) = gj2

Finally note that gi = hi for i ∈ I, so that f(g) = h as required.

Another useful modification to an inverse system is the assumption that
the transition maps are surjective. In this case one can strengthen Proposition
1.2.14.

Definition 1.3.5. An inverse system of groups is surjective if all the transition
maps are surjective.

Proposition 1.3.6. Let (Xj)j∈J be an inverse system of finite sets, where all
the transition maps φij : Xi → Xj are surjective. Then the projection maps
pk : X → Xk are surjective.

Proof. Exercise.

Given a profinite group we can always assume that the inverse system giving
it is indeed a surjective inverse system.
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Proposition 1.3.7. Let (Gj)j∈J be an inverse system of finite groups. Then
there is an inverse system (G′j)j∈J with surjective transition maps with the same
limit.

Proof. Let G = lim←−Gj be the inverse limit and let pj : G → Gj be the projec-
tions. Let G′j = pj(G). Since φijpi = pj , the transition maps restrict to maps
φ′ij : G′i → G′j making the G′j into an inverse system. Note that φ′ij is surjective.
If g = (gj) ∈ G then by definition all gj ∈ G′j . So the inverse limit of the G′j is
exactly G.

We mention one particular species of inverse system that we will often seek
to use. It possesses the advantage that elements can often be constructed by
straightforward inductions in addition to the usual methods of inverse limits.

Definition 1.3.8. An inverse system (J,�) is linearly ordered if there is a
bijection f : J → N such that i � j if and only if f(i) ≥ f(j).

Remark 1.3.9. Note the reversal of sign in the last inequality above. This is
rather awkward but could probably only be avoided by talking about contravari-
ant functors or by reversing all the other conventions so far. The reason for the
switch is that the natural numbers, written as a poset with the usual ordering,
would give inverse systems that look like this:

G0 → G1 → G2 → · · ·

whose limit would just be G0—not very interesting. But we will often encounter
systems of groups that look like

· · · → G2 → G1 → G0

for which the corresponding poset would look like

· · · � 2 � 1 � 0.

That is, i � j if and only if i ≥ j. We refer to this as the ‘wrong-way’ ordering
on N.

Remark 1.3.10. In the linearly ordered poset N with the wrong-way ordering, a
cofinal subsystem is the same thing as an increasing sequence kn of integers.

Proposition 1.3.11. Let J be a countable inverse system, such that J has no
global minimum—that is, for all j ∈ J there exists i ∈ J such that i � j but
i 6= j. Then J has a linearly ordered cofinal subsystem.

Proof. Exercise.

Remark 1.3.12. Note that the restriction to J without a global minimum only
eliminates some trivial cases: if J posesses a global minimum m then lim←−Xj =
Xm for any inverse system (Xj)j∈J .

Remark 1.3.13. Given the last proposition, one may wonder why we bothered to
set up the theory of inverse limits in the first place. But many inverse systems
that naturally arise are not linearly ordered, and it would be awkward to have to
first turn them into linearly ordered systems before working with them. Instead
the existence of cofinal linearly ordered subsystems should be thought of as a
useful theoretical tool, to ease certain proofs.
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Remark 1.3.14. Passing to subsystems in this manner should make it clear, in
case it needed to be stated, that a profinite group is not the limit of a unique
inverse system. There may be many ways to achieve the same limit, so one must
be careful when trying to compare two profinite groups through their inverse
systems. We will return to this point later.



Chapter 2

Profinite groups

In this chapter we will establish some of the basics of group theory in the context
of profinite groups, and begin to examine some examples. We will begin with the
p-adic integers, which should be vaguely familiar from Metric and Topological
Spaces.

2.1 The p-adic integers Zp
Let p be a prime number. Consider the following inverse system of finite rings,
indexed over N with its ‘wrong-way’ ordering.

· · · Z/pn+1Z Z/pnZ · · · Z/p2Z Z/pZ

where the homomorphisms are the obvious ‘reduce modulo pn’ maps. The ring
of p-adic integers Zp is defined to be the inverse limit of this system (in the
category of rings). We also consider Zp as an additive group—which is just the
limit in the category of groups where we forget that multiplication is a thing we
can do.

What is an element α ∈ Zp? From the explicit description of inverse limit
(Proposition 1.2.10), we can describe α as a sequence (an)n∈N of integers modulo
pn such that an ≡ am modulo pm if n ≥ m. Each an can be thought of as ‘α
modulo pn’, and is the image of α under the natural map Zp → Z/pnZ which
we get from the definition of the limit. Addition and multiplication of elements
is done ‘component-wise’.

One way to get such sequences of elements is of course to choose some genuine
integer a ∈ Z and let an ∈ Z/pnZ be the reduction of a modulo pn. This gives
a map ι : Z → Zp, a→ α = (an)n∈N (which is the same map as we get from the
category-theoretic definition of inverse limit—the maps Z → Z/pn constitute a
cone on the inverse system).

This map ι is injective: if a ∈ Z and pn > |a| then a is not congruent to 0
modulo pn, so an 6= 0 in Z/pn and so ι(a) 6= 0.

The p-adic integers have a natural metric described as follows. Let α = (an)
and β = (bn) be elements of Zp. If α = β set d(α, β) = 0 of course. Otherwise
there is some smallest integer n such that an 6= bn, and we set d(α, β) = p−n

for this smallest value of n. It is a quick exercise to check that this is actually

21
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a metric. The metric obtained by restricting d to ι(Z) gives the ‘p-adic metric
on the integers’, which you have seen in Metric and Topological Spaces. In this
topology, α and β are considered to be ‘very close together’ if you can only tell
them apart modulo pn for ‘very large n’.

The open balls, say about 0 (the identity element of the additive group Zp),
in this metric have a nice description.

B(0, r) = {α = (an) | an = 0 for n ≤ − logp(r)}

= ker
(
Zp → Z/pb− logp(r)cZ

)
So the open balls about 0 are the open subgroups pnZp of Zp—the same ones
we saw as a neighbourhood basis of the identity in Proposition 1.2.28.

Note that ι(Z) is dense in Zp: let α = (an) ∈ Zp and ε > 0. Take
n > − logp(ε) and choose some integer a such that a ≡ an modulo pn. Then
d(α, ι(a)) ≤ p−n < ε, proving the density of ι(Z).

The p-adic metric of the integers is not complete: a sequence of integers

an = 1 + p+ p2 + · · ·+ pn

is Cauchy, but doesn’t converge to any element of Z. It does however converge,
almost tautologously, to an element of Zp: the element α = (an).

By contrast, the space of p-adic integers Zp is complete. We already know
it is a compact metric space, and therefore complete. We can also see this

directly: let α(k) = (a
(k)
n )n∈N ∈ Zp (k ∈ N) be a Cauchy sequence of p-adics

(with apologies for the breakdown in notation: the sequence of α(k) is being
indexed by k, and we want to show it converges to something as k →∞). What
does being Cauchy mean in this context? Unpacking the definition, for each n
we know there exists Kn such that for all k, l ≥ Kn

d(α(k), α(l)) ≤ p−n

That is, a
(k)
n = a

(l)
n for all k, l ≥ Kn. So for fixed n the sequence a

(k)
n is eventually

constant as k → ∞. Let this constant value be bn ∈ Zp, so that a
(k)
n = bn for

all k ≥ Kn.
It is easy to see that β = (bn) is a valid element of Zp, and the last statement

of the paragraph above says d(α(k), β) ≤ p−n for k ≥ Kn, hence α(k) → β as
k →∞.

So Zp is a complete metric space, containing a copy of Z as a dense subset.
That is, Zp is a completion of Z. It is not the profinite completion of Z, because
we are missing some of the quotients Z/nZ of Z and are only looking at those
quotients Z/pnZ which have order a power of the prime p. It is a different
object, called the pro-p completion of Z.

Course Convention 2.1.1. From now on we will drop the map ι from the
notation and simply consider Z to be a subgroup of Zp.

Definition 2.1.2. Let p be a prime. A p-group is a finite group whose order is
a power of p. A pro-p group is an inverse limit of an inverse system of p-groups.

Definition 2.1.3 (Pro-p completion). Let G be a group and let p be a prime.
The set of normal subgroups N of G such that G/N is a finite p-group form
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a poset Np under inclusion. We have a functor Np → Grps defined by sending
N to G/N , and with arrows G/N1 → G/N2 being the natural quotient maps if
N1 ⊆ N2. The pro-p completion of G is the inverse limit of the system of groups
(G/N)N∈Np .

Pro-p completions are similar in many ways to profinite completions, and one
may ask why we bother to study both. One answer is that they are useful for
different things: profinite completions contain a lot more information in general
(for instance, in the profinite completion of Z we have concepts of ‘odd and even’,

because we have the quotient Ẑ → Z/2Z, but in the 3-adic completion Z3 ‘odd
and even’ are meaningless concepts), but are often more tricky to work with. As
we shall see through this course, finite p-groups are much better behaved than
general finite groups1, and this niceness carries over to pro-p groups to some
extent. We will see a first example of bad behaviour shortly, when we compare
Zp with the profinite completion Ẑ.

Before moving on we will study a few of the elementary properties of Zp as
a group or ring, which will illustrate neatly how a profinite group may share
some properties with finie groups and some with infinite groups.

Proposition 2.1.4. The additive group Zp is abelian and torsion-free.

Proof. Being abelian derives immediately from the fact that all the groups
Z/pnZ are abelian, hence so is the product

∏
Z/pnZ of which Zp is a sub-

group.
Torsion-freeness may be more surprising for a limit of finite groups. Let

α = (an)n∈N ∈ Zp r {0} and suppose we have m ∈ N such that mα = 0 (recall
that we are using additive notation for this group). We wish to show m = 0;
assume that it is not. Then let m = prs where s is coprime to p. We have
man = 0 for all n by definition.

Choose some N such that aN 6= 0 and consider aN+r. We have maN+r ≡ 0
modulo pN+r, i.e. pN+r | prsaN+r. Hence pN | aN+r since s is coprime to
p. This implies that aN+r ≡ 0 modulo pN , a contradiction since aN+r ≡ aN
modulo pN .

Another way that Zp behaves more like Z than like the finite rings Z/pn
is that it has no zero-divisors. The following argument is a slight expansion of
torsion-freeness in this case.

Proposition 2.1.5. The ring Zp has no zero-divisors.

Proof. Exercise.

However, Zp differs from Z in a highly significant way: it has many different
generators. Only +1 and −1 generate Z as an abelian group, which in some
circumstances may thus be slightly inflexible. However the finite groups Z/pn
have many generators, and this property carries over to Zp. We will discuss this
later once we have defined properly what ‘generator’ means in the context of a
topological group.

1Except the prime 2. No one likes 2.



CHAPTER 2. PROFINITE GROUPS 24

2.2 The profinite completion of the integers

Of course, if we want to study profinite completions of groups, we ought start
with the integers. One can carry out various analyses of Ẑ in the fashion of the
previous section on the p-adics (and some of these make good exercises). The

study of Ẑ can however be reduced to the study of the p-adics by the following
proposition.

Theorem 2.2.1 (Chinese Remainder Theorem). There is an isomorphism of
topological rings

Ẑ ∼=
∏

p prime

Zp.

Proof. Each natural number n may be written as a product of prime powers

n =
∏

p prime

pep(n)

(where all but finitely many ep will be zero). The classical Chinese Remainder
Theorem gives a canonical isomorphism

Z/nZ
∏
p prime Z/pep(n)Z

∼=
fn

These maps are compatible with the quotient maps Z/mnZ → Z/nZ, in the
sense that all the natural diagrams

Z/mnZ
∏
p prime Z/pep(mn)Z

Z/nZ
∏
p prime Z/pep(n)Z

∼=
fmn

∼=
fn

commute. Passing to inverse limits gives an isomorphism

Ẑ ∼= lim←−
n∈N

∏
p prime

Z/pep(n)Z.

It remains to show that the inverse limit on the right really is
∏
p Zp. For this,

note that the natural continuous surjections
∏
p Zp �

∏
p Z/pep(n)Z form a

cone, hence we have a homomorphism

f :
∏
p

Zp → lim←−
n∈N

∏
p prime

Z/pep(n)Z.

This is continuous by Proposition 1.2.25 and surjective by Corollary 1.2.31.
Further, f is injective because every non-trivial element of

∏
Zp is non-trivial

in some quotient Z/peZ for some p and e. Hence f is a topological isomorphism
as required.

Alternative proof. Firstly, we have a continuous homomorphism from Ẑ to each
Zp: the (continuous) projection maps Ẑ → Z/pn constitute a cone on the
inverse system (Z/pnZ), so the definition of the limit yields a natural homo-

morphism Ẑ → Zp. This homomorphism is continuous by Proposition 1.2.25.
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The universal property of the product then gives a continuous homomorphism
f : Ẑ →

∏
Zp.

To show that f is surjective, it is enough to show that im(f) is dense in the

product: for Ẑ is compact, hence its image is compact and thus closed. By the
definition of the product topology, and our known bases for the Zp, a basic open
set in

∏
Zp takes the form

U = (x1 + pn1
1 Zp1)× · · · × (xr + pnr

r Zpr )×
∏
q 6=pi

Zq

Hence to establish density of f , it is enough to show that the compositions

Ẑ →
∏

Zp → Z/pn1
1 Z × · · · × Z/pnr

r Z

are all surjective. But by the classical Chinese Remainder Theorem we have a
commuting diagram

Ẑ
∏
p prime Zp

Z/mZ Z/pn1
1 Z × · · · × Z/pnr

r Z
∼=

where m = pn1
1 · · · pnr

r . Since the natural map Ẑ → Z/mZ is surjective, we can
conclude that f is indeed surjective.

To show that f is injective, let g ∈ Ẑ r {0}. Then there exists m ∈ Z
such that g does not vanish under the natural map to Z/mZ. Taking a prime
factorisation m = pn1

1 · · · pnr
r , the same commuting diagram as above shows that

g maps to a non-trivial element of
∏

Zp as required.

Corollary 2.2.2. The group Ẑ is torsion-free abelian.

Corollary 2.2.3. The ring Ẑ is not an integral domain.

Proof. This is an example of the standard fact that any product of non-trivial
rings R1 × R2 has zero-divisors, viz. (r1, 0) · (0, r2) = 0. In the case of Ẑ, a
non-zero element α is a zero-divisor if and only if the projection of α to Zp is
zero for some prime p.

2.3 Profinite matrix groups

A somewhat more intersting family of profinite groups (and the first nonabelian

ones we will consider) are matrix groups over the rings Zp and Ẑ. For any
commutative ring R we are entitled to consider a set of matrices

MatN×M (R) = {N ×M matrices of elements of R}

with addition and multiplication defined by the same formulae as for real ma-
trices. Since it is obtained by a formula consisting of multiplications and
additions—that is, ring operations—we also have a determinant function

det : MatN×N (R)→ R
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Let us first discuss Zp. The set of matrices acquires an obvious topology—either
by writing it as an inverse limit

MatN×M (Zp) = lim←−MatN×M (Z/pnZ)

or by using the obvious bijection with ZNMp . Since the ring multiplication on
Zp is continuous, it follows that matrix multiplication is continuous too, as is
the determinant function.

Linear algebra over Zp is in many ways similar to linear algebra over Z.
(Indeed most of the point of linear algebra is that the base ring/field is rather
irrelevant). Since Zp is an integral domain, it has a field of fractions Qp (of which
you will see some properties on the example sheet) and any results about linear
algebra not requiring any special properties of a field will apply to matrices over
Qp. In particular, any square matrix over Qp has an inverse over Qp if and only
if its determinant is non-zero. Since the formula for an inverse is the same as
over Q and involves dividing by a determinant, if the matrix has coefficients in
Zp then the inverse has coefficients in Zp as well if and only if the determinant is
an invertible element of Zp. So we can define two families of topological groups

GLN (Zp) =
{
A ∈ MatN×N (Zp) | detA ∈ Z×p

}
SLN (Zp) = {A ∈ MatN×N (Zp) | detA = 1}

Both of these are profinite groups, and are of course given by appropriate inverse
limits

Lemma 2.3.1. For all N ≥ 1 and each prime p we have

GLN (Zp) = lim←−GLN (Z/pnZ)

SLN (Zp) = lim←− SLN (Z/pnZ)

Proof. The determinant functions commute with quotients modulo pn: there is
a commutative diagram

MatN×N (Zp) MatN×N (Z/pnZ)

Zp Z/pnZ

det det

The desired statements now follow from the known fact, for a matrix A over
Zp, that detA is invertible over Zp (respectively, equals 1) if and only if it is
invertible modulo each pn (respectively, equals 1 modulo each pn).

We can also define matrices over Ẑ, although one should be a little circum-
spect since this is not an integral domain. We do however have Ẑ =

∏
p Zp, so

the matrix groups split as well:

MatN×M (Ẑ) =
∏
p

MatN×M (Zp)

This reduces most questions about these matrices to questions about matrices
over Zp. We can of course also define general and special linear groups, and
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these too will be inverse limits and products

GLN (Ẑ) = lim←−GLN (Z/nZ) =
∏
p

GLN (Zp)

SLN (Ẑ) = lim←− SLN (Z/nZ) =
∏
p

SLN (Zp)

We will mainly deal with the special linear groups SLN (Zp) and SLN (Ẑ), since
they are more closely related to the classical group SLN (Z). Of course the

natural inclusions Z ⊆ Zp, Z ⊆ Ẑ give us inclusions

SLN (Z) ⊆ SLN (Zp), SLN (Z) ⊆ SLN (Ẑ)

These subgroups are in fact dense, a fact you will prove on the Exercise Sheets.
It is less obvious than it may look: density in SLN (Ẑ) is equivalent to the
surjectivity of the maps

SLN (Z)→ SLN (Z/nZ)

and it is far from clear why, for example,(
7 9
4 9

)
∈ SL2(Z/13Z)

is the modulo 13 reduction of any integer matrix of determinant 1.

2.4 Subgroups, quotients and homomorphisms

Just as with ordinary group theory, one wants to consider subgroups. For a
topological group it makes most sense to study those subgroups which behave
sensibly with regard to the topology: i.e. which are closed or open subsets.

Proposition 2.4.1. A closed subgroup of a profinite group is a profinite group.

Proof. Let G = lim←−Gj be a profinite group and let H be a closed subgroup of
G. Define an inverse system of finite groups (Hj)j∈J by Hj = pj(H) ≤ Gj , and
with transition maps being the restrictions of the transition maps φij : Gi → Gj .
The inverse limit of the Hj is a profinite group H ′, which is clearly equal to(gj)j∈J ∈

∏
j∈J

Gj such that gj ∈ Hj ∀j and φij(gi) = gj for all i � j

 .

It remains to show that H ′ = H. By definition of Hj , if h ∈ H then h ∈ H ′.
Suppose g = (gj) /∈ H. Since H is closed, G r H is an open subset of G.

By Corollary 1.2.29, there is some j such that p−1
j (gj) ⊆ G r H. It follows

that pj(h) 6= gj for all h ∈ H, i.e. gj /∈ Hj . So g /∈ H ′, and we conclude that
H = H ′.

Remark 2.4.2. It is reassuring to note that the topology on H coming from its
expression as lim←−Hj is the same as the subspace topology induced on it by G:
Proposition 1.2.25 shows that the natural map

id: (H, Tprofinite)→ (H, Tsubspace)
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is continuous, whence it is a homeomorphism since the profinite topology is
compact and the subspace topology is Hausdorff.

Although we did not use it above to avoid leading the witness, a better
notation for H ′ would be H. The second paragraph of the proof above actually
shows that H ′ is contained in the closure of H in G: in our case we have the
hypothesis that H is closed, so the closure is just H itself. In fact H ′ is equal to
the closure of H in G regardless of whether H is closed: since H ⊆ H ′ ⊆ H, we
need only show thatH ′ is closed; but it is the intersection of the closed subgroups
p−1
j (Hj). We decant this into a separate statement for later reference.

Proposition 2.4.3. Let G = lim←−Gj be a profinite group and let H be a subgroup

of G. Set Hj = pj(H) ≤ Gj. Then the closure of H in G is H = lim←−Hj. In
particular, if H is closed then H = lim←−Hj.

We also note that the index of a closed subgroup of a profinite group may
be readily determined from the inverse system.

Lemma 2.4.4. Let f : G1 → G2 be a surjective homomorphism of groups, and
let H ≤ G1 be a subgroup. Then [G1 : H] ≥ [G2 : f(H)].

Proof. Elementary exercise.

Proposition 2.4.5. Let G = lim←−Gj be a profinite group, where (Gj) is a
surjective inverse system of finite groups. Let H be a closed subgroup of G and
let Hj be the image of H in Gj. Then H is finite index in G if and only if
[Gi : Hi] is constant on some cofinal subsystem I ⊆ J . In this case we have
[G : H] = [Gi : Hi] where i ∈ I.

Proof. Since the projections pj : G→ Gj are surjective, it follows that [G : H] ≥
[Gj : Hj ] for all j ∈ J .

Suppose [G : H] ≥ N for some N ∈ N—so that there are representatives
g1, . . . , gN of distinct right cosets gnH of H in G. Then the elements g−1

m gn,
for n 6= m, lie outside the closed subgroup H. For each g−1

m gn there is then
some jm,n such that pjm,n(g−1

m gn) /∈ Hjm,n . Taking some k such that k � jm,n
for all m 6= n we find pk(g−1

m gn) /∈ Hk for all m 6= n. Then the elements
pk(gn) represent different cosets of Hk, so that [Gk : Hk] ≥ N . For any i in the
principal cofinal subsequence J�k = {i � k} of J , it follows that [Gi : Hi] ≥
[Gk : Hk] ≥ N also.

We may now conclude the result. If [G : H] = N is finite, then we have
some k such that

[G : H] ≥ [Gi : Hi] ≥ N = [G : H]

for all i � k.
On the other hand, assume that [G : H] is infinite and that [Gi : Hi] = N is

constant on some cofinal subsystem I ⊆ J . From above, since [G : H] ≥ N + 1
we can find a k such that [Gk : Hk] ≥ N + 1. But there is some i ∈ I with
i � k, so we have a contradiction:

[Gi : Hi] ≥ [Gk : Hk] ≥ N + 1 > N = [Gi : Hi]

Proposition 2.4.6. Let G be a profinite group and let N be a closed normal
subgroup. Then G/N , with the quotient topology, is a profinite group.
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Proof. Let G = lim←−Gj be a surjective inverse limit of finite groups. Let pj : G→
Gj be the projections and let φij : Gi → Gj be the transition maps. Let Nj =
pj(N) and recall that we can identify N with lim←−Nj .

Noting that Nj is normal subgroup of Gj , set Qj = Gj/Nj . Since φij(Ni) =
Nj the transition maps define give homomorphisms ψij : Qi → Qj which make
the Qj into an inverse system. Let Q = lim←−Qj be the inverse limit. We claim
thatQ is topologically isomorphic to the groupG/N (equipped with the quotient
topology).

The natural map
∏
Gj →

∏
Qj (which is continuous because each map of

discrete sets Gj → Qj is continuous) restricts to a continuous group homomor-
phism f : G → Q. If g = (gj) ∈ G then f(g) = 1 if and only if gj ∈ Nj for all
j—that is, the kernel of f is N . By the first isomorphism theorem for groups
there is a group isomorphism f̄ : G/N → Q. Because f is continuous, f̄ is con-
tinuous by definition of the quotient topology on G/N . Being the image of the
compact set G, the space G/N is compact. The profinite group Q is Hausdorff,
so it follows that f̄ is a homeomorphism as well as a group isomorphism.

The final three sentences of this proof constitute a proof of the ‘first isomor-
phism theorem for profinite groups’.

Proposition 2.4.7 (First Isomorphism Theorem). Let G and Q be profinite
groups and let f : G→ Q be a continuous surjective group homomorphism. Let
G/ ker(f) have the quotient topology and let q : G → G/ ker(f) be the quotient
map. Then there exists a topological isomorphism f̄ : G/ ker(f) → Q such that
f̄ q = f .

In both Proposition 2.4.1 and Proposition 2.4.6 we saw continuous homomor-
phisms between profinite groups which arise as morphisms of inverse systems—
that is, as families of maps between the finite groups in the inverse system.

Definition 2.4.8. Let (Gj)j∈J and (Hj)j∈J be inverse systems of finite groups
indexed by the same poset J . Let the transition maps for Gj and Hj be φGij and

φHij respectively.
A morphism of inverse systems (fj) : (Gj) → (Hj) is a family of group

homomorphisms fj : Gj → Hj , such that for all i � j we have fj ◦φGij = fi ◦φHij .

Gi Hi

Gj Hj

fi

φG
ij φH

ij

fj

Proposition 2.4.9. Let (fj) : (Gj)→ (Hj) be a morphism of inverse systems of
finite groups. There is a unique continuous homomorphism f : lim←−Gj → lim←−Hj

such that pHj f = fjp
G
j , where pGj : G→ Gj and pHj : H → Hj are the projection

maps.

Proof. The maps fjp
G
j : G → Hj make G into a cone on the diagram (Hj), so

by definition of inverse limit there is a unique homomorphism G→ H with the
desired properties. It is continuous by Proposition 1.2.26.
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Remark 2.4.10. We refer to such a map f as induced by the morphism of inverse
systems. We may write f = lim←− fj .

Of course, it is perfectly possible to have continuous homomorphisms be-
tween profinite groups which are given as inverse limits over completely different
inverse systems. Even if the inverse systems are the same, it is not the case that
every continuous homomorphism arises from a morphism of inverse systems.
However, if we allow ourselves the flexibility of passing to cofinal subsystems,
we will be able to treat homomorphisms as if they come from morphisms of
inverse systems.

Proposition 2.4.11. Let G = lim←−j∈J Gj and H = lim←−i∈I Hi be inverse limits

of finite groups, where I and J are countable surjective inverse systems with no
global minimum. Let f : G → H be a continuous homomorphism. Then there
are cofinal subsystems J ′ and I ′ of J and I respectively, an order-preserving
bijection J ′ ∼= I ′, and a morphism of inverse systems (fj) : (Gj)j∈J′ → (Hi)i∈I′

inducing f .

Proof. By Proposition 1.3.11 we may assume that both J and I are linearly
ordered. Without loss of generality therefore assume I and J are N with the
wrong-way ordering. Construct an increasing sequence (kn) of natural num-
bers as follows; this will be the desired cofinal subsystem of J . Each map
G → H → Hn is a continuous homomorphism, whose kernel is thus an open
neighbourhood of the identity of G. By Proposition 1.2.28 there exists kn such
that ker(G → Gkn) ⊆ ker(G → Hn)—whence the homomorphism f descends
to a homomorphism fn : Gkn → Hn. Since the kernels ker(G → Gm) are a
nested sequence, we may assume that kn ≥ kn−1. The sequence J ′ = {kn}n∈N
gives a cofinal subsystem of J , and the fn are the required morphism of inverse
systems.

Remark 2.4.12. The assumption that the inverse systems are countable is actu-
ally necessary to make this proposition work as stated, rather than just being
a simplifying assumption. For example, if I were countable and the profinite
group G were a profinite group which is not metrisable as a topological space—
for example a product of uncountably many copies of Z/2Z—then there is no
countable cofinal subsystem of J , since all profinite groups given as limits of
countable systems of finite groups are metrisable by Proposition 1.2.15.

2.5 Generators of profinite groups

Definition 2.5.1. Let G be a topological group and let S be a subset of G. We
say that S is a (topological) generating set for G if the subgroup 〈S〉 generated
by S is a dense subgroup of G. The group G is (topologically) finitely generated
if it has a finite topological generating set.

Remark 2.5.2. It is fairly common to be lazy and omit the word ‘topologically’,
especially with regard to finite generation. This may be justified (at least for
profinite groups) on the grounds that the only profinite groups which are gen-
uinely finitely generated (so that 〈S〉 equals G, and is not merely dense in it)
are the finite groups, so ‘a finitely generated profinite group’ can only really
mean ‘a topologically finitely generated group’ within the bounds of sense. If it
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happens that, for some strange reason, we want to consider the usual notion of
generation we may talk of, for example, ‘abstractly finitely generated’—meaning
that we consider only the abstract group structure and forget that there is any
topology to worry about.

Definition 2.5.3. Let G be a toplogical group and let S ⊆ G. The closed
subgroup of G (topologically) generated by S is the smallest closed subgroup of
G containing S. It is denoted by 〈S〉.

The notation is justified by the following easy observation.

Proposition 2.5.4. Let G be a topological group and let H be a subgroup.
Then the closure of H in G is also a subgroup. Hence the closed subgroup of G
topologically generated by a subset S is the closure of the subgroup 〈S〉 abstractly
generated by S.

Proof. Exercise.

Lemma 2.5.5. Let Γ be a finitely generated group and let H be a finite index
subgroup of Γ. Then H is finitely generated.

Proof (non-examinable). Let x1, . . . , xn be a generating set of Γ. For each left
coset Hg of H in Γ choose some sHg ∈ Γ such that gsHg ∈ H, and such
that sH1 = 1. Note that the condition gsHg ∈ H is independent of the coset
representative g of Hg. We claim that the finite set S=

{s−1
Hgx

±1
i sHg′ : Hg ∈ H\G,Hg′ = Hs−1

Hgx
±1
i }

generates H.
Let h ∈ H. Since h is an element of Γ, we may write it as a product

h = a1 · · · ar where each ar is of the form x±1
i . Define left cosets Hgi inductively

for 0 ≤ i ≤ r, such that that g0 = 1 and for all i ≥ 1 we have

s−1
Hgi−1

aisHgi ∈ H.

We then have an expression

h = a1 · · · ar = sHg0

r∏
i=1

(
s−1
Hgi−1

aisHgi
)
s−1
Hgr

.

By construction sHg0
= 1. We must also have sHgr = 1 because every other term

in the above expression lies inH, so sHgr ∈ H, hence gr ∈ H and sHgr = sH = 1.
We have thus written h as a product of terms from S, and we are done.

Proposition 2.5.6. If G is a topologically finitely generated profinite group and
U is an open subgroup of G then U is topologically finitely generated.

Proof. Let S be a finite set such that 〈S〉 is dense in G. Then Γ = U ∩ 〈S〉
is a finite index subgroup of 〈S〉, hence is finitely generated. Since U is open
and 〈S〉 is dense in G, it follows that Γ is dense in U . Hence U has a finitely
generated dense subgroup, so is topologically finitely generated.

As one should really be expecting by this point, generation in profinite groups
is determined by the behaviour of finite quotients.
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Proposition 2.5.7. Let (Gj)j∈J be a surjective inverse system of finite groups,
with inverse limit G and projection maps pj : G→ Gj. Then a subset S ⊆ G is
a topological generating set for G if and only if pj(S) (abstractly) generates Gj
for all j.

Proof. By Corollary 1.2.30, 〈S〉 is dense in G if and only if Gj = pj(〈S〉) =
〈pj(S)〉 for all j ∈ J—i.e. when pj(S) abstractly generates Gj for all j ∈ J .

Lemma 2.5.8. Let G be a topologically finitely generated profinite group. Then
G may be written as the inverse limit of a countable inverse system of finite
groups.

Proof. A continuous homomorphism from G to a finite group is determined
by the image of a topological generating set S; for the image of S determines
the image of 〈S〉, whence of G by continuity. There are only countably many
functions from S to a finite symmetric group Sym(n), soG has at most countably
many open subgroups U . The open subgroups of G form a neighbourhood base
of the identity, hence by Proposition 1.2.33 we have G ∼= lim←−G/U .

Example 2.5.9. One specific way of writing a topologically finitely generated
profinite group G as the inverse limit of a countable inverse system—indeed, a
linearly ordered system—will appear several times in this course. Let Gn be the
intersection of all open subgroups of G with index at most n. For each n there
are only finitely many open subgroups of G with index at most n: just as in
Lemma 1.2.18 they are in correspondence with the continuous homomorphisms
G → Sym(n), and since G is topologically finitely generated there are only
finitely many of these. Then Gn is an open subgroup of G, being the intersection
of only finitely many open subgroups.

The system {Gn} is clearly cofinal in the system of all open subgroups U
of G. In the above lemma we saw that G = lim←−G/U , so passing to the cofinal
subsystem we also have G = lim←−G/Gn.

Profinite groups have a tendency to have huge numbers of potential gener-
ating sets. Let us start by examining the p-adic integers Zp.

Proposition 2.5.10. Let Z×p be the set of elements of Zp which topologically
generate Zp. Then α ∈ Z×p if and only if α 6≡ 0 modulo p.

In particular, Z×p is a closed uncountable subset of Zp and for every n and
every generator an ∈ Z/pn there is some α ∈ Z×p such that α ≡ an modulo pn.

Proof. If α = (an) has a1 6= 0 in Z/pZ then p - an for any n. Hence an is
coprime to p and thus is a generator of Z/pnZ for all n. It follows that α
topologically generates Zp.

Remark 2.5.11. The notation Z×p is of course derived from the ring theory: the
generators here are the invertible elements of the ring Zp. To see this, let α be a
generator of Zp and consider the map f : Zp → Zp given by ring multiplication
x 7→ αx. This is continuous since Zp is a topological ring in the obvious way. The
image of f includes αn for all n ∈ Z, (that is, the abstract subgroup generated by
α) and is closed since it’s the image of the compact set Zp under the continuous
map f . Since α generates Zp, the smallest closed subgroup containing it is Zp
itself. So f is surjective and in particular there is some β ∈ Zp such that αβ = 1.
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Remark 2.5.12. This proposition means, of course, that many elements of Z are
invertible in Zp. For example if p 6= 2 then 2 generates Zp and hence an element
2−1 ∈ Zp exists. It may be instructive to consider what this element looks like,
for p = 3 for instance. 2−1 ∈ Z3 consists of a sequence of integers an ∈ Z/3nZ
such that 2an ≡ 1 modulo 3n. This sequence is uniquely determined (since
multiplication by 2 is a bijection Z/3n → Z/3n for all n). So 2−1 looks like the
sequence

2−1 = (. . . , 122, 41, 14, 5, 2) ∈ Z3 ⊆
∞∏
n=1

Z/3nZ

Proposition 2.5.13. For every n and every k ∈ (Z/nZ)× there exists an gen-

erator κ ∈ Ẑ
×

of Ẑ such that κ ≡ k modulo n.

Proof. Follows from the previous proposition via the Chinese Remainder Theo-
rem.

The ‘for every n’ part of Proposition 2.5.10—that generators of finite quo-
tients lift to generators of the profinite group—will now be extended more widely
in the powerful shape of Gaschutz’s Lemma. It is of course dramatically far from
being true for abstract groups. The integers Z have a paltry two generators ±1,
and cannot even lift all the generators of Z/5Z.

Theorem 2.5.14 (Gaschutz’s Lemma (Finite groups)). Let f : G → H be a
surjective homomorphism where G is a finite group. Assume that G has some
generating set of size d. Then for any generating set {z1, . . . , zd} of H there
exists some generating set {x1, . . . , xd} of G such that f(xi) = zi for all i.

Proof. It is convenient for this proof to speak of ‘generating vectors’ x =
(x1, . . . , xd) ∈ Gd for G—that is, ordered generating sets rather than unordered
generating sets. We extend f to the obvious map Gd → Hd and continue to
denote this by f .

We will prove, by induction on |G| (and for H fixed), the following statement
(∗).

(∗)

The number NG(y) defined by

NG(y) = #
(
Generating vectors x of G such that f(x) = y

)
is independent of y, where y ∈ Hd is a generating vector for H.

The theorem follows from this at once: G has some generating vector x′, so
NG(f(x′)) ≥ 1; hence NG(z) ≥ 1 for the given z = (z1, . . . , zd) as well.

Let y ∈ Hd be a generating vector for H and let C be the set of d-generator

proper subgroups of G. Every x ∈ Gd with f(x) = y either generates G or
generates some proper subgroup C ∈ C: hence

|{x such that f(x) = y}| = NG(y) +
∑
C∈C

NC(y)

Furthermore we have

|{x such that f(x) = y}| = | ker(f)|d
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so that
NG(y) = | ker(f)|d −

∑
C∈C

NC(y)

Every term on the right-hand side is independent of y by the inductive hypoth-
esis. So NG(y) is independent of y too and the proof is complete.

By ‘the standard inverse limit argument’, this will apply to profinite groups
as well.

Theorem 2.5.15 (Gaschutz’s Lemma (Profinite groups)). Let f : G → H be
a continuous surjective homomorphism where G and H are profinite groups.
Assume that G has some topological generating set of size d. Then for any
topological generating set {z1, . . . , zd} of H there exists some topological gener-
ating set {x1, . . . , xd} of G such that f(xi) = zi for all i.

Proof. By Propositions 1.3.7 and 2.4.11 we may assume that G and H are
written as surjective inverse limits of finite groups

G = lim←−
j∈J

Gj , H = lim←−
j∈J

Hj

with a morphism of inverse systems

(fj) : (Gj)→ (Hj)

with inverse limit f and with each fj a surjective group homomorphism.
Let z be some given generating vector of H, and let zj be its image in

Hd
j —which is a generating vector for Hj . Consider the finite sets

Xj = {Generating vectors xj ∈ Gdj such that fj(xj) = zj}

which are non-empty by the first version of Gaschutz’s Lemma. The transition
maps φij : Gi → Gj map Xi to Xj , so the Xj are an inverse system of non-empty
finite sets. The inverse limit of these is non-empty by Proposition 1.2.14; and
an element of the inverse limit is a generating vector for G which maps to z as
required.



Chapter 3

Profinite Completions

3.1 Residual finiteness

Remark 3.1.1 (Remark on terminology and notation). This chapter will involve
both profinite groups and the more familiar ‘normal’ groups—the ‘abstract’
groups. Abstract groups are also sometimes called ‘discrete’ groups to signify
that they are not usually considered to have any interesting topology on them.
I will try to use ‘abstract’ consistently, but may slip into ‘discrete’ from force
of habit. I consider ‘discrete’ to be potentially misleading since the ‘discrete’
groups do actually have a topology on them to consider: the topology induced
from the map to the profinite completion.

Let us recall what we have already seen of profinite completions.
Given an abstract group Γ, we can form an inverse system from its finite

quotients: the elements of this inverse system are the groups Γ/N where N /f Γ
is a finite index normal subgroup of Γ; and the maps of this inverse system are
the natural quotient maps Γ/N1 → Γ/N2 where N1 ⊆ N2.

The inverse limit Γ̂ = lim←−Γ/N is the profinite completion of Γ. It comes

with a canonical group homomorphism ι : Γ → Γ̂, which has dense image by
Corollary 1.2.30. Note that this means that for any abstract generating set X
of Γ, the image ι(X) is a topological generating set of Γ̂.

An important property of the profinite completion which we have not yet
spelled out is that •̂ is a functor.

Proposition 3.1.2. Let f : ∆ → Γ be a group homomorphism. Then there
exists a unique continuous group homomorphism f̂ : ∆̂ → Γ̂ such that f̂ ι∆ =
ιΓf .

Proof. Uniqueness will follow from the density of ι∆(∆) in ∆̂: if f̂1 and f̂2 are
two homomorphisms satisfying the conclusion of the proposition, consider the
set

S = {g ∈ ∆̂ : f̂1(g) = f̂2(g)}.

Continuity of f̂1 and f̂2 shows that S is closed in ∆̂, and S contains ι∆(∆), and

so is also dense. Hence S is all of ∆̂ and so f̂1 and f̂2.
We prove existence first for the case when Γ is finite, so that Γ = Γ̂. Then

ker f is a finite index normal subgroup M of ∆, and by the definition of the

35
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profinite completion there is a continuous projection map ∆̂ → ∆/M . The

composition f̂ : ∆̂→ ∆/M → Γ is the required continuous homomorphism.

∆ ∆̂

∆/M

Γ

ι∆

f f̂

Now we deal with the general case. For any finite index normal subgroup
N /f Γ we have a map pN ιΓf : ∆→ Γ/N to a finite group Γ/N (where pN : Γ̂→
Γ/N is the projection). By the finite case above, this extends to a unique

continuous homomorphism qN : ∆̂→ Γ/N such that pN ιΓf = qN ι∆.

∆ ∆̂

Γ Γ̂

Γ/N

ι∆

f
f̂

qN
ιΓ

pN

By uniqueness these maps qN are compatible with the transition maps Γ/N1 →
Γ/N2, so by definition of the limit there is a unique continuous homomorphism

f̂ : ∆̂ → Γ̂ such that pN f̂ = qN . Then pN f̂ ι∆ = pN ιΓf for all N , whence
f̂ ι∆ = ιΓf .

It follows immediately from the uniqueness part of the propositions that the

functor conditions f̂1f2 = f̂1f̂2 and îdΓ = idΓ̂ hold. One sometimes says that f̂
is induced by f .

In the case Γ = Z, we saw that ι was injective, which justified the word
‘completion’ and allowed us to identify Z as a subgroup of Ẑ and forget the
map ι. This injectivity may fail for general Γ; but we will generally not work
with groups for which ι is not injective. The classical name for this property is
‘residual finiteness’.

Definition 3.1.3. Let Γ be an abstract group. We say that Γ is residually
finite if for every γ ∈ Γr{1} there exists a finite index normal subgroup N ⊆ Γ
such that γ /∈ N (or equivalently, that γN is a non-trivial element of Γ/N).

Proposition 3.1.4. An abstract group Γ is residually finite if and only if the
map ι : Γ→ Γ̂ is injective.

Proposition 3.1.5. Any subgroup of a residually finite group is residually finite.

Proof. Exercise.

Proposition 3.1.6. Let Γ be an abstract group and let ∆ ≤ Γ be a finite index
subgroup. If ∆ is residually finite, then Γ is residually finite.
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Proof. Let γ ∈ Γr{1}. We must find a finite-index normal subgroup of Γ which
does not contain γ.

If γ /∈ ∆, then the normal core of ∆—the finite index normal subgroup

CoreΓ(∆) =
⋂
g∈Γ

g∆g−1

of Γ—does not contain γ and we are done. (Note that this intersection has
only finitely many different terms (at most one for each coset g∆ ∈ Γ/∆), so is
genuinely finite index.)

If γ ∈ ∆, then residual finiteness of ∆ implies that there exists a finite index
subgroup N of ∆ which does not contain γ. Then N also has finite index in
Γ, and the core CoreΓ(N) is the finite index normal subgroup of Γ that we
require.

Many of the examples of finitely generated groups you are familiar with are
residually finite.

Proposition 3.1.7. Finitely generated abelian groups are residually finite.

Proof. Exercise.

Proposition 3.1.8. The groups SLN (Z) and GLN (Z) are residually finite for
any N .

Proof. For a matrix A ∈ GLN (Z), take a prime p larger than the absolute value
of all the entries of A. Then A is not killed by the homomorphism GLN (Z)→
GLN (Fp).

These examples already imply many others. For example, free groups embed
into SLN (Z) and hence are residually finite—though we will give a direct proof
later which does not rely on this embedding (which, after all, we haven’t proved
in this course).

It is fitting here to mention a generalisation of this result.

Theorem 3.1.9 (Malcev’s theorem (Non-examinable)). Let G be a finitely gen-
erated subgroup of GLN (K) where K is a field. Then G is residually finite.

The proof is similar in essence to the case of GLN (Z). The group G may be
taken to live inside a group GLN (R) where R is the ring generated by the matrix
entries of a generating set ofG. This finitely generated ring can be shown to have
enough maximal ideals P such that the maps GLN (R)→ GLN (R/P ) show that
GLN (R), and hence G, is residually finite. Showing that these maximal ideals
exist, and that the fields R/P are finite, requires more commutative algebra
than is pre-requisite for this course, so we will leave Malcev’s theorem as an
unproven statement.

The only consequence we will mention now is that the fundamental group
of a surface is residually finite: as you may have seen in IB Geometry, a surface
is the quotient of the hyperbolic plane by a group of isometries. This group
of isometries is the fundamental group (the hyperbolic plane is the unversal
covering space of the surface) and is a subgroup of the group of all isometries
of hyperbolic space—which is PSL2(R) and is thus residually finite by the same
arguments as for Malcev’s theorem.
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Proposition 3.1.10. The fundamental group of a surface is residually finite.

You will see some additional results about residual finiteness on the example
sheets, as well as a finitely presented group which is not only not residually
finite, but has no non-trivial finite quotients whatsoever.

Now we will finally verify a claim made early on in the course, that profinite
completions contain the same information as the set of isomorphism types of
finite quotients of a group. We first quantify what are the open subgroups of Γ̂.

Lemma 3.1.11. Let Γ be an abstract group. The open subgroups of Γ̂ are
exactly the subgroups ι(∆) for ∆ ≤f Γ.

Proof. If ∆ ≤f Γ is finite index then take a finite set of coset representatives
{γi} of ∆. Since

Γ̂ = ι(Γ) =
⋃
i

ι(γi∆) =
⋃
i

ι(γi)ι(∆)

we see that ι(∆) is closed and finite index, hence open. Note that in the com-
putation above, the union has finitely many terms so we may exchange the
closure and union processes, and the third equality uses the continuity of the
translations by ι(γi).

Conversely if U is open in Γ̂ then, since ι(Γ) is dense, we have U = ι(Γ) ∩ U .
Setting ∆ = ι−1(U), the subgroup ∆ is finite index in Γ and has ι(∆) = ι(Γ) ∩
U .

Theorem 3.1.12. Let G and H be topologically finitely generated profinite
groups. Suppose that the sets of isomorphism types of continuous finite quo-
tients of G and H are equal. Then G and H are isomorphic profinite groups.

Proof. Let Gn be the intersection of all open subgroups of G of index at most
n, and define Hn similarly. By Example 2.5.9 we have G = lim←−G/Gn.

Firstly, G/Gn is a finite quotient of G, hence by hypothesis there is an open
normal subgroup V of H with H/V ∼= G/Gn. The intersection of the index-at-
most-n subgroups of G/Gn is trivial by definition, so by taking preimages we
find that V may be written as an intersection of some open subgroups of H of
index at most n—hence Hn ⊆ V and

|G/Gn| = |H/V | ≤ |H/Hn|.

By symmetry, we also have |H/Hn| ≤ |G/Gn|, whence we have equality and
find that V = Hn, so G/Gn ∼= H/Hn for all n.

To show that the inverse limits lim←−G/Gn and lim←−H/Hn are isomorphic, it is
not quite sufficient to say that G/Gn and H/Hn are isomorphic: we must also
establish the existence of a family of isomorphisms which are maps of inverse
systems.

Let Sn denote the set of isomorphisms G/Gn → H/Hn. Let fn ∈ Sn. Now,
fn takes a subgroup of G/Gn of index at most n − 1 to such a subgroup of
H/Hn; so fn takes Gn−1/Gn to Hn−1/Hn and therefore defines a quotient map

φn,n−1(fn) : G/Gn−1 → H/Hn−1
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with the property that the natural diagram

G/Gn H/Hn

G/Gn−1 H/Hn−1

fn

φn,n−1(fn)

commutes. In this way, the sets Sn, with the maps φn,n−1 between them, become
an inverse system of non-empty finite sets. Hence there exists some element of
the inverse limit—and such an element is precisely an isomorphism of inverse
systems

(fn) : G/Gn → H/Hn

which shows G ∼= H.

As an immediate corollary, we find the same result for abstract groups.

Theorem 3.1.13. Let Γ and ∆ be finitely generated abstract groups. Suppose
that the sets of isomorphism types of finite quotients of Γ and ∆ are equal. Then
Γ̂ and ∆̂ are isomorphic profinite groups.

We now turn our attention towards the question of how much we can learn
about a group from its finite quotients (or, equivalently as we now know, from its
profinite completion). It is natural to restrict our attention to residually finite
groups—if a group doesn’t have a good supply of finite quotients, we won’t learn
much! We also restrict to finitely generated groups.

Definition 3.1.14. A property P of groups is a profinite invariant if, whenever
finitely generated residually finite groups G and H have isomorphic profinite
completions, G has property P if and only if H has property P.

This is a fairly loose definition, and merely establishes some phrasing.
We start with the most tractable class of groups: the abelian groups.

Proposition 3.1.15. Being an abelian group is a profinite invariant.

Proof. Let G and H be finitely generated residually finite groups with isomor-
phic profinite completions. Suppose H is abelian. Then every quotient group of
H is abelian; hence every finite quotient of G is abelian. Suppose for a contra-
diction that G is not abelian. Then there are elements g1 and g2 of G such that
the commutator [g1, g2] does not vanish. Since G is residually finite, there is a
finite quotient φ : G→ Q such that φ([g1, g2]) is non-trivial. But Q is known to
be abelian, so φ(g1) and φ(g2) commute, giving a contradiction.

Proposition 3.1.16. Let G and H be finitely generated groups with isomorphic
profinite completions. Then the abelianizations Gab = G/[G,G] and Hab =
H/[H,H] are isomorphic.

Proof. Suppose Ĝ ∼= Ĥ. We show first that Ĝab
∼= Ĥab: since G and H have the

same sets of finite quotients, they have the same sets of abelian finite quotients—
which are exactly the sets of finite quotients of the abelianizations. By Theorem
3.1.12 therefore, Ĝab

∼= Ĥab.
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We are now left to show that if two finitely generated abelian groups A
and A′ have isomorphic profinite completions then they are isomorphic. By the
classification of finitely generated abelian groups, we have

A ∼= Zr × T, A′ ∼= Zs × T ′

for some integers r and s and some finite abelian groups T and T ′.
We can derive r from the set of finite quotients of A:

r = max {k such that A� (Z/nZ)r ∀n}

from which formulation it follows that r = s. We can now also identify T from
the set of finite quotients: it is the largest (by size) finite group such that A
maps onto (Z/nZ)r × T for all n. Hence T ∼= T ′ and A ∼= A′.

Remark 3.1.17. Notice how we had to use such a strong result as the classifica-
tion of finitely generated abelian groups here—there is no simple answer!

These two propositions put together show that a finitely generated abelian
group A is profinitely rigid in the sense that any finitely generated residually
finite group with the same finite quotients as A is isomorphic to A.

At this point I would like to give several lectures establishing profinite rigidity
results for large interesting classes of groups. Unfortunately I can’t because there
is a huge amount of uncertainty and open questions in this area. Let us see a
first example to show that even a group with a finite index abelian subgroup
need not retain its profinite rigidity.

Example 3.1.18. Let φ : C25 → C25 be the automorphism which sends t 7→
t6, where t is a generator of the cyclic group C25. Note that φ is an order
5 automorphism: 65 ≡ 1 mod 25 but no smaller positive power of φ is the
identity.

Form the semidirect products

G1 = C25 oφ Z, G2 = C25 oφ2 Z.

We claim that these groups are not isomorphic, yet have isomorphic profinite
completions. We write elements of both groups as elements of the set C25 × Z,
and write the group operations as ?1 and ?2.

Let s be a generator of Z and write Z = 〈s〉 multiplicatively. Suppose an
isomorphism Ψ: G2 → G1 exists. By using the quotient map C25 o Z → Z
one sees that the given C25 is the only order 25 subgroup of each Gi, hence
Ψ(C25) = C25 and Ψ((t, 1)) = (ta, 1) for some a ∈ Z which is coprime to 25.
Let Ψ(1, s) = (tb, sc). Since (t, 1) and (1, s) generate both the Gi, the element
sc must generate Z (again we can see this using the projection map). Hence
c = ±1. But now we find a contradiction by computing the image of the element
(1, s) ?2 (t, 1) ?2 (1, s−1) under Ψ in two different ways.

Ψ((1, s) ?2 (t, 1) ?2 (1, s−1)) = Ψ((φ2(t), 1)) = (φ2(t)a, 1)

Ψ((1, s) ?2 (t, 1) ?2 (1, s−1)) = (tb, sc) ?1 (ta, 1) ?1 (φ−c(tb), s−c) = (φc(ta), 1)

But φc(ta) 6= φ2(ta), since ta generates Z/25Z and φ2 6= φc, giving us the
desired contradiction.
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Now we consider the finite quotients of the Gi. Let f : Gi → Q be a finite
quotient map. If the image of Z → Gi → Q has order m, then clearly 5mZ
is contained in the kernel of f , so the map to Q factors through the finite
quotient C25 oφi Z/5mZ. (This group is well-defined since φ and φ2 are order
5 automorphisms so there is a well-defined action of Z/5mZ on C25). Hence
the quotients C25 oφi Z/5mZ are a cofinal subsequence of the system of finite
quotients of the Gi, and we find that

Ĝi = lim←−C25 oφi Z/5mZ = C25 oφi Ẑ

We may now build an isomorphism Ω: Ĝ2 → Ĝ1, taking our cue from the
earlier calculations. The problem with building the isomorphism Ψ before was
that neither of generators ±1 of Z was congruent to 2 modulo 5. But Ẑ does

have generators of that form by Proposition 2.5.13. Let κ ∈ Ẑ
×

be congruent
to 2 modulo 5. Define

Ω(tb, sλ) = (tb, sλκ)

where λ ∈ Ẑ. It is easy to see that this is a continuous bijection. It is also a
homomorphism:

Ω((tb, sλ) ?2 (tc, sµ)) = Ω((tbφ2λ(tc), sλ+µ)) = (tbφ2λ(tc), sκ(λ+µ))

Ω((tb, sλ)) ?1 Ω((tc, sµ)) = (tb, sλκ) ?1 (tc, sµκ) = (tbφκλ(tc), sκ(λ+µ))

and these two lines are equal since φ has order 5 and κ ≡ 2 mod 5, so that
φ2 = φκ. Hence Ĝ2

∼= Ĝ1.

Even for free groups the answer to the profinite rigidity question is unknown.

Open Question 3.1.19 (‘Remeslennikov’s Question’). Let F be a finitely gen-
erated free group and let G be a finitely generated residually finite group. If
F̂ ∼= Ĝ, must G be isomorphic to F?

It is perhaps worth decanting this question into a more primitive form. Be-
low, d(G) denotes the minimal size of a generating set of a group G.

Open Question 3.1.20. Does there exist a finitely generated residually finite
group G (other than a free group) and an integer n such that a finite group Q
is a quotient of G if and only if d(Q) ≤ n?

For now let us simply show that certain families of groups we have met do
not give an answer to Remeslennikov’s question.

Proposition 3.1.21. Let F and F ′ be finitely generated free groups. If F̂ ∼= F̂ ′

then F ∼= F ′.

Proof. If F is a free group of rank r then its abelianisation is Zr. Since abelian-
ization is a profinite invariant, F ′ also has abelianization Zr—hence is a free
group of rank r and is isomorphic to F .

How about surface groups? Certainly we can’t get away with just using the
abelianization this time: if Sg is the fundamental group of a surface of genus g,

Sg = 〈a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg]〉



CHAPTER 3. PROFINITE COMPLETIONS 42

then the abelianization of Sg is Z2g. This shows that Ŝg 6∼= F̂r for a free group

Fr of rank r, except if r = 2g. How can we distinguish Ŝg from F̂2g?
We will give two solutions to this question. Both illustrate techniques that

can be used more generally. First we will codify what information an isomor-
phism of profinite completions gives about the whole lattice of finite index sub-
groups of the groups in question.

Theorem 3.1.22 (‘Basic correspondence’). Let G1 and G2 be finitely generated

residually finite groups, and suppose φ : Ĝ1 → Ĝ2 is an isomorphism of their
profinite completions. Then there is an induced bijection ψ between the set of
finite index subgroups of G1 and the set of finite index subgroups of G2, such
that if K ≤f H ≤f G1, then:

� [H : K] = [ψ(H) : ψ(K)];

� K / H if and only if ψ(K) / ψ(H);

� if K / H, then H/K ∼= ψ(H)/ψ(K); and

� Ĥ ∼= ψ̂(H).

Let us see why this implies that Sg does not have the same profinite comple-
tion as F2g. Any finite index subgroup of Sg is the fundamental group of a finite
sheeted covering space of a surface of genus g. A finite covering of a surface is
again a surface—hence its fundamental group has abelianisation Z2g′ for some
g′.

On the other hand, F2g has an index 2 subgroup. This subgroup is a free
group of rank 2(2g − 1) + 1 by the Nielsen-Schrier formula—so its abelianisa-

tion is Z4g−1, an abelian group of odd rank. If F̂2g
∼= Ŝg then by the Basic

Correspondence and Proposition 3.1.16, there is a finite index subgroup of Sg
with this abelianisation—but all the finite index subgroups of Sg have even rank
abelianisation, a contradiction.

The Basic Correspondence follows immediately from the following proposi-
tion, which relates the subgroup structure of a group to that of its profinite
completion:

Proposition 3.1.23. Let G be a finitely generated residually finite group, and
let Ĝ be its profinite completion. Identify G with its image under the canonical
inclusion G ↪→ Ĝ. Let ψ be the function sending a finite index subgroup H ≤f G
to its closure H. If K ≤f H ≤f G then:

1. ψ : {H ≤f G} → {U ≤o Ĝ} is a bijection;

2. [H : K] = [H : K];

3. K / H if and only if K / H;

4. if K / H, then H/K ∼= H/K; and

5. Ĥ ∼= H.

Proof. Some of part 1 was already essentially proved as Lemma 3.1.11. I repeat
the proof here for convenience.
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If H ≤f G is finite index then take a finite set of coset representatives {gi}
of H in G. Since

Ĝ = G =
⋃
i

giH =
⋃
i

giH

we see that H is closed and finite index, hence open.
Conversely if U is open in Ĝ then since G is dense, we have U = G ∩ U .

Setting H = G ∩ U , H is finite index in G with closure U .
Hence the given function ψ is a surjection. To see that it is a bijection, we

must show that if H is a finite index subgroup of G then G∩H = H. Certainly
H ⊆ G∩H. Now consider the action of G on the set of cosets G/H. Since G/H

is finite, this extends to an action of Ĝ on G/H (i.e. a continuous homomorphism

f : Ĝ → Sym(G/H)). All elements of H, hence of H, fix the coset H. But if

g /∈ H then g does not fix the coset H. Then {x ∈ Ĝ|f(x)(H) = gH} is an

open subset of Ĝ which contains g but intersects H trivially. Hence g /∈ H and
we are done.

To show (2), let {gi} be a complete set of coset representatives of H in G.

We already know that the cosets giH cover Ĝ; we must also show that they are
distinct cosets. But if giH = gjH then g−1

i gj ∈ H ∩ G = H so i = j. Hence

[G : H] = [Ĝ : H], from which the more general statement follows at once. Note

also that this gives a natural bijection of coset spaces G/H = Ĝ/H.
For (3), first note that if K /H then immediately K = K ∩G/ H ∩G = H.

Conversely, if K is normal in H, consider the continuous action of H on H/K =
H/K. The dense subgroup K of K fixes every element of H/K by normality,
so by continuity K acts trivially on H/K whence K is normal in H.

Part (4): since K = K∩H we have a natural homomorphism H/K → H/K.
This is surjective by density of H and is thus an isomorphism by (2).

Finally, to show (5), note that H maps to all the finite quotients H/K in a

natural way, hence has a continuous homomorphism H → Ĥ. This is surjective
because H is dense; it is injective because if h ∈ H r {1} then there is an open

subgroup U ≤o Ĝ such that h /∈ U , and the map H → H/U ∩H shows that h

does not map to the trivial element of Ĥ.

A second way to show that the surface group is not isomorphic to the free
group is to rely on the rank of the surface group, and a useful property called
the Hopf property.

Proposition 3.1.24 (Hopf property for profinite groups). Let G be a topo-
logically finitely generated profinite group and let f : G → G be a surjective
continuous map. Then f is an isomorphism.

Proof. Let Gn be the intersection of all open subgroups of G with index at most
n. As in Example 2.5.9, since G is topologically finitely generated the Gn are
open normal subgroups of G and G = lim←−G/Gn.

Since f is surjective, [G : f−1(U)] = [G : U ] for all open subgroups U of G.
If U is an open subgroup of index at most n then f−1(U) is also open of index at
most n and thus contains Gn. It follows that Gn ⊆ f−1(Gn) and f(Gn) ⊆ Gn.
Thus f induces a map

fn : G/Gn → G/Gn
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for all n. This map is surjective, and hence is an isomorphism since G/Gn is
finite (by the Pigeonhole Principle). It follows that f = lim←− fn is an isomor-
phism.

Corollary 3.1.25 (Hopf property for residually finite groups). Let G be a
finitely generated residually finite group. Then any surjective homomorphism
from G to itself is an isomorphism.

Proof. An epimorphism f : G → G induces, by Proposition 3.1.2, a continuous
homomorphism

f̂ : Ĝ→ Ĝ.

The image of this map is compact and includes the dense subset G of Ĝ, hence
f̂ is surjective, and hence is an isomorphism by the previous proposition. Since
G is residually finite, it injects into Ĝ. It follows that f is injective.

Definition 3.1.26. A (topological) group G is Hopfian, or has the Hopf prop-
erty, if every (continuous) surjection from G to itself is an isomorphism (resp.,
an isomorphism of topological groups).

Remark 3.1.27. In many circumstances it can be easier to check that a homo-
morphism, which you suspect is an isomorphism, is surjective than it is to check
injectivity: for surjectivity you need to show that some generating set is con-
tained in the image, while injectivity requires taking any element of the source
group and showing that its image is non-trivial. In the presence of the Hopf
property, you can often dispense with checking an injectivity condition, by the
following result.

Proposition 3.1.28. Let G be a Hopfian group and let H be a group. Sup-
pose there are surjections f : G → H and f ′ : H → G. Then f and f ′ are
isomorphisms.

Proof. The composition f ′f : G → G is surjective, hence is an isomorphism by
the Hopf property. If follows immediately that f is injective, and that f ′ is
injective on the image of f . Since this is all of H, it follows that f ′ is injective
too.

Much the same applies for continuous maps of Hopfian topological groups.

Proposition 3.1.29. Let G be a Hopfian topological group and let H be a
topological group. Suppose there are continuous surjections f : G → H and
f ′ : H → G. Then f and f ′ are isomorphisms of topological groups.

Proof. The only outstanding question is whether f and f ′ are homeomorphisms
(i.e. have continuous inverses). This is a consequence of the fact that if f and
f ′ are continuous bijections, such that f ′f is a homeomorphism, then f−1 =
(f ′f)−1f ′ and f ′−1 = f(f ′f)−1 are also continuous.

Proposition 3.1.30. Let G be a residually finite group. Assume that there
exists a finite quotient group Q of G such that d(G) = d(Q). If Ĝ is isomorphic
to the profinite completion of a free group, then G is free.
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Proof. Let F be a free group such that F̂ ∼= Ĝ. Then Q is also a quotient of F ,
so d(F ) ≥ d(Q) = d(G). So G has a generating set of size d(F ), and there is

a surjective map f : F → G. This induces a continuous map f̂ : F̂ → Ĝ, which
is a surjection since its image contains the dense subgroup G. Since Ĝ ∼= F̂ ,
by the Hopf property for profinite groups we know that f̂ is an isomorphism.
Hence f̂ is injective so f is injective and thus an isomorphism.

Corollary 3.1.31. A surface group does not have the same profinite completion
as a free group.

Proof. The surface group Sg has rank at most 2g, and maps onto Q = F2g
2 which

has rank d(Q) = 2g.

The Hopf property can also be a useful tool for proving that a certain group
is not residually finite.

Example 3.1.32. Let n and m be coprime integers. Let BS(n,m) be the group1

with presentation
BS(n,m) = 〈a, t | tant−1 = am〉.

Define a homomorphism f : BS(n,m) → BS(n,m) by f(t) = t, f(a) = an.
This gives a well-defined homomorphism, since the relation is killed by f :

tant−1a−m 7→ tan
2

t−1a−mn = (tant−1)na−nm = anma−nm = 1

Furthermore, f is surjective: its image contains t, an and therefore am; since m
and n are coprime, the image of f must contain a also.

However, f is not injective: tat−1 and a do not commute2 in BS(n,m), so
their commutator is non-trivial; however

f([tat−1, a]) = [tant−1, an] = [am, an] = 1

Hence BS(n,m) is non-Hopfian, and hence is not residually finite.

3.2 Finite quotients of free groups

One extremely important family of groups that have not yet appeared in this
course in a very prominent way are the free groups. These too are residually
finite. One can in fact deduce this from the results already seen: those of you
taking Geometric Group Theory will have seen that free groups are actually
subgroups of SL2(Z), and are therefore residually finite. Due to the importance
of this fact, we will give a self-contained proof. In fact we’ll give two, and
then use the method from one of these proofs to construct many useful finite
quotients of free groups.

Theorem 3.2.1. Let F be a finitely generated free group. Then F is residually
finite.

1Here ‘BS’ stands for ‘Baumslag–Solitar’, after two mathematicians who popularised the
use of these groups.

2Actually, this is less than obvious. The easiest way to prove it is to make BS(n,m) act
on a tree, but that sort of theory is beyond the scope of this course. We will simply assume
that [tat−1, a] 6= 1.
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Remark 3.2.2. This theorem statement concerns finitely generated free groups,
but the conclusion holds for infinitely generated free groups too: if g is a non-
trivial element of a free group F with generating set S, then g may be written as
a product of elements of X and their inverses. Only finitely many elements of X
are used in this product; by factoring out all the other elements gives a map to a
finitely generated free group in which g survives as a non-trivial element. This
finitely generated free group has a finite quotient that does not kill g, which
witnesses residual finiteness of F .

Theorem 3.2.1, Proof 1 (Non-examinable). Let X be a wedge of k circles, whose
fundamental group F is the free group on k generators. Construct a sequence
of finite-index normal subgroups of F inductively, by setting

F1 = F, Fn+1 =
⋂
{ker(f) | f : Fn → Z/2Z}

These are characteristic (and hence normal) subgroups of F and one may show
by induction that each Fn has finite-index. Let Xn → X be the covering space
corresponding to the subgroup Fn / F .

Each Xn is a finite graph; we claim that the girth of Xn+1 (that is, the length
of the shortest cycle in Xn) is greater than the girth of Xn. To see this, let l be
any cycle of minimal length in Xn; we must show that it does not lift to a loop
in Xn+1. Since l is minimal length it crosses every edge at most once; choose
some edge e which l crosses. Collapsing the complement of e to a point gives
a continuous map from Xn to a circle, sending l to a generator of π1S

1 ∼= Z;
this gives a homomorphism Fn → Z → Z/2Z which does not contain [l] in the
kernel, so [l] /∈ Fn+1 and l does not lift to Xn+1. So the shortest loop in Xn+1

is longer than the shortest loop in Xn; that is

girth(Xn+1) > girth(Xn)

By induction it follows that girth(Xn) ≥ n, so Xn has no loops shorter than
length n.

Let g ∈ F r {1}. We can represent g by an edge loop l in X. Let n be the
number of edges in l; then from above l cannot be lifted to a loop in Xn+1. It
follows that g /∈ Fn+1. This shows that F is residually finite.

Remark 3.2.3. In fact this proof does more: the finite quotients F/Fn all have
order a power of 2, so the free group is residually 2-finite—so that injects into
its pro-2 completion. We can replace 2 with any other prime number p in the
above and show that free groups are residually p-finite for all p. One might ask
whether this stronger property always holds for a residually finite group; but
already finite such as An (which are of course residually finite) rule that out.

Corollary 3.2.4. A finitely generated free group is residually p-finite for all p,
and hence injects into its pro-p completion.

Theorem 3.2.1, Proof 2. This is one of those proofs which makes much more
sense in pictures than in words; it is best to refer to Example 3.2.6 while reading
this proof.

Let F be the free group generated by a1, . . . , ak. Let X be a bouquet of k
circles, with oriented edges labelled with the ai to give an isomorphism F ∼=
π1X. Let g ∈ Fr{1}. We wish to show that there is some finite index subgroup
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of F not containing g. Equivalently, by covering space theory, we want to show
that there is some finite-sheeted covering space X̃ → X not containing g in its
fundamental group.

Write g as a product s1 · · · sm of generators ai and their inverses—and as-
sume that this word is reduced in the sense that we never see aia

−1
i or a−1

i ai as
a subword. Let Y be a line segment with m edges labelled with the ai so that
reading from one end of Y to the other spells out the word s1 · · · sm. If we can
find a finite sheeted covering X̃ → X such that Y embeds into X̃ (as a labelled

graph) then we are done: the fundamental group of X̃ (with basepoint at the
start y0 of the segment Y ) is a finite index subgroup of π1X which does not
contain g, since the loop labelled by s1 · · · sm in X lifts to the non-closed path
Y in X̃, not to a loop based at y0.

To construct X̃, note that a covering space of X is the same thing as a graph
with edges labelled by the ai such that each vertex has exactly one incoming
edge labelled ai for each i and exactly one outgoing edge labelled ai. In Y the
number of vertices missing an incoming ai equals the number of vertices missing
an outgoing ai, since each of these quantities is just m+ 1 minus the number of
ai-labelled edges in Y . Therefore we can add in extra edges labelled ai between
the vertices so that no vertex is missing an incoming or outgoing ai-edge. Doing
this for each i gives us the required X̃.

Remark 3.2.5. The technique of Proof 2 gives an algorithm for constructing
finite quotients of the free group which show that a given element is non-trivial.
The covering space does not in general give a normal subgroup—but we can
easily produce a map to a permutation group witnessing that our element is
non-trivial. See the example below.

Example 3.2.6. To construct a finite-index subgroup of the free group on two
generators a and b not containing the element g = aba−1b. First take a line
segment Y with labels spelling out the word g.

Y : a b a b

To make this into a covering space of the bouquet of two circles X we must
add in more edges. Mark the vertices missing an outgoing a-edge with red
arrows and those missing incoming a-edges with blue arrows:

Y : a b a b

Being equal in number, we can pair these vertices up and join them with
new a-edges to create a new graph in which every edge has one incoming a-edge
and one outgoing a-edge.

Do the same for the b-edges and we obtain a graph X̃ which is a covering
space of the wedge of two circles X and whose fundamental group (with base-
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a b a b

a a

a

point the leftmost vertex) does not contain g because reading the word aba−1b
does not give a closed loop.

a b a b

a a

a

b b

bX̃ :
1 2 3 4 5

X : ba

To produce an explicit homomorphism to a finite group showing g is non-
trivial, note that the free group F acts on the set of vertices of X̃: for each
vertex x of X̃, the vertex a ·x is found by following the arrow labelled a coming
out of x. Labelling the vertices of X̃ by 1, . . . , 5 we find the following map to
S5:

a 7→ (12)(34)(5), b 7→ (1)(23)(45)

note that the image of g under this homomorphism is (15234), which is indeed
non-trivial.

Free groups thus have enough finite quotients to separate individual elements
from the identity. In fact we can use similar techniques of contructing covering
graphs to do much more—to separate out entire subgroups and compute whether
a given subset generates the free group.

Generation of free groups is a surprisingly difficult question to decide. For
example, take the free group F on three generators a, b and c. One of the triples
of elements

� abcb2cb−1c−1b−1a−1, bc−1b−1abc, bcb−1

� abcb2cb−1c−1b−1a−1, bc−1b−1a−1bc, bcb−1

generates F ; the other does not. How can we tell the difference?
More generally, given a finite subset S ⊂ F and an element y ∈ F , can we

tell whether y ∈ 〈S〉? We can answer these questions by working with graphs,
and in doing so will establish that we can use finite quotients of F to tell whether
elements lie in 〈S〉 or not.
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Theorem 3.2.7 (Marshall Hall’s Theorem). Let S be a finite subset of a finitely
generated free group F , and let y /∈ 〈S〉. Then there exists a finite group Q and
a group homomorphism f : F → Q such that f(y) /∈ f(〈S〉).

We will not give a formal proof of this, for the simple reason that such a
proof is essentially a more notationally-intense version of a worked example.
We will give several examples to illustrate the method for constructing Q, from
which it will be obvious that we can construct such a Q for every S and y.

Remark 3.2.8. Actually the traditional statement of Marshall Hall’s Theorem is
that 〈S〉 is a free factor of some finite index subgroup H of F—there is H ′ ≤ H
such that H = 〈S〉 ∗ H ′. We will essentially prove both statements, but the
statement about free factors requires slightly more knowledge of fundamental
groups of graphs than was discussed in Algebraic Topology, and which it would
be out-of-place to discuss now.

Corollary 3.2.9. A finite subset S ⊆ F generates F if and only if it topologi-
cally generates the profinite completion F̂ .

Proof. If S generates F then it topologically generates F̂ , since F is dense in F̂ .
IfX does not generate S then there is some y /∈ 〈S〉, and the Theorem guarantees
a finite quotient f : F → Q such that f(〈S〉) 6= f(F ). By definition this extends

to a continuous homomorphism f̂ : F̂ → Q such that f̂(〈S〉) 6= f̂(F̂ ); it follows

that 〈S〉 is not dense in F̂ .

Remark 3.2.10. We will compare this with the situation for the pro-p completion
of F at the start of the next chapter.

First recall how we can build and identify covering spaces of certain graphs.
For a free group F on generators a1, . . . , an, let X be the wedge on n circles—a
graph with one vertex and with n edges. Labelling one edge with an arrow ‘ai’
for each i identifies F with π1X. A graph morphism Y → X is described as
follows. Every vertex of Y must be mapped to the single vertex of X. The map
on the edges may then be specified by labelling each edge with an arrow ai, to
send it to the edge of X with the same label and direction.

When is this a covering map? The conditions to be a covering map are that
the graph Y ‘looks locally like’ X—which amounts to saying that every vertex
of Y ‘looks like’ the vertex of X, having exactly one edge labelled ai coming
into it and exactly one leaving it, for each i.

If Y is not a covering space of X, but every vertex has at most one edge
of any label entering/leaving it, then we can turn Y into a covering space by
simply adding more edges to take care of missing labels.

If on the other hand some vertices have, for example, two a1 edges leaving
it, then we can modify Y by gluing (or ‘folding’) these two edges together. So
long as Y is a finite graph, if we keep doing this we will eventually have no more
folds to do—at which point we can add more edges to get a covering space of X.
This technique is sometimes called Stallings folding. Let us see some examples,
in the context of Marshall Hall’s Theorem.

Example 3.2.11. Take F to be the free group on two generators a and b. Let
S = {aba, ba2b}. We will construct a finite quotient of F witnessing the fact
that S does not generate F . First draw a labelled graph Y which represents S:
start from a basepoint v0 and draw a labelled cycle spelling out each element
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Y :

a

b
a

b a

ab
X : ba

Figure 3.1: The length 3 cycle on the left spells the word aba and the cycle on
the right spells ba2b, in each case starting from the central vertex.

of S. See Figure 3.1. Note that in this case there are no folds which can be
performed: every vertex has at most one edge of a given label entering or leaving
it. This implies that we can complete Y to a covering space of X by adding more
edges—and therefore implies that S does not generate X, since this covering
has degree greater than 1 (the degree being the number of vertices). We show
in Figure 3.2 one possible way of adding new edges to Y to make a covering
space Y of X; there are many others.

Y :

a

b
a

b a

ab

b

b

aa b X : ba

Figure 3.2: A folded graph may have edges added to it to form a covering space
of X. The new edges are shown in red.

Finally, to construct an explicit map from F to a finite group, label the
vertices of the graph Y by 1, . . . , 6. Then a and b act as permutations on this
set, by ‘following the arrows round’—a vertex i is sent by a to the unique vertex
j such that there is an arrow i

a−→ j.
This gives a homomorphism from F to the symmetric group S6. By con-

struction, the elements of S can be read along loops in Y based at the starting
vertex v0; so the images of these elements in S6 fix the label of the vertex v0.
Since a and b do not both fix this vertex, we find that the image of F properly
contains the image of 〈S〉.

In this last example we could immediately add edges to Y to build a covering
space. Let us see an example where folding is needed.

Example 3.2.12. Again take a free group on two generators a and b. Now let
S = {a3, ab2aba−1, ab−1ab3}. We draw a labelled graph Y as before, with cycles
representing the elements of S (read starting from one central vertex).

We cannot add edges to Y to make it into a covering space of X: we have
four edges labelled a coming out of the central vertex, and a covering space
would have just one. Therefore we fold these edges together to get a new graph
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Y :

a

b
a

b a

ab

b

b

aa b
1

2 3

4 5

6

a 7→ (1 2 4)(3 6 5)

b 7→ (1 3 2 4 5)(6)

aba 7→ (1)(2 3 5 4 6)

ba2b 7→ (1)(2 4 6 2)(3)(5)

Figure 3.3: The covering space Y of X may be used to construct a homomor-
phism F → S6 as shown. Note that the elements of S must fix the vertex 1 by
construction—so the image of 〈S〉 in S6 is contained in the stabiliser of 1.

Y :

a

a

a

a
b

b

a
b

a a

b
a

b

b
b

Y ′. The image of π1Y
′ in π1X is still equal to 〈S〉: I will include a proof later for

completeness, but for now just assume it to preserve the flow of the argument.
The folded graph Y ′ is shown below, with the folded edge in red.

Y ′ :

a a

ab

b

a

b b

a b

b

b

This new graph Y ′ is still not ‘fully folded’—there are two b edges entering
the same vertex (the endpoint of the red arrow). So fold these edges together
also, to get a graph Y ′′. Note that each fold decreases the number of edges, so
this procedure cannot go on forever.

At last the graph Y ′′ is fully folded: each vertex has at most one edge of a
given label entering or leaving it. Thus we can add more edges to get a covering

space Y
′′

of X:
We have also numbered the vertices of this graph, to yield a group homo-
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Y ′′ :

a a

ab

b

a

b

a b

b

b

Y
′′

:

a a

ab

b

a

b

a b

b

b
a

a

a

b

b
b

a

1

2 3 4 5

6 7 8

9

morphism F → S9 which shows that 〈S〉 6= F .

a 7→ (1 7 9)(2 3 4)(5)(6)(8), b 7→ (1 4 5 8)(2 3 7 6)(9)

a3 7→ id, ab2aba−1 7→ (1)(2 4 7 3 9 8)(5 6), ab−1ab3 = (1)(2)(3)(4 7 8)(5 6 9)

Again the image of S is contained in the stabiliser of 1, so the image of F is not
equal to the image of 〈S〉.

And what would happen if our set S actually did generate F? The only way
the construction above fails to give a finite quotient distinguishing 〈S〉 from F
is if the graph we obtain after folding as much as possible only has one vertex:
then the fact that the image of S stabilises the starting vertex tells us nothing.
A fully folded graph with one vertex must be a subgraph of X: so we find that
〈S〉 is actually the subgroup generated by some subset of the given generating
set of F . So either 〈S〉 = F or we find that F/〈〈S〉〉 is a free group on the
remaining generators: and picking any non-trivial finite quotient of the latter
group will give a finite quotient of F witnessing that S does not generate F .

Finally, what if we have, as in the statement of Marshall Hall’s Theorem a
specific element g /∈ 〈S〉 which we wish to see in a finite quotient? We essentially
combine Examples 3.2.6 and 3.2.12.

Example 3.2.13. Take the set S from Example 3.2.12 and let g = a−1ba. In
our original covering space we have a−1ba ∈ stab(1), so we do not immediately
see that a−1ba /∈ 〈S〉. Instead we can add this element as a line segment in
the original diagram, and then follow the same procedure of folding and adding
edges to find a finite quotient which does the correct job.
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Y :

a

a

a

a
b

b

a
b

a a

b
a

b

b
b

a

b a

Y
′′

:

a a

ab

b

a

b

a b

b

b
a

a

a

b
b

a

b a

b a

1

2 3 4 5

6 7 8

9 10 11

Figure 3.4: Modification of Example 3.2.12 to show additionally that a−1ba /∈
〈S〉; we now have a−1ba : 1 7→ 11, so this element lies outside the stabiliser of 1.

The missing ingredient to make all this rigorous is the statement that a
Stallings fold does not change the image of the fundamental group in π1X.
This sort of proposition is really a technical lemma about the fundamental
group and thus not really part of this course, but a proof is included in these
notes for completeness.

Proposition 3.2.14 (Non-examinable). Let Y and X be connected graphs and
let f : Y → X be a graph morphism. Let v0 be a vertex in Y and let f(v0) = x0.
Suppose we have a vertex u ∈ Y and two (oriented) edges ε, ε′ starting at u such
that f(ε) = f(ε′). Form a new quotient graph Y ′ by identifying ε with ε′, and
let p : Y → Y ′ and f ′ : Y ′ → X be the quotient maps. Then p∗ : π1(Y, v0) →
π1(Y ′, p(v0)) is a surjection and the images of π1(Y, v0) and π1(Y ′, p(v0)) in
π1(X,x0) are equal.

Proof. The second part follows from the first, by considering the commuting
diagram

π1(Y, y0) π1(X,x0)

π1(Y ′, p(y0))

f∗

p∗ f ′∗

As for the first part, the surjectivity of p∗, let l be a cycle in Y ′ given by edges
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ẽi ẽi+1

ε ε′
p−→

ei ei+1

p(ε) = p(ε′)

Figure 3.5: Diagram for Proposition 3.2.14

e1 · · · en. We will lift l to a loop in Y . For each i choose a preimage ẽi of ei
in Y . Let o(e) and t(e) denote the start and end points of an oriented edge e
in a graph. Then we have p(o(ẽi)) = p(t(ẽi+1)) for all i. There is at most one
vertex of Y ′ with two preimages in Y : the image of t(ε) and t(ε′). So we have
o(ẽi) = t(ẽi+1) except possibly if o(ẽi) = t(ε) and t(ε′) = t(ẽi+1) (or vice versa).
In this case we add two edges to our proposed path to join up the endpoints of
ei and ei+1:

ẽiẽi+1  ẽiε
−1ε′ẽi+1

Performing this operation for each i where it is necessary we get a valid cycle
in Y . The image of this loop in Y ′ is equal to e1 · · · en, with possibly the
interpolation of some segments ε−1ε′. But since by definition p(ε) = p(ε′) this
path is clearly homotopic to l. Hence p∗ is a surjection on fundamental groups.



Chapter 4

Pro-p groups

In this chapter we will consider a certain class of profinite groups in more detail:
the pro-p groups. Recall that these are inverse limits of finite groups all of whose
orders are powers of a fixed prime p. These groups are substantially better
behaved than a general profinite group. In fact we shall see that they can even
be better behaved than abstract groups. We start this discussion by considering
their generation properties—we will find that after all the hard work to study
whether a set generates an abstract free group in the last chapter, deciding the
same question for a pro-p group amounts to nothing more than linear algebra!

4.1 Generators of pro-p groups

Definition 4.1.1. Let G be a finite group. The Frattini subgroup of G, denoted
Φ(G), is the intersection of all maximal proper subgroups of G.

Remark 4.1.2. There is nothing particularly preventing us from defining this for
all groups rather than just finite ones; but the theory for finite groups is more
sensible because any proper subgroup is then contained in a maximal proper
subgroup. This is not necessarily true for infinite groups.

Proposition 4.1.3. If f : G → H is a surjective map of finite groups then
f(Φ(G)) ⊆ Φ(H). Hence Φ(G) is a characteristic normal subgroup of G.

Proof. Let M be a maximal proper subgroup of H. We claim f−1(M) is a
maximal proper subgroup of G. Properness follows from surjectivity of f . If
f−1(M) ( G′ ⊆ G then M ( f(G′) = H. Then G = G′ · ker(f) = G′ since
ker(f) ⊆ G′. For any g ∈ Φ(G) we thus have f(g) ∈ M for all M , so that
g ∈ Φ(H).

Proposition 4.1.4. For G a finite group and a subset S ⊆ G, the following are
equivalent:

(i) S generates G;

(ii) SΦ(G) generates G;

(iii) the image SΦ(G)/Φ(G) of S in G/Φ(G) generates G/Φ(G).

55
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Proof. It is immediate that (i)⇒(ii)⇒(iii). Let us abbreviate Φ = Φ(G). It
remains to show that if SΦ/Φ generates G/Φ then S generates G. But if S
does not generate G, then 〈S〉 is contained in some maximal proper subgroup
M ⊆ G. Since Φ ⊆ M , we have SΦ/Φ ⊆ M/Φ ( G/Φ, so that the image of S
does not generate G/Φ(G).

Note that the implication ‘〈S〉 is proper, hence is contained in some maximal
proper subgroup M ’ uses the hypothesis that G is finite.

Such a proposition is of course of little value when the Frattini subgroup
is trivial (as it often is, e.g. for any finite simple group). However, for finite
p-groups the Frattini subgroup does give valuable information.

Definition 4.1.5. Let G be a group and let H and K be subgroups of G. Let
m be an integer. Define

[H,K] = 〈{[h, k] : h ∈ H, k ∈ K}〉, Hm = 〈{hm : h ∈ H}〉

and define HK to be the set

HK = {hk : h ∈ H, k ∈ K}.

Note that [H,K] and Hm are forced to be subgroups by definition (they are
the subgroups generated by the given sets); while HK is a set, which need not
always be a subgroup. If either H or K is normal in G then HK is indeed a
subgroup of G. Note also that HH = H; the multiplication notation does not
imply statements such as HH = H2.

Proposition 4.1.6. If H is a normal subgroup of G then Hm is a normal
subgroup of G for each m ∈ Z. If H and K are normal subgroups of G then
HK and [H,K] are normal in G.

Proposition 4.1.7. Let G be a finite p-group. Then

Φ(G) = [G,G]Gp = ker
(
G→ Gab → Gab/pGab

)
Hence G/Φ(G) is isomorphic to Fdp where d is the minimal size of a generating
set of G.

The usual notation for the group Gab/pGab, the mod-p abelianisation of G,
is H1(G,Fp). This notation will not be put on a very concrete basis in this
course, but should be reminiscent of Algebraic Topology, where for a connected
simplicial complex X one has H1(X) ∼= (π1X)ab. We will be meeting the dual
vector space H1(G,Fp) later in the course.

Proof. To be completed on the Exercise Sheet.

Thus Proposition 4.1.4 reduces the question of generation for a finite p-group
essentially to linear algebra: does a given set of vectors generate the Fp-vector
space Gab/pGab?

We may also define the Frattini subgroup of a profinite group.

Definition 4.1.8. Let G be a profinite group. Define

Φ(G) =
⋂
{M : M is a maximal proper closed subgroup of G}.
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The first thing we do is replace ‘closed subgroups’ in this definition with ‘open
subgroups’. This doesn’t imply that Φ(G) is necessarily open, as the intersection
above may involve infinitely many M . However, being an intersection of closed
subgroups, Φ(G) is always closed.

Proposition 4.1.9. Any proper closed subgroup of a profinite group G is con-
tained in a proper open subgroup. Hence maximal closed subgroups of G are
open, and any proper closed subgroup is contained in a maximal proper closed
subgroup.

Proof. Let H ≤ G be a proper closed subgroup. Then (by Corollary 1.2.30)
there exists a finite quotient p : G → Q such that p(H) 6= Q. Then p−1(p(H))
is a proper open subgroup of G containing H.

It follows immediately that maximal proper closed subgroups are open. Any
proper open subgroup is contained in a maximal proper open subgroup since
open subgroups have finite index, hence any proper closed subgroup is contained
in a maximal proper closed subgroup.

The following propositions are now identical to Propositions 4.1.3 and 4.1.4.

Proposition 4.1.10. Let f : G→ H be a surjective continuous homomorphism
of profinite groups. Then f(Φ(G)) ⊆ Φ(H).

Proof.

Proposition 4.1.11. For G a profinite group and a subset S ⊆ G, the following
are equivalent

(i) S topologically generates G;

(ii) SΦ(G) topologically generates G;

(iii) the image SΦ(G)/Φ(G) of S in G/Φ(G) topologically generates G/Φ(G).

It wouldn’t be a profinite groups lecture without having an inverse limit
proposition. The theory of Frattini subgroups is no exception.

Proposition 4.1.12. Let (Gj)j∈J be a surjective inverse system of finite groups,
and let G = lim←−Gj. Then Φ(G) = lim←−Φ(Gj).

Proof. Let pj : G→ Gj be the quotient maps. By Proposition 4.1.10 we have

pj(Φ(G)) ⊆ Φ(Gj)

for all j, hence Φ(G) ⊆ lim←−Φ(Gj).
Next let M be a maximal proper closed subgroup of G. Since M is open,

by Proposition 1.2.28 there is some i such that ker pi ⊆ M . We also then have
ker pj ⊆M for all j � i. Then pj(M) is a maximal proper subgroup of Gj for all
j � i, so that Φ(Gj) ⊆ pj(M) for all j � i. Hence lim←−Φ(Gj) ⊆ lim←− pj(M) = M .
Since this holds for all M , we have lim←−Φ(Gj) ⊆

⋂
M = Φ(G).

For finitely generated pro-p groups, the question of generation thus comes
down to linear algebra: deciding whether a certain family of vectors spans a
vector space (over the field Fp).
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Proposition 4.1.13. Let G be a topologically finitely generated pro-p group.
Then H1(G,Fp) := G/Φ(G) ∼= Fdp where d is the minimal size of a topological
generating set of G; and

Φ(G) = [G,G]Gp.

Proof. Write G as a surjective inverse limit of finite p-groups G = lim←−Gj . We
already know Φ(G) = lim←−[Gj , Gj ]G

p
j by Propositions 4.1.7 and 4.1.12. For any

element of G of the form [g1, g2]gp3 we have

pj([g1, g2]gp3) = [pj(g1), pj(g2)]pj(g3)p ∈ [Gj , Gj ]G
p
j

so [G,G]Gp ⊆ Φ(G) and hence [G,G]Gp ⊆ Φ(G) since Φ(G) is closed.
Now G/[G,G]Gp is abelian, topologically finitely generated and every ele-

ment has order p, hence1 G/[G,G]Gp ∼= Fdp for some d. Since Φ(Fdp) = {0} we

have Φ(G) ⊆ [G,G]Gp by Lemma 4.1.10. Hence Φ(G) = [G,G]Gp as required.
Since a subset of G topologically generates G if and only if it generates

G/Φ(G), we find that the minimal size of a topological generating set for G is
d.

Corollary 4.1.14. Let f : G → H be a continuous homomorphism of topolog-
ically finitely generated pro-p groups. Then f(Φ(G)) ⊆ Φ(H), hence f induces
a group homomorphism (i.e. linear map of Fp-vector spaces) f∗ : G/Φ(G) →
H/Φ(H) and f is surjective if and only if f∗ is surjective.

Proof. For any element of G of the form [g1, g2]gp3 we have f([g1, g2]gp3) ⊆
[H,H]Hp = Φ(H). These elements topologically generate Φ(G), hence f(Φ(G))
is contained in Φ(H). Then Φ(G) is contained in the kernel of the map G →
H → H/Φ(H), and there is an induced map f∗ : G/Φ(G)→ H/Φ(H).

If f is surjective then f∗ is clearly surjective. If f∗ is surjective then f(G)
topologically generates H/Φ(H), hence it topologically generates H. But f(G)
is closed in H so f(G) = H.

Remark 4.1.15. It is actually necessary to use the characterisation Φ(G) =
[G,G]Gp here rather than just the defining property of Frattini subgroups. For
example, the Frattini subgroup of the symmetric group S5 is trivial (the only
proper normal subgroups are A5 and 1; but stab(1) ≤ S5 is a maximal subgroup
not containing A5, so A5 cannot be Φ(S5)). Let G = Z/4Z and map f : G→ S5

by sending a generator of G to the 4-cycle (1 2 3 4). Then Φ(G) = 〈2〉 ≤ Z/4Z,
and f(Φ(G)) * Φ(S5) = {1}, so there is no induced map G/Φ(G)→ S5/Φ(S5).

4.2 Nilpotent groups

One important character of p-groups is that they are nilpotent—meaning that
eventually, iterated commutators vanish. We have used this implictly in the
past, but it is valuable to quantify it properly as we will exploit nilpotence in
the main theorem of the chapter.

1If S generates a dense subgroup of such a group, then 〈S〉 is abelian, finitely generated
and every element has order p—so 〈S〉 is abelian, and a profinite group with a dense finite
subgroup is finite.
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Definition 4.2.1. Define the lower central series of a group G to be the fol-
lowing sequence of subgroups. Let G1 = G. For n ≥ 1 define Gn+1 = [G,Gn]
to be the subgroup of G generated by the elements

{[g, h] : g ∈ G, h ∈ Gn}

The lower central series is often denoted Gn = γn(G).
A group Γ is nilpotent of class c if Gc+1 = {1} and Gn 6= {1} for n ≤ c.

A key part of the power of the lower central series is that it is fully charac-
teristic: for any group homomorphism f : G→ H, we have f(γn(G)) ⊆ γn(H).
You will prove this, and the next two propositions, on the exercise sheet.

Lemma 4.2.2. The lower central subgroup γn(G) is a fully characteristic sub-
group of G. If f : G→ H is surjective then f(γn(G)) = γn(H).

Proof. Exercise.

Proposition 4.2.3. Subgroups and quotients of nilpotent groups are nilpotent.

Proof. Exercise.

Proposition 4.2.4. A finite p-group is nilpotent.

Proof. Proceed by induction. An abelian p-group is certainly nilpotent. Let G
be a p-group and assume that all smaller p-groups are nilpotent. Take z ∈ Z(G).
Then G/〈z〉 is nilpotent by hypothesis, hence γc+1(G/〈z〉) = 1 for some c. Hence
γc+1(G) ⊆ 〈z〉. But now

γc+2(G) = [G, γc+1(G)] ⊆ [G, 〈z〉] = 1

since z is central. Hence G is nilpotent also.

Another important class of nilpotent groups are given by certain matrix
groups.

Example 4.2.5. Let R be a commutative ring with identity. Let UT (m,R) be
the group of upper triangular matrices over R whose diagonal entries all equal
1. That is,

UT (m,R) =




1 ∗ ∗ · · · ∗
0 1 ∗ · · · ∗
0 0 1 · · · ∗
...

...
...

. . .
...

0 0 0 · · · 1




⊆ GLm(R).

Then UT (n,R) is nilpotent.

Proof (non-examinable). Let Zn be the set of m ×m matrices A = (aij) over
R such that aij = 0 for j − i < n, and let Hn = {I + A | A ∈ Zn}. Then
H1 = UT (n,R) and Hn ⊇ Hn+1 for all n. Also note Hm = {I}.

An elementary calculation shows that if A ∈ Zk and B ∈ Zl then AB ∈ Zk+l:
for every 1 ≤ r ≤ m, either j − r < l or r − i < k or j − i ≥ k + l, so

(AB)ij =
∑
r

airbrj = 0 if j − i < k + l



CHAPTER 4. PRO-P GROUPS 60

We prove by a ‘top-down’ induction that Hn is a subgroup. The only tricky
part is to show that inverses of elements of Hn lie in Hn. This is certainly true
for Hm = {I}. If A = (aij) ∈ Zn for n ≥ 1 then

((I +A)(I −A))ij = I +A−A−A2 = I −A2

and A2 ∈ Z2n. Since 2n > n, by induction we have (I − A2)−1 ∈ H2n and
(I+A)−1 = (I−A)A′ for some A′ ∈ H2n. Equivalently we may write (I+A)−1 =
I −A+A′′ for some A′′ ∈ Z2n.

Let I+A ∈ H1 and let I+B ∈ Hn. We will show that [I+A, I+B] ∈ Hn+1.
For, taking A′′ ∈ Z2 and B′′ ∈ Z2n as above, we have

(I +A)(I +B)(I +A)−1(I +B)−1

= (I +A)(I +A)−1(I −B +B′′) + (I +A)B(I −A+A′′)(I −B +B′′)

= I −B +B′′ +B +B(−A+A′′)(I +B)−1 +AB(I +A)−1(I +B)−1

= I +B′′ +B(−A+A′′)(I +B)−1 +AB(I +A)−1(I +B)−1︸ ︷︷ ︸
∈Zn+1

It now follows by induction that γn(UT (m)) ⊆ Hn, and since Hm = 1, we find
that UT (m) is indeed nilpotent.

Analogously to the lower central series of a general nilpotent group, one may

also define the lower central p-series γ
(p)
n (G) = Gn of a pro-p group G by

G1 = G, Gn+1 = [G,Gn]Gpn.

For topologically finitely generated pro-p groups this is a neighbourhood basis
of the identity in G, which is very well behaved: the quotients Gn/Gn+1 are all
vector spaces over Fp. The lower central p-series is also defined uniformly over
all pro-p groups, which can make it highly useful for applications. It will play a
key role in the penultimate theorem of the course.

Proposition 4.2.6. Let G be a finite p-group. Then γ
(p)
n (G) = 1 for some n.

Proof. Proceeds exactly as the proof that G is nilpotent.

Proposition 4.2.7. Let G be a topologically finitely generated pro-p group.

Then γ
(p)
n (G) is finitely generated and open in G.

Proof. Proceed by induction. For each n, we clearly have

Φ(γ(p)
n (G)) ⊆ γ(p)

n+1(G).

By Proposition 4.1.13, the Frattini subgroup of a finitely generated pro-p group

is open, hence the same is true of γ
(p)
n+1(G); and open subgroups are topologically

finitely generated.

Proposition 4.2.8. Let G be a topologically finitely generated pro-p group.

Then {γ(p)
n (G)} is a neighbourhood basis of the identity of G.

Proof. Let N be any open subgroup of G. Then G/N is a finite p-group, hence

γ
(p)
n (G/N) = 1 for some n; it follows that γ

(p)
n (G) ⊆ N .
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4.3 Invariance of topology

In this section we will prove the following theorem, originally due to Serre, which
shows that our insistence on considering continuous homomorphisms was not in
fact a restriction at all!

Theorem 4.3.1. Let G be a topologically finitely generated pro-p group and let
H be a profinite group. Any group homomorphism G→ H is continuous.

Corollary 4.3.2. Let G be a topologically finitely generated pro-p group. Then
there is no other topology on G making it into a profinite group.

Remark 4.3.3. We will prove this theorem for pro-p groups. It is in fact true for
all finitely generated profinite groups, by a remarkable and difficult theorem of
Nikolay Nikolov and Dan Segal.

First we must establish several lemmas and preliminary results about pro-p
groups, which showcase much of the interplay between topology and algebra
which makes the theory of profinite groups so rich.

Proposition 4.3.4. Let G be a pro-p group and let K be a subgroup of finite
index of G. Then [G : K] is a power of p.

Proof. We may as well assume, by passing to a core, thatK is a normal subgroup
of G.

Let [G : K] = m = prm′ where m′ is coprime to p. Let X = {gm : g ∈ G} ⊆
K. Being the image of G under the continuous function g 7→ gm, the set X is
compact and closed. Thus (by Proposition 1.2.32)

X = X =
⋂
N/oG

XN.

We will show that gp
r ∈ K for every g ∈ G, from which it follows by Cauchy’s

Theorem applied to G/K that K has index a power of p as required. So let
g ∈ G.

Let N /o G be any normal open subgroup of G. Let [G : N ] = ps and let

t = max(r, s). Then we have gp
t ∈ N and hcf(pt,m) = pr. Hence there exist

a, b ∈ Z such that am+ bpt = pr. Then

gp
r

= (ga)m · (gp
t

)b ∈ XN

This is true for every N , hence we find

gp
r

∈
⋂
XN = X = X ⊆ K

as required.

Lemma 4.3.5. Let G be a nilpotent group with a finite generating set a1, . . . , ad.
Then every element g of the commutator subgroup [G,G] may be written in the
form

g = [a1, x1] · · · [ad, xd]

for some x1, . . . , xd ∈ G.



CHAPTER 4. PRO-P GROUPS 62

Proof. We induct on the nilpotency class c of G. The base case c = 1 (that is,
when G is abelian) is trivial.

By induction, then, the result is true in G/γc(G), so that there exist x1,...,
xd in G and u ∈ γc(G) such that

g = [a1, x1] · · · [ad, xd] · u

We now seek a nice form for u ∈ γc(G) = [G, γc−1(G)]. Using the usual com-
mutator relations

[xy, z] = [x, z]y[y, z], [x, yz] = [x, z][x, y]z

(for the convention [x, y] = x−1y−1xy), we find that for any v ∈ γc−1(G) and
w ∈ G, the following hold:

[ai, v][aj , v] = [aiaj , v], [ai, v][ai, v] = [ai, v
2]

[a−1
i , v] = [ai, v]−1 = [ai, v

−1] [ai, w][ai, v] = [ai, vw]

Note here that any commutator [−, v] lies in γc(G) and is therefore central in
G.

Using these relations, the element u ∈ [G, γc−1(G)], which is by definition of
the form [g1, v1] · · · [gr, vr] where vi ∈ γc−1(G) and gi ∈ G (so that the gi may
be written as products of the ai and their inverses), can be re-written into the
form [a1, v

′
1] · · · [ad, v′d] for v′i ∈ γc−1(G).

Then we have

g = [a1, x1] · · · [ad, xd] · [a1, v
′
1] · · · [ad, v′d]

and, using the above relations again, we find

g = [a1, x1v
′
1] · · · [ad, xdv′d]

as required.

Proposition 4.3.6. If G is a topologically finitely generated pro-p group, then
[G,G] is closed in G.

Proof. Let a1, . . . , ad be a topological generating set for G and let

X = {[a1, x1] · · · [ad, xd] : x1, . . . , xd ∈ G}

Note thatX is a compact and closed, being the image ofGd under the continuous
function

(x1, . . . , xd) 7→ [a1, x1] · · · [ad, xd]
We will show that X = [G,G], so that [G,G] is indeed closed. Certainly it is
true that X ⊆ [G,G].

Let g ∈ [G,G]. For any N /o G, the image gN of g in G/N is in the com-
mutator subgroup [G/N,G/N ]. Since G/N is finite nilpotent, and is generated
by the images of the ai, the previous lemma shows that gN lies in the image of
X—that is, g ∈ XN . This is true for all N , whence

g ∈
⋂
N/oG

XN = X = X

as required.
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Proposition 4.3.7. If G is a topologically finitely generated pro-p group, then
[G,G]Gp is open and closed in G and equals Φ(G).

Proof. Let G{p} = {gp : g ∈ G}, which is a (perhaps proper) subset of Gp. Now,
G/[G,G] is an abelian group, and in an abelian group products of pth powers
are again pth powers (i.e. apbp = (ab)p in an abelian group). It follows that
[G,G]G{p} = [G,G]Gp. The set [G,G] is closed by the previous proposition,
and is hence compact since G is compact. Then [G,G]G{p} is also compact: it
is the image of the continuous map

[G,G]×G→ G, (x, g) 7→ xgp

Hence [G,G]Gp is indeed closed. It follows that it equals the Frattini subgroup
Φ(G) = [G,G]Gp, which is already known to be open.

Theorem 4.3.8. Let G be a topologically finitely generated pro-p group. Then
any finite index subgroup K of G is open.

Proof. Suppose the theorem is not true, and let G and K be a pair providing a
counterexample of minimal index. It suffices to consider K normal: any finite-
index subgroup contains a finite-index normal subgroup, and if a subgroup of
G contains an open subgroup then it is itself open.

Consider M = [G,G]GpK. Now, G/K is a non-trivial p-group, and the
image of M in G/K is the Frattini subgroup Φ(G/K), which is a proper sub-
group of G/K. Hence M is a proper subgroup of G. If K 6= M , then by the
minimality hypothesis we must have K open in M and M open in G, so that
K is open in G. Otherwise, we have K = M , so that K contains the subgroup
[G,G]Gp—which is open by the previous proposition. Hence K itself is open
too.

Proof of Theorem 4.3.1. Let f : G→ H be a group homomorphism from a topo-
logically finitely generated pro-p group to a profinite group. Let U /o H be a
basic open subgroup of H. Then U is finite index in H, so f−1(U) is finite
index in G. By the previous theorem, any finite index subgroup of G is open,
so f−1(U) is open and f is continuous.

Proof of Corollary 4.3.2. If G is a topologically finitely generated pro-p group,
then by the above all finite index subgroups of G are open. If T is any topology
making the abstract group G into a profinite group G̃, then all the open sub-
groups have finite index—so the identity map G → G̃ is continuous. Since G
is compact and G̃ is Hausdorff, this map is also a homeomorphism and we are
done.

4.4 Hensel’s Lemma and p-adic arithmetic.

Consider the old argument that 2 has no square root in the rational numbers.

Assume m/n is a square root of 2 given as a fraction in lowest terms.
Then m2 = 2n2. Since 2 is prime, we find 2 divides m so that m =
2m′. Then n2 = 2m′2 and 2 divides n as well, giving a contradiction.
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What may this mean for arithmetic over the p-adic integers, for p a prime not
equal to 2? In Zp we no longer have any statement that ‘2 is prime’, or anything
like it: indeed 2 is invertible in Zp for p 6= 2. So no argument similar to the
one above could be used to show that 2 is not a square in Zp. In fact, as we
will discover, whether 2 is a square depends on the prime chosen: for instance,
2 has no square root in Z3 or Z5, but does have a square root in Z7.

Remark 4.4.1. In the last paragraph we switched from discussing ‘rational roots’
to ‘integer roots’. The reason is the simple fact (which you should convince
yourself of) that for x ∈ Qp, x2 ∈ Zp if and only if x ∈ Zp.

What should by now be a routine exercise in inverse limits gives a starting
point for the solution of polynomials in Zp.

Lemma 4.4.2. Let f(x) be a polynomial with coefficients in Zp. Then f has a
root in Zp if and only if the reduction of f modulo pk has a root in Z/pkZ for
all k.

Proof. Exercise.

A remarkable fact about the p-adic integers is that quite often we need not
check any of the Z/pkZ except the first, through a process sometimes called
‘Hensel lifting’. Let us see an example.

Example 4.4.3. Modulo 7 we have 32 = 9 ≡ 2, so the polynomial x2 = 2 has
a root in Z/7Z. Let us try to ‘lift’ this root to a root in Z/72Z. Consider the
elements 3 + 7a ∈ Z/49Z—those which map to 3 modulo 7. We have

(3 + 7a)2 = 9 + 7 · 2 · 3 · a+ 49a2 ≡ 2 + 7(1 + 6a) ≡ 2 + 7(1− a) mod 49

Therefore setting a = 1 gives a root modulo 49 (and indeed (3 + 7)2 = 100 ≡ 2
modulo 49).

The key point here is that the (7a)2 term vanished modulo 49, leaving us
with a linear equation 1+6a = 0 to be solved in Z/7Z. It is also important that
the cofficient of a here is invertible in Z/7Z (that is, non-zero) so that there is
a (unique) solution for a. There is nothing to stop us performing this operation
again to find a root of 2 modulo 73 = 343, or indeed modulo any 7k.

Example 4.4.4. To find a square root of 2 in Z/343Z: take the square root 10
of 2 in Z/49Z and consider the elements 10 + 72a. We have

(10 + 72a)2 = 100 + 72 · 20 · a+ 74a2 ≡ 2 + 72(2 + 6a)

So setting a = 2 gives a root modulo 343; specifically we find that 1082 ≡ 2
modulo 343.

Let us turn this method into a theorem.

Proposition 4.4.5 (Hensel’s Lemma for square roots). Let p 6= 2 be a prime.
Suppose that λ ∈ Zp is congruent to a non-zero square r2

1 modulo p, for r1 ∈ Z.
Then there is a unique ρ ∈ Zp such that ρ2 = λ and ρ ≡ r1 modulo p.

Proof. We construct a sequence of elements rk ∈ Z, unique modulo pk, such
that r2

k ≡ λ modulo pk and rk+1 ≡ rk modulo pk. The second condition shows
that (rk) is a Cauchy sequence in Zp, and thus converge to some unique ρ ∈ Zp;
the first then says ρ2 = λ.
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Suppose we have constructed rk. Consider the elements rk + pka for 0 ≤
a ≤ p− 1; these represent all the elements of Z/pk+1Z which are congruent to
rk modulo pk. Since r2

k ≡ λ modulo pk we can write r2
k = λ + bkp

k for some
bk ∈ Zp. We have

(rk + pka)2 = r2
k + pk · 2rka+ p2ka2 ≡ λ+ pk(bk + 2rka) modulo pk+1.

Since 2rk 6= 0 in Fp there is a unique a such that bk + 2rka ≡ 0 modulo p; for
this value ak of a we set rk+1 = rk + pkak and have r2

k+1 ≡ λ modulo pk+1 as
required.

Remark 4.4.6. When actually implementing this in practice, it is worth noting
that the value of rk only matters modulo pk; it may help to change it modulo
pk to ease computation.

With this preliminary lemma out of the way, we can establish the true
Hensel’s Lemma.

Proposition 4.4.7 (Hensel’s Lemma). Let f(x) be a polynomial with coeffi-
cients in Zp, for p a prime. Let r ∈ Zp such that f(r) ≡ 0 modulo pK for
some K and f ′(r) 6≡ 0 modulo p. Then there exists a unique ρ ∈ Zp such that
f(ρ) = 0 and ρ ≡ r modulo pK .

Remark 4.4.8. Here f ′(x) is the formal derivative of f(x). There is no analysis

happening here: we simply define the derivative of a polynomial
∑N
n=0 anx

n to
be
∑
nanx

n−1.

Lemma 4.4.9. Let f(x) be a polynomial with Zp-coefficients. Then for r, a ∈ Zp
and k ≥ 1 we have

f(r + pka) ≡ f(r) + pkaf ′(r) modulo pk+1

Proof. Since the statement is linear in f , it suffices to prove it for f(x) = xn.
Using the binomial formula we have

(r + pka)n = rn + npkarn−1 +

n∑
i=2

(
n
i

)
pkiairn−i

Now simply note that each term in the sum on the right hand side has a factor
p2k, hence also a factor pk+1.

Proof of Hensel’s Lemma. We construct a sequence rk ∈ Zp for k ≥ K, starting
with rK = r, and such that rk+1 ≡ rk modulo pk and f(rk) ≡ 0 modulo pk.
The first condition ensures that (rk) is a Cauchy sequence in Zp, converging to
some ρ ∈ Zp; and the second condition ensures that f(ρ) = 0. Each rk will be
unique modulo pk, so that ρ is unique with these properties.

Suppose that we have constructed rk. Consider the elements rk + pkak for
ak = 0, . . . , p − 1, which give representatives for all elements of Z/pk+1 which
are congruent to rk modulo pk. By construction f(rk) ≡ 0 modulo pk, so that
f(rk) = pkbk for some bk ∈ Zp. We have

f(rk + pkak) ≡ f(rk) + pkakf
′(rk) ≡ pk(bk + akf

′(r)) modulo pk+1

where we note that f ′(rk) ≡ f ′(r) modulo p. Since f ′(r) is non-zero in Fp, it is
invertible, so there exists a unique ak such that bk + akf

′(r) ≡ 0 modulo p. For
this value of ak set rk+1 = rk + pkak. Then f(rk+1) ≡ 0 modulo pk+1 and we
are done.
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Example 4.4.10. Find a primitive cube root of unity modulo 73 = 343.

Solution. Modulo 7 we have 23 ≡ 1. Let us find r3 such that r3
3 ≡ 1 modulo 343

and r3 ≡ 2 modulo 7. Take f(x) = x3−1. We have r1 = 2 and r3
1−1 = 8 = 1+7

so that b1 = 1. Note that f ′(r1) = 12 ≡ 5 6≡ 0 modulo 7, so we may apply
Hensel lifting. We solve b1 + f ′(r1)a1 = 1 + 5a1 = 0 in F7 to find a1 = 4.

Set r2 = 2 + 4 · 7 = 30. Then f(r2) = 303 − 1 = 26999 = 551 · 49, so
b2 = 551 ≡ 5 modulo 7. We solve b2 + f ′(r1)a2 ≡ 0 modulo 7 to find a2 = −1.
Then r3 = r2 + 49 · a2 = −19 is a cube root of 1 modulo 343. You may check if
you like that (−19)3 = −6859 = 1 + (−20) · 343.

One can interpret Hensel’s Lemma, for polynomials xn−a, as using the ring
structure of Zp to solve equations xn = a in the group Z×p . Another key family of
pro-p groups sitting inside a similar ring structure are the pro-p matrix groups.

Definition 4.4.11. Define the following closed subgroups of GLN (Zp).

GL
(k)
N (Zp) = ker(GLN (Zp)→ GLN (Z/pkZ))

SL
(k)
N (Zp) = ker(SLN (Zp)→ SLN (Z/pkZ))

Proposition 4.4.12. The groups GL
(1)
N (Zp) and SL

(1)
N (Zp) are pro-p groups.

Remark 4.4.13. The group GLN (Zp) is not itself a pro-p group, since the quo-
tient group GLN (Fp) has order

|GLN (Fp)| =
N−1∏
k=0

(pN−k − 1) · pN(N−1)/2

and is not a p-group.

Proof. It is clear that GL
(1)
N (Zp) will be the inverse limit of the similarly defined

groups GL
(1)
N (Z/pmZ). Each of these groups has the form

GL
(1)
N (Z/pmZ) = {I + pA | A ∈ MatN×N (Z/pmZ)}

and thus clearly have order pN
2(m−1). Hence GL

(1)
N (Zp) is pro-p.

Since SL
(1)
N (Zp) is a closed subgroup of GL

(1)
N (Zp), it too is a pro-p group.

We can manipulate this group to prove Hensel-type results. For the rest of
this section we assume that p is an odd prime. The prime p = 2 is simply more
annoying, though it does not really cause any fatal complications.

Proposition 4.4.14. The continuous function A 7→ Ap maps GL
(k)
N (Zp) sur-

jectively onto GL
(k+1)
N (Zp) for all k ≥ 1. Furthermore the same is true in

SLN (Zp).

Remark 4.4.15. This map is of course not a group homomorphism.
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Proof. Firstly note that for any r ≥ 1 and any matrix A with coefficients in Zp,
we have

(I + prA)p = I + pr+1A+ pr+2B

for some B; besides I + pr+1A, all other terms in the binomial expansion have
a coefficient

prl
(

p
p− l

)
for l ≥ 2 which always2 has a factor pr+2.

Now let I + pk+1A ∈ GL
(k+1)
N (Zp). We will show inductively the following

statement for all n ≥ k.

There exist matrices Bn and En for n ≥ 1, which may be expressed
as polynomials in A, such that

Bn+1 ≡ Bn mod pn, (I + pkBn)p = I + pk+1A+ pk+n+1En

for all n.

The significance of the condition that the various matrices be polynomials in A
is that they all commute with each other. The first of the displayed conditions
guarantees that the matrices Bn converge in the p-adic toplogy to some B∞;
the second condition then guarantees, upon taking n→∞, that 1 + pkB∞ is a
p-th root of 1 + pk+1A.

To start the construction, take B1 = A. By the above calculation, we find
that

(I + pkA)p = I + pk+1A+ pk+2E1

for some E1. Note that E1 is some polynomial in A, hence commutes with A.
Now assume the inductive hypthesis holds for a given n; we will construct

the required matrices Bn+1 and En+1 for the next step of the induction. Define
Bn+1 = Bn − pnEn. Then, noting that all relevant matrices commute so that
we may apply the binomial formula, we have

(I + pkBn+1)p

= (I + pkBn − pk+nEn)p

= (I + pkBn)p − p(I + pkBn)p−1pk+nEn + (terms divisible by pk+n+2)

= I + pk+1A+ pk+n+1En − pk+n+1En + (terms divisible by pk+n+2)

= I + pk+1A+ pk+n+2En+1

where En+1 is some polynomial in En and Bn, and therefore expressible as a
polynomial in A. This completes the proof of the inductive statement.

We now have our matrix C = 1 + pkB∞ such that Cp = A.
For the ‘Furthermore’ part it remains to show that if A has determinant 1

then C has determinant 1, so that it lies in SLN (Zp) rather than GLN (Zp). Let
κ = detC ∈ Z×p . We have κp = 1—but by Question 10 on Exercise Sheet 3 there
are no order p elements of Z×p ∼= Zp × Cp−1. Hence detC = 1 as required.

The following is an elementary calculation.

2Except if p = 2, r = 1 and l = 2—hence our exclusion of the case p = 2.
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Lemma 4.4.16. Let A and B be N ×N matrices over Zp. Then

(I + pkA)(I + pkB) ≡ (I + pkB)(I + pkA) ≡ I + pk(A+B) mod pk+1

Proposition 4.4.17. For all k, we have

Φ(GL
(k)
N (Zp)) = GL

(k+1)
N (Zp)

and
GL

(k)
N (Zp)/GL

(k+1)
N (Zp) ∼= FN

2

p

Proof. By the previous proposition, we know that each element of GL
(k+1)
N (Zp)

is a pth power of an element of GL
(k)
N (Zp), hence is contained in the Frattini

subgroup. The Lemma now shows that GL
(k)
N (Zp)/GL

(k+1)
N (Zp) is an abelian

group, which we know to have exponent p, and is thus a vector space Fdp for
some d. It is generated by the set of matrices

I + pkEi,j

where Ei,j has zero entries except for a 1 in the (i, j)-position. These matrices

are easily seen to be linearly independent in GL
(k)
N (Zp)/GL

(k+1)
N (Zp), whence

d = N2. Since the Frattini subgroup of FN2

p is trivial, we also have the inclusion

Φ(GL
(k)
N (Zp)) ⊆ GL

(k+1)
N (Zp)

which completes the result.

Corollary 4.4.18. For any k, the function x 7→ xp induces an isomorphism

GL
(k)
N (Zp)/GL

(k+1)
N (Zp)→ GL

(k+1)
N (Zp)/GL

(k+2)
N (Zp)

Proof. By Proposition 4.4.14, this map is surjective. By the lemma it is a group
homomorphism, and by the previous proposition the two groups have the same
size. Hence we have an isomorphism as claimed.

Theorem 4.4.19. Let H be any closed subgroup of GL
(1)
N (Zp). Then d(H) ≤

N2, where d(H) is the minimal size of a generating set of H.

Proof. It is sufficient to show that for all K, every subgroup of

G = GL
(1)
N (Zp)/GL

(K+1)
N (Zp)

may be generated by at most N2 elements. Let H ≤ G, and let

Gm = GL
(m)
N (Zp)/GL

(K+1)
N (Zp) ≤ G,

and let Hm = Gm ∩H. We prove by a top-down induction that d(Hm) ≤ N2.
The base case is

HK ≤ GK = GL
(K)
N (Zp)/GL

(K+1)
N (Zp) ∼= FN

2

p

which immediately implies d(HK) ≤ N2.
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Now assume that d(Hm+1) ≤ N2. Let e be the dimension of

Hm/Hm+1 ≤ Gm/Gm+1
∼= FN

2

p

and take h1, . . . , he ∈ Hm whose images generate Hm/Hm+1. By the above
corollary, we have an isomorphism

Gm/Gm+1
∼= Gm+1/Gm+2

given by raising elements to pth-powers. It follows that hp1, . . . , h
p
e are linearly in-

dependent in Gm+1/Gm+2, and therefore also independent in Hm+1/Φ(Hm+1).
Therefore there exist y1, . . . , yd−e ∈ Hm+1 (where d = d(Hm+1)) such that
Hm+1 is generated by {hp1, . . . , hpe, y1, . . . , yd−e}. By definition of the hi we then
have

Hm = 〈h1, . . . , he〉Hm+1 = 〈h1, . . . , he, y1, . . . , yd−e〉

So d(Hm) ≤ d(Hm+1) ≤ N2 as required.

Corollary 4.4.20 (Non-examinable). There is no continuous injection from a
non-abelian free pro-p group to GLN (Zp) for any N .

Proof. Since open subgroups of free pro-p groups are free, and GL
(1)
N (Zp) is open

in GLN (Zp), it suffices to check for maps into GL
(1)
N (Zp).

If F is a free pro-p group of rank r ≥ 2, then F has open subgroups of index
pn for all n. By a suitably formulated pro-p version of the Basic Correspondence,
such subgroups are free pro-p groups of rank pn(r−1)+1. So a free pro-p group
has subgroups H of arbitrarily high d(H), which cannot all embed into GLN (Zp)
for a fixed N , by the previous theorem.

This should be contrasted with the case for discrete groups, where as already
seen the group SL2(Z) contains a free group.

Remarkably Theorem 4.4.19 almost has a converse. We don’t have time to
prove this in this course, but I will state the theorem for interest’s sake.

Theorem 4.4.21 (Non-examinable). Let G be a pro-p group and suppose there
is an integer R such that d(H) ≤ R for all closed subgroups H of G. Then G
has an abelian normal subgroup A ∼= Zap for some a ≤ R, such that there is a
continuous injection

G/A ↪→ GLR(Zp)× F

for some finite p-group F .



Chapter 5

Cohomology of Groups

In Algebraic Topology you studied the homology theory of topological spaces,
an exceedingly useful theory which essentially translates questions of topology
into questions about abelian groups. In this chapter we will develop the closely
related theory of cohomology of groups. We will not be seeing the word ‘profinite’
for a little while, but will instead develop cohomology theory for discrete groups.
The profinite theory will return at the conclusion of the course with some more
remarkable facts concerning pro-p groups.

Remark 5.0.1. You may be curious why we have ‘homology’ of spaces and ‘co-
homology’ of groups. In truth there is also a cohomology theory of spaces and a
homology theory of groups. However for topological spaces the homology theory
is more natural to define; for groups it is cohomology which is both easier and
more useful.

5.1 Group rings and chain complexes

Throughout let G be an abstract group.

Definition 5.1.1 (Group ring). Let G be a group. The group ring (or some-
times group algebra) of G is the ring ZG defined as follows. The additive group
of ZG is the free abelian group with basis {g : g ∈ G}—so that a generic element
is a finite formal sum

∑
ngg for ng ∈ Z. The ring multiplication is defined on

basis elements by g · h = (gh) and extended bilinearly to all of ZG.

Example 5.1.2. For g, h ∈ G and e the identity element of G, we have

(e+ g)(e− 2h) = e+ g − 2h− 2gh

in the group ring ZG.

Remark 5.1.3. The multiplicative identity of ZG is the basis element e; this is
usually renamed to 1 by convention.

Remark 5.1.4. Warning: this is not a commutative ring, unless G is an abelian
group. In the ‘Groups, Rings and Modules’ course all rings were assumed com-
mutative, but many useful rings are not.

Commutativity notwithstanding, the definition of a module over ZG is iden-
tical to that which you have learned before.

70
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Definition 5.1.5. A (left) G-module (or ZG-module) is an abelian group M
equipped with a G-action—a function ZG×M →M , (r,m) 7→ r ·m such that

r·(m1+m2) = r·m1+r·m2, (r1+r2)·m = r1·m+r2·m, r1·(r2·m) = (r1r2)·m.

A module has trivial G-action if g ·m = m for all g ∈ G,m ∈M .

Definition 5.1.6. Let M1 and M2 be G-modules. A morphism of G-modules
(or G-linear map) is a group homomorphism α : M1 →M2 such that α(r ·m) =
r · α(m) for all m ∈ M1, r ∈ ZG. Note that it suffices to check this condition
for basis elements r = g ∈ G.

Definition 5.1.7. Let M and N be G-modules. Let HomG(M,N) be the
Hom-group: the set of G-linear maps α : M → N , with group operation given
by addition:

(α+ β)(m) = α(m) + β(m)

Taking Hom-groups is in a certain sense a functor, and maps of G-modules
induce maps of Hom-groups in the following way.

Definition 5.1.8. If f : M1 → M2 is a morphism of G-modules then we have
a ‘dual map’

f∗ : HomG(M2, N)→ HomG(M1, N), φ 7→ φ ◦ f

for each G-module N .
Similarly, we use subscript stars to denote ‘induced maps’: if f : N1 → N2

is a G-linear map, then we have a map

f∗ : HomG(M,N1)→ HomG(M,N2), φ 7→ f ◦ φ

for each G-module M .

Submodules, quotient modules, etc. are defined in the natural way.

Definition 5.1.9. Let M be a G-module. A (G-)submodule of M is a subgroup
N ≤ M such that g · n ∈ N for all n ∈ N . If N is a submodule of M , we
may define the quotient module M/N to be the abelian group M/N with the
G-action g · (m+N) = (g ·m) +N .

Definition 5.1.10. A chain complex of G-modules is a sequence of G-modules

Ms Ms−1 · · · Mt+1 Mt
ds ds−1 dt+2 dt+1

such that for every t < n < s we have dndn+1 = 0—that is, im dn+1 ⊆ ker dn.
We may also abbreviate this notationally to ‘a chain complex (Mn, dn)t≤n≤s’.

The chain complex is exact at Mn if im dn+1 = ker dn. The chain complex
is exact, or an exact sequence if it is exact at Mn for all s < n < t. Note that
there is no condition at Ms or Mt.

The homology of the chain complex is the family of abelian groups

Hs(M•) = ker ds, Hn(M•) = ker dn−1/ im dn, Ht(M•) = Mt/ im dt+1

for t < n < s. Note that an exact sequence is one for which Hn(M•) = 0 for
t < n < s.
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Remark 5.1.11. There is no need for the sequence to have finite length; we could
have infinite chains of Mi in one direction (or both).

Example 5.1.12. � Exactness of a sequence

0 M1 M2
α

means that kerα = im(0)—i.e. that α is injective.

� Exactness of a sequence

M1 M2 0α

means that α is surjective.

� An exact sequence of the form

0 M1 M2 M3 0α β

is called a short exact sequence. Here α is injective, β is surjective and
imα = kerβ.

Definition 5.1.13. Given a set X, the free ZG-module on X is the set of finite
formal sums

∑
x∈X rxx where rx ∈ ZG is non-zero for only finitely many x.

The G-action is the obvious one g ·
∑
x∈X rxx =

∑
x∈X(grx)x.

We will use the (slightly non-standard) notation ZG{X}.

Definition 5.1.14. AG-module P is projective if, for every surjective morphism
of G-modules α : M1 � M2 and every morphism β : P → M2 there exists a
morphism of G-modules β̄ : P →M1 such that β̄α = β.

P

M1 M2 0

β̄
β

α

Proposition 5.1.15. Free modules are projective.

Proof. Let ZG{X} be a free module, let α : M1 →M2 be a surjective morphism
of G-modules and let β : ZG{X}. For each x ∈ X choose, using surjectivity of α,
some mx ∈M1 such that α(mx) = β(x). Then define a map β̄ : ZG{X} →M1

by

β̄(
∑

rxx) =
∑

rxmx.

Definition 5.1.16 (Projective resolution). A projective resolution of Z by ZG-
modules is an exact sequence

· · · Fn+1 Fn Fn−1 · · · F0 Z 0
dn+2 dn+1 dn dn−1 d1 d0

where Z has the trivial G-action and each Fn is a projective module.
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At this point we can begin to connect these notions to what you’ve already
seen in topology. Consider a connected simplicial complex X whose universal
cover X̃ is contractible. Let Xn be the set of n-simplices of X. As you know,
the fundamental group G = π1X acts on X̃ and does not fix any points. It
follows that the set of n-simplices of X̃ are in bijection with G × Xn. Thus
the nth simplicial chain group of X̃ is the free ZG-module ZG{Xn}. Then the

simplicial chain complex of X̃ is a chain complex

· · · ZG{Xn+1} ZG{Xn} · · · ZG{X0}
dn+2 dn+1 dn d1

Since X̃ is a connected, contractible space, its homology groups vanish except
for H0(X̃) ∼= Z. So the above sequence, augmented with a map to Z at the end,
is an exact sequence: and is a projective resolution of Z by ZG-modules.

This is a useful source of projective resolutions, for those groups which are
the fundamental group of a suitably nice complex X.

Definition 5.1.17 (Group cohomology). Take a projective resolution

· · · → Fn+1 → Fn → · · · → F0 → Z → 0

of Z by ZG-modules. Let M be a G-module. Take Hom-groups HomG(−,M)
to obtain a sequence

· · · ← HomG(Fn+1,M) HomG(Fn,M) · · · HomG(F0,M)dn+1 d1

where dn is the dual map of dn.
Then the nth cohomology groups Hn(G,M) are the abelian groups

Hn(G,M) = ker(dn+1)/ im(dn), H0(G,M) = ker(d1).

Elements of ker dn+1 are called n-cocycles, and elements of im dn are called
n-coboundaries.

Remark 5.1.18. Note that after passing to Hom-groups, we dropped the ‘Z term’
at the extreme right of the diagram.

Remark 5.1.19. Here dn is the dual map

dn : HomG(Fn−1,M)→ HomG(Fn,M), φ 7→ φ ◦ dn

For total consistency we should use the notation dn = d∗n, but for the cochain
maps dn seems more common.

Remark 5.1.20. Comparing this with Definition 5.1.10, we see that these ‘coho-
mology groups’ are just the homology groups of a chain complex

Cn = HomG(F−n,M)

defined in dimensions −∞ < n ≤ 0. The switches to upper indices and the
prefix ‘co-’ are in some sense mathematically irrelevant: they are there mainly
to prevent our brains from having to think about chain complexes indexed over
the negative integers.
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To compare this again to the topological situation above, the chain complex

· · · Z{Xn+1} Z{Xn} Z{Xn−1} · · · Z{X0}
dn+2 dn+1 dn dn−1 d1

for X is obtained from the free resolution of G = π1X by ‘killing the G-action’.
On the other hand, if we take the chain complex for X̃ and take Hom-groups
HomG(−,Z), where Z has the trivial G-action, we obtain a chain complex

Hom(Z{Xn+1},Z) HomG(Z{Xn},Z) · · ·
dn+1 dn

(one should note that a G-linear map ZG{Xn} → Z is determined by the image
of Xn—so are in bijection with the abelian group homomorphisms Z{Xn} → Z).

In this way it is seen that Hn(π1X,Z) is closely related to Hn(X). We will
not explore this relationship in depth in this course, largely because defining
group homology would be more time-consuming than is really worthwhile.

Example 5.1.21. LetG ∼= Z be generated by an element t. Consider the sequence
of G-modules

0 ZG ZG Z 0
d1

·(t−1)

ε

where ε is the augmentation map which sends g 7→ 1 for all g ∈ G (with
the appropriate Z-linear extension to all of ZG), and the map d1 is right-
multiplication1 by t− 1.

This is a resolution of Z by projective (even free) G-modules. This may be
seen via topology: it is actually the simplicial chain complex of a line. Let us
also show it directly.

Obviously ε is surjective. It is also very easy to check that the sequence of
maps above is actually a chain complex, i.e. ε(x(t− 1)) = 0 for all x ∈ ZG.

Let x =
∑
ngg be an element of ZG such that ε(x) = 0. Since G is infinite

cyclic, let us relabel this sum: each g is of the form tk for some k, so we may write
x =

∑L
k=K nkt

k (recall that elements of ZG have only finitely many terms). If
ε(x) = 0 then by definition

∑
nk = 0. Now we have

x = nLt
L + nL−1t

L−1 + nL2
tL−2 + · · ·+ nKt

K

= nLt
L−1 · (t− 1) + (nL + nL−1)tL−1 + nL2

tL−2 + · · ·+ nKt
K

= (nLt
L−1 + (nL + nL−1)tL−2) · (t− 1) + (nL + nL−1 + nL−2)tL−2 + · · ·

...

= y · (t− 1) + (
∑

nk)tK = y · (t− 1)

for some y as required.
Finally, the multiplication by (t − 1) map is injective: let x =

∑
nkt

k be a
non-zero element of ZG. Let L be the greatest integer such that nL 6= 0. Then
the tL+1 coefficient of x(t− 1) is nL 6= 0, so x(t− 1) 6= 0.

Now let M be any G-module. We will compute Hn(G,M). First note that
we have a natural isomorphism

ι : HomG(ZG,M)
∼=−→M, φ 7→ φ(1)

1In the present case, G is abelian so left and right multiplication agree. More generally, if
G is a group and g ∈ G, then only a right-multiplication map ZG → ZG, x 7→ xg would be a
morphism of (left) G-modules.
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since ZG is a free G-module with basis {1}. The dual d1 of d1 is given by the
action of t− 1 on M : if φ ∈ HomG(ZG,M) and x ∈ ZG then

d1(φ)(x) := φ(d1(x)) = φ(x(t− 1))

hence

ι(d1(φ)) = d1(φ)(1) = φ(t− 1) = (t− 1) · φ(1) = (t− 1) · ι(φ).

Hence the dual chain complex HomG(F•,M) is

0 M M.
(t−1)·

Hence

H0(G,M) = ker((t− 1)·) = {m ∈M | tm = m} = MG,

H1(G,M) = M/{(t− 1)m | m ∈M} = MG,

Hn(G,M) = 0 (n ≥ 2).

Here MG is the group of invariants of M—the largest subgroup on which G
acts trivially—and MG is the group of co-invariants of M , which is ‘dual’ to
the invariants MG in the sense that it is the largest quotient of M on which G
acts trivially.

The isomorphism ι used in this proof, and the corresponding computations
of the dual maps dn, are an important part of computing cohomology groups.
Let us expand on this in more generality.

Let ZG{X} and ZG{Y } be free modules over finite sets X and Y . By
labelling X = {x1 . . . , xn} and Y = {y1, . . . , ym} we may consider ZG{X} ∼=
ZGn and ZG{Y } ∼= ZGm.

If α : ZG{X} → ZG{Y } is a G-linear map, we may think of α as multipli-
cation of a row vector (r1, . . . , rn) ∈ ZGn by an n×m matrix A with entries in
ZG: define elements aij ∈ ZG by

α(xi) =
∑
j

aijyj

so that

α(r1, . . . , rn) = (r1, . . . , rn)

a11 · · · a1m

...
. . .

...
an1 · · · anm

 =

(∑
i

ai1r1, . . .
∑
i

aimrm

)
.

Now let M be a G-module. There is an isomorphism

ιX : HomG(ZG{X},M)→Mm

given by ιX(φ) = (φ(x1), . . . , φ(xn). There is a similar isomorphism ιY . We
now wish to ‘compute the dual map α∗ in terms of the isomorphisms ι’—i.e. to
compute the map α̃ which makes the diagram

HomG(ZG{X},M) HomG(ZG{Y },M)

Mn Mm

ιX

α∗

ιY

α̃



CHAPTER 5. COHOMOLOGY OF GROUPS 76

commute. Let (b1, . . . , bm) ∈Mm and let φ : ι−1
Y (b1, . . . , bm), so that φ(yi) = bi

for each i. We can compute.

α̃(b1, . . . , bm) = ιXα
∗(φ)

=
(
α∗(φ)(x1), . . . , α∗(φ)(xn)

)
=

(
φ(α(x1)), . . . , φ(α(xn))

)
=

(
φ(
∑
j

a1jyj), . . . , φ(
∑
j

anjyj)
)

= ((
∑
j

a1jbj), . . . , (
∑
j

anjbj)).

Hence α̃ may be seen to be the multiplication of the matrix A on the left of a
column vector (b1, . . . , bm)T ∈Mm.

α̃((b1, . . . , bm)T ) =

a11 · · · a1m

...
. . .

...
an1 · · · anm


 b1

...
bm

 =


∑
j a1jbj

...∑
j anjbj


The fact that all cohomology groups of Z vanish in dimensions higher than

one extends to other free groups as well.

Proposition 5.1.22. Let G be a finitely generated free group. If n ≥ 2 then
Hn(G,M) = 0 for all G-modules M .

Proof. Let X be a wedge of circles with fundamental group G. Then universal
cover of X is a simply connected graph, i.e. a tree. It is therefore contractible.
It has no simplices of dimension 2 or greater, so we have a free resolution of G
of the form

0 ZG{X1} ZG{X0} Z 0
d1

It follows that Hn(G,M) = 0 for all n ≥ 2, for all G-modules M .

Definition 5.1.23. A group G has cohomological dimension n if Hm(G,M) = 0
for all G-modules M and all m > n, but there exists some G-module M such
that Hn(G,M) 6= 0. If no such n exists then G has infinite cohomological
dimension.

Remark 5.1.24. The above proposition therefore says that free groups have
cohomological dimension (at most) 1. Since the only fundamental groups of
1-dimensional spaces (i.e. graphs) are free, it seems natural to wonder if the
converse to this proposition is true. In fact it is, by a theorem of Stallings.
The proof is too involved for this course; we will however see a proof of the
corresponding theorem for free pro-p groups.

Later in the course we will be needing ways to compare different chain com-
plexes, as well as cohomology groups with different coefficients. The following
propositions provide the basic language.



CHAPTER 5. COHOMOLOGY OF GROUPS 77

Definition 5.1.25. Let (An, αn) and (Bn, βn) be chain complexes. A chain
map (fn) is a sequence of G-linear maps fn : An → Bn such that for all n we
have βnfn = fn−1αn.

An An−1

Bn Bn−1

αn

fn fn−1

βn

Proposition 5.1.26. If (fn) is a chain map from (An, αn) to (Bn, βn) then
(fn) induces a well-defined map on the homology groups of the complexes

f∗ : Hn(A•)→ Hn(B•).

Moreover, these maps are functorial: if (gn) : (Bn) → (Cn) is another chain
map then

(gf)∗ = g∗f∗ : Hn(A•)→ Hn(C•).

Proof. If x ∈ kerαn then define f∗([x]) = [fn(x)], where [x] denotes the class
x + imαn+1 ∈ Hn(A•). First note that fn(x) ∈ kerβn defines a valid class in
Hn(B•), since

βnfn(x) = fn−1αn(x) = fn−1(0) = 0.

Morevover the choice of representative for the class [x] does not matter: if
x′ + imαn+1 = x+ imαn+1, then x′ = x+ αn+1(y) for some y and

fn(x′) + imβn+1 = fn(x) + βn+1fn+1(y) + imβn+1 = fn(x) + imβn+1

hence [fn(x)] = [fn(x′)]. The other properties follow immediately.

Corollary 5.1.27. Let f : M → N be a map of G-modules. Then there is an
induced functorial map

f∗ : Hn(G,M)→ Hn(G,N)

for each n.

Proof. For a projective resolution (Fn) of Z by G-modules, apply the previous
propostion to the chain map given by

HomG(Fn,M)→ HomG(Fn, N), φ 7→ f ◦ φ

These functorial maps on cohomology are not the only relations between
cohomology for different coefficient groups—there is also the following long exact
sequence, derived via the snake lemma.

Proposition 5.1.28. Let 0→M1 →M2 →M3 → 0 be a short exact sequence
of G-modules. Then there is an exact sequence

· · · → Hn(G,M1)→ Hn(G,M2)→ Hn(G,M3)→ Hn+1(G,M1)→ · · ·

The proof of this result comprises two ingredients, one of which you have
already seen last year.
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Lemma 5.1.29 (Snake Lemma). Let

0 A• B• C• 0
f• g•

be a short exact sequence of chain complexes—that is, f• and g• are chain maps
and the corresponding sequences of abelian groups are exact for each n.

Then there exist maps δn : Hn+1(C•)→ Hn(A•) such that the sequence

· · · Hn+1(C•) Hn(A•) Hn(B•) Hn(C•) · · ·δn f∗ g∗

is exact.

Proof. Proof not examinable on this course—see Part II Algebraic Topology.

Lemma 5.1.30. Let

0 M1 M2 M3 0
f g

be a short exact sequence of G-modules and let F be a projective G-module.
Then the sequence of abelian groups

0 HomG(F,M1) HomG(F,M2) HomG(F,M3) 0
f∗ g∗

is exact.

Proof. There are three statements to prove.

� ker f∗ = 0. Let φ ∈ HomG(F,M1). If f∗φ = 0 then for all x ∈ F ,
f(φ(x)) = 0, whence φ(x) = 0 since f is injective.

� ker g∗ = im f∗. Since gf = 0, g∗f∗ = 0 so the inclusion ⊇ is immediate.
Now let ψ ∈ ker g∗ ⊆ HomG(F,M2). Then for all x ∈ F we have g(ψ(x)) =
0, so by exactness of the original sequence there exists a unique y ∈ M1

such that f(y) = ψ(x). Define φ(x) = y. It is easy to check (using the
uniqueness of y) that this map φ is G-linear and has f∗φ = ψ—so φ ∈ im f∗
as required.

� im g∗ = HomG(F,M3). This follows immediately from the hypothesis that
F is projective.

Proof of Proposition 5.1.28. Consider a resolution F• of Z by projective G-
modules. Then by the second lemma above, we have a short exact sequence
of chain complexes

0 HomG(F•,M1) HomG(F•,M2) HomG(F•,M3) 0
f∗ g∗

Now apply the Snake Lemma.

Remark 5.1.31. The indices in Proposition 5.1.28 may appear to be going the
‘wrong way’ relative to the Snake Lemma—from Hn to Hn+1. This is a con-
sequence of the relabelling in Remark 5.1.20: recall that HomG(F•,M) should
really be thought of as having negative dimensions, so our snake map is, in
accordance with the Snake Lemma, going from H−n to H−n−1.
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5.2 Different projective resolutions

We have not yet addressed an important question about the definition of co-
homology: does the particular projective resolution we choose matter? It does
not2, as we will now show. This could be regarded as analogous to homotopy
equivalence of homology of spaces; you may recognise the use of chain homo-
topies below from Part II Algebraic Topology.

Theorem 5.2.1. The definition of Hn(G,M) does not depend on the choice of
projective resolution.

Proof (Non-examinable, except for the construction of the maps fn). Take pro-
jective resolutions (Fn, dn) and (F ′n, d

′
n) of Z by ZG-modules. Suppose we can

build the following:

� maps fn : Fn → F ′n such that fn−1dn = d′nfn;

� maps gn : F ′n → Fn such that gn−1d
′
n = dnfn;

� maps sn : Fn → Fn+1 such that dn+1sn + sn−1dn = gnfn − id; and

� maps s′n : F ′n → F ′n+1 such that d′n+1s
′
n + s′n−1d

′
n = fngn − id.

The chain maps fn give chain maps f∗n : HomG(F ′n,M) → HomG(Fn,M),
which induce homomorphisms from the cohomology of G with respect to F ′n to
that with respect to Fn. Similarly for gn.

These maps on cohomology are isomorphisms: let φ ∈ ker dn+1 be an n-
cocycle. We show that f∗ng

∗
n(φ) differs from φ by a coboundary—so that on the

level of cohomology, f∗ng
∗
n = id. For x ∈ Fn we have:

f∗ng
∗
n(φ)(x) = φ(gnfn(x))

= φ(x) + φ(dn+1sn(x)) + φ(sn−1dn(x))

= φ(x) + s∗nd
n+1φ(x) + dn(s∗n−1(φ))(x)

= φ(x) + 0 + dn(s∗n−1(φ))(x)

so f∗ng
∗
n(φ) = φ+ dn(s∗n−1(φ)) as required. Similarly g∗nf

∗
n = id on cohomology.

It only remains to actually construct all the maps fn, gn, sn and s′n. The
symmetry of the situation means we only actually construct the fn and sn. This
is where the assumption that the resolution is projective becomes useful at last.

The first step is the easiest: considering the ‘Z’ at the end of the projective
resolution (Fn) to be the ‘dimension −1 term’, set f−1 = id: Z → Z. Next,
inductively assume that we have constructed fn−1 and fn with the required
property. Consider the map fndn+1 : Fn+1 → F ′n. We have

d′n ◦ (fndn+1) = fn−1dndn+1 = 0

so fndn+1 maps Fn+1 into ker d′n.

Fn+1 Fn Fn−1

F ′n+1 ker d′n F ′n F ′n−1

dn+1

fndn+1

fn+1

dn

fn fn−1

d′n+1 ⊆ d′n

2At this stage of the course it would be rather surprising if it did...
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By exactness of the sequence (F ′n), the kernel ker d′n is the image of F ′n+1 un-
der the map d′n+1. Therefore, because Fn+1 is projective, there exists some
fn+1 : Fn+1 → F ′n+1 such that d′n+1fn+1 = fndn+1 as required.

To build the sn, first set hn = gnfn − id : Fn → Fn and note that this is a
chain map with h−1 = 0. Set s−1 to be the zero map Z → F0. To get started,
note that d0h0 = h−1d0 = 0, so h0 maps F0 into ker d0. As before, since (Fn)
is exact, the map d1 : F1 → ker d0 is surjective, so by projectivity of F0 there
exists some s0 : F0 → F1 such that h0 = d1s0 = d1s0 + s−1d0 as required.

F0 Z

F1 ker d0 F0 Z

d0

s0
h0

h0
0

d1 ⊆ d0

Now suppose for an induction that sn−1 and sn−2 have been constructed with
the desired properties. Consider the map

tn = hn − sn−1dn : Fn → Fn

We have

dntn = dnhn − dnsn−1dn

= hn−1dn − (hn−1 − sn−2dn−1)dn

= sn−2dn−1dn = 0

so tn maps Fn to ker dn. As before, exactness and projectivity give the existence
of sn : Fn → Fn+1 such that dn+1sn = tn = hn − sn−1dn, as required.

Fn Fn−1

Fn+1 ker dn Fn Fn−1

dn

sn
tn

hn sn−1
hn−1

dn+1 ⊆ dn

It is important to note that this proposition (more specifically, the con-
struction of the fn) gives an explicit constructive means of switching between
different projective resolutions. We will see an example later, where we switch
between an easy-to-compute resolution arising from topology and a rather bulky
but technically useful resolution called the bar resolution3. Let us meet this res-
olution. You should note the similarity the differential maps here have with
simplicial boundary maps from Part II Algebraic Topology.

Let G(n) denote the set of symbols

G(n) = {[g1|g2| · · · |gn] such that g1, . . . , gn ∈ G}

By convention, G(0) consists of one ‘empty’ symbol [].

3For the very intuitive reason that the notation has bars in it.
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Let Fn = ZG{G(n)} be the free ZG module with basis G(n). Define a map
dn : Fn → Fn−1 by the formula

dn([g1|g2| · · · |gn]) = g1 · [g2|g3| · · · |gn]− [g1g2|g3| · · · |gn]

+ [g1|g2g3| · · · |gn]− · · ·+ (−1)n−1[g1|g2| · · · |gn−1gn]

+(−1)n[g1|g2| · · · |gn−1]

on basis elements—with the natural G-linear extension to all of Fn. It is an
elementary (if somewhat tedious to write) calculation exercise to show that
dn−1dn = 0. So (Fn, dn) is indeed a chain complex. It remains a chain complex
if we append the natural map F0 → Z, [] 7→ 1. To show that it is a resolution
of Z, we must show exactness.

Proposition 5.2.2. The bar resolution is exact.

Proof (non-examinable). To show exactness, we take the perhaps surprising step
of forgetting the G-action—we will regard F• as a chain complex of abelian
groups. This doesn’t affect exactness of course, which is simply a statement
about the kernels and images of some maps. So for this proof we regard Fn as
a free abelian group with basis

G×G(n) = {g0[g1|g2| · · · |gn] such that g0, . . . , gn ∈ G}

We define a sequence of group homomorphisms sn : Fn → Fn+1 such that

idFn = dn+1sn + sn−1dn

This is sufficient to prove the result: if x ∈ ker dn, then

x = id(x) = dn+1sn(x) + sn−1dn(x) = dn+1(sn(x)) ∈ im dn+1

so the sequence is exact.
The maps sn are defined on the basis G×G(n) of the free abelian group Fn

by
s(g0[g1|g2| · · · |gn]) = [g0|g1|g2| · · · |gn]

Note that this map is not G-linear. It is only left to check that the required
relation

idFn = dn+1sn + sn−1dn

holds on the basis G×G(n). This computation is left to the reader.

The bar resolution has advantages and disadvantages. The key disadvantage
is that the chain groups Fn are enormous: even if G is finite, then Fn is a
free abelian group of rank |G|n+1. However, the bar resolution is very useful
theoretically: it is defined in the same way for all groups G and is totally explicit,
making it good for constructions. It is also worth noting that the existence of the
bar resolution is the first proof we have seen of the existence of any projective
resolution for an arbitrary group G—and it is a free resolution, meaning that we
may always allow ourselves to take a free resolution to prove a technical result
if it simplifies matters. We will see in the next section one crucial appearance
of the bar resolution in low dimensions.

First we make some additional definitions.
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Definition 5.2.3. The group of n-cochains of G with coefficients in a G-module
M is the abelian group

Cn(G,M) = {functions φ : Gn →M}.

Note that this is canonically isomorphic to the group HomG(Fn,M), where Fn
is as in the bar resolution, since a G-linear map Fn →M is uniquely determined
by its restriction to basis elements.

The nth coboundary map is the map

dn : Cn−1(G,M)→ Cn(G,M)

dual to the map dn in the bar resolution. That is, for φ ∈ Cn−1(G,M),

(dnφ)(g1, . . . , gn) = g1 · φ(g2, g3, . . . , gn)− φ(g1g2, g3, . . . , gn)

+ φ(g1, g2g3, . . . , gn)− · · ·+ (−1)n−1φ(g1, g2, . . . , gn−1gn)

+ (−1)nφ(g1, g2, . . . , gn−1).

The group of n-cocycles is

Zn(G,M) = ker dn+1 ≤ Cn(G,M)

and the group of n-coboundaries is

Bn(G,M) = im dn ≤ Cn(G,M).

Note that
Hn(G,M) = Zn(G,M)/Bn(G,M).

Remark 5.2.4. The terms ‘coboundary’ and ‘cocycle’ were actually defined ear-
lier for arbitrary projective resolutions. Unless there is a particular resolution
being used in a particular context, these words generally refer to the cobound-
aries and cocycles of the bar resolution.

The bar resolution allows us to give general interpretations of H0 and H1.

Corollary 5.2.5. Let G be a group and let M be a G-module. Then

H0(G,M) = MG.

A crossed homomorphism is a function φ : G→M such that

φ(gh) = gφ(h) + φ(g)

for all g, h ∈ G. A principal crossed homomomorphism is a map φ of the form

φ(g) = gm−m

for some m ∈ M . Then principal crossed homomorphisms are crossed homo-
morphisms, and

H1(G,M) = {crossed homs. G→M}/{principal crossed homs.}.

In particular, if M is a trivial G-module then

H1(G,M) = Hom(G,M)

is the set of group homomorphisms G→M .
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What about H2(G,M)? That will be the topic of the next section.
The bar resolution also allows us to build natural maps between the coho-

mologies of different groups.

Proposition 5.2.6. Let α : G1 → G2 be a group homomorphism. Let M be a
G2-module and let G1 act on M via

g1 ·m := α(g1) ·m

for g1 ∈ G1, m ∈M . Then there is a natural homomorphism

α∗ : Hn(G2,M)→ Hn(G1,M).

If β : G0 → G1 then β∗α∗ = (αβ)∗.

Remark 5.2.7. Here ‘natural’ carries the meaning that no choices are made in
the definition. In particular this means that these natural maps repect what-
ever constructions are made using homology: for example, given a short exact
sequence of G2-modules, the maps f∗ will fit into a commuting diagram relating
the corresponding long exact sequences of cohomology groups for G1 and G2.
We won’t be exploiting this connection much in this course, so we won’t trouble
to make this remark more precise.

Proof. Define maps α∗ : Cn(G2,M)→ Cn(G1,M) by

(α∗φ)(g1, g2, . . . , gn) = φ(α(g1), . . . , α(gn))

These maps clearly commute with the differential maps, hence are chain maps
and induce maps of the cohomology groups as required by Proposition 5.1.26.

The presence of these maps can lead one to ask more detailed questions about
the relationship between the cohomologies of different groups. In particular,
given a short exact sequence of groups

1→ H → G→ Q→ 1

(i.e., H is a normal subgroup of G and G/H = Q), is there a long exact sequence
of cohomology groups analogous to Proposition 5.1.28? The disappointing an-
swer is that there is not, and the relationship between the cohomologies of H, G
and Q is considerably more complicated than the course time allows us to dis-
cuss4. An obvious counterexample to the hoped-for long exact sequence would
be given by the short exact sequence of groups

0→ Z → Z2 → Z → 0

since H2(Z,Z) = 0 but H2(Z2,Z) 6= 0.
For this course we content ourselves with seeing relationships in low dimen-

sions (which are often the most useful parts anyway).

4Search online for ‘spectral sequences’, if you really must know.
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Lemma 5.2.8. Let H be a normal subgroup of G and let M be a G-module.
Let G act on the set of cochains Cn(H,M) by

(g · φ)(h1, . . . , hn) = gφ(g−1h1g, . . . g
−1hng)

Then this descends to an action of G on Hn(H,M). Moreover the action of H
on this cohomology group is trivial (so we may regard this as an action of G/H
on Hn(H,M) if we wish).

Proof. To show that we have an action on cohomology it suffices to show that
the action of an element g ∈ G is a chain map—i.e. g · (dnφ) = dn(g · φ) for all
φ ∈ Cn−1(H,M). We have

g · (dnφ)(h1, . . . , hn) = g(g−1h1g)φ(g−1h2g, . . . , g
−1hng)

−gφ(g−1h1gg
−1h2g, . . . , g

−1hng) + · · ·
= h1gφ(g−1h2g, . . . , g

−1hng)

−gφ(g−1h1h2g, . . . , g
−1hng) + · · ·

= h1(g · φ)(h2, . . . , hn)− (g · φ)(h1h2, . . . , hn) + · · ·
= dn(g · φ)(h1, . . . , hn)

as required. To show that H acts trivially, we must take a cocycle and show
that applying the action of h ∈ H only adds a coboundary. We will only write
out this proof for 1-cocycles; the other cases are fundamentally the same, but
are simply more painful to write out.

Let φ ∈ Z1(H,M) and let h, h1 ∈ H. Then, using several times the relation
φ(h1h2) = h1φ(h2) + φ(h1) for all h1, h2 ∈ H, we find

(h · φ)(h1)− φ(h1) = hφ(h−1h1h)− φ(h1)

= h(h−1φ(h1h) + φ(h−1))− φ(h1)

= h1φ(h) + φ(h1) + hφ(h−1)− φ(h1)

= h1φ(h)− φ(h)

which is indeed a coboundary ψ(h1) = (h1 − 1)φ(h).

A simple but often useful case of this proposition is the case n = 1. Here
φ ∈ H1(H,M) is represented by a crossed-homomorphism φ : H → M , with
G-action given by

g · φ(h) = gφ(g−1hg).

In particular, φ lies in the space of invariants H1(H,M)G if and only if

[φ(ghg−1)] = [gφ(h)]

for all h ∈ H and g ∈ G. If the action of G on M is trivial, this may be termed
a ‘G-invariant homomorphism H →M ’.

Theorem 5.2.9 (‘Five term exact sequence’). Let H be a normal subgroup of
G, let Q = G/H and let M be a G-module. Then there is an exact sequence

0→ H1(Q,MH)→ H1(G,M)→ H1(H,M)Q → H2(Q,MH)→ H2(G,M)
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Remark 5.2.10. Note that there is no ‘→ 0’ at the end; there is no statement
that the final map is surjective.

Proof (Non-examinable sketch; definition of maps only). We will omit most of
the proof of this result from the course, and only trouble to define the maps
involved. The rest of the proof—checking that the maps are well-defined, and
checking exactness at all positions—consists of tedious but elementary checks
which it would not be beneficial to spend time on.

The maps in the sequence are as follows. The definitions are given on the
level of cochains, and to check that they really induce the desired maps on
cohomology is part of the omitted tedium.

� Restriction maps

Hk(G,M)→ Hk(H,M)Q

(f : Gk →M) 7→ (Res(f) : Hk ↪→ Gk
f−→M)

� Inflation maps

Hk(Q,MH)→ Hk(G,M)

(f : Qk →MH) 7→ (Inf(f) : Gk → Qk
f−→MH ⊆M)

� The transgression map Tg: H1(H,M)Q → H2(Q,MH), defined in the
following manner. Let s : Q→ G be a set-theoretic section with s(1) = 1—
that is, a function s : Q→ G such that s(gH)H = gH for all gH ∈ G/H =
Q. Define ρ : G → H by ρ(g) = gs(gH)−1 (where gH ∈ G/H = Q is a
right coset).

Take a 1-cohomology class which is invariant under the action of Q and
let f : H →M be some cocycle represnting this class. Define the cochain
Tg(f) : G2 →M by

Tg(f)(g1, g2) = f(ρ(g1)ρ(g2))− f(ρ(g1g2)).

Changing g1 and g2 by multiplying by elements of H does not in fact
change the value of this cochain, so this defines a cochain Q2 →M .

As may be guessed from the fact that H2(G) is left dangling at the end of
the sequence in this theorem, this sequence is generally more useful in cases
where we know a good deal about G already and hope to learn more about the
quotient group Q. One classical example is the following corollary, which deals
with relating cohomology to a presentation of a group.

Corollary 5.2.11 (Hopf’s Formula). Let F be a free group, let R be a normal
subgroup of F and let Q = F/R. Let A be an abelian group, considered as a
trivial module over F . Then

H2(Q,A) ∼=
{F -invariant homomorphisms f : R→ A}

{Homomorphisms F → A}
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Proof. Apply the Five Term Exact Sequence, noting that free groups have van-
ishing second cohomology and using the characterisation of H1 given in Corol-
lary 5.2.5.

It is important to note that R is in general an infinitely generated group, so
this formula is rather difficult to compute with in practice.

One immediate application is to get bounds on the size of cohomology groups.
We already know that, for example.

d(H1(Q,Z)) = d(Hom(Q,Z)) ≤ d(Q)

since any homomorphism is determined by its image on a generating set of Q.
If we have a presentation of Q,

Q = 〈x1, . . . , xd | r1, . . . , rm〉

then R = 〈〈r1, . . . , rm〉〉F and an F -invariant homomorphism R → Z is deter-
mined by its image on the ri. It follows that

d(H1(Q,Z)) ≤ d, d(H2(Q,Z)) ≤ m.

One might be tempted to hope that these are always equalities, at least if the
presentation Q is ‘minimal’ in some sense. In fact this is not true—but at the
end of the course we will find that a suitable version of this statement does hold
for pro-p groups.

We will use both Hopf’s formula and the Five Term Exact Sequence to great
effect later when dealing with pro-p groups; for now let us just consider the
following simple example.

Example 5.2.12. Let Q = Z/3Z, and let Q act on M = Z2 via the order 3

matrix A =

(
−1 1
−1 0

)
. Consider the short exact sequence of groups

0→ H = Z 3−→ G = Z → Q→ 0.

Since H acts trivially on M , we have

H1(H,M) = Hom(Z,M) ∼= Z2

An element of this group is Q-invariant if and only if the corresponding element
of Z2 is fixed by A. The only solution of Ax = x is zero, so H1(H,M)Q = 0.
Since H2(G,M) = 0 also, it follows from the five term exact sequence that
H2(Z/3Z,M) = 0.

5.3 Cohomology and group extensions

Let us now turn to a problem which at first sight has nothing to do with coho-
mology, but is in fact intimately connected. Suppose we have a group E, which
contains an abelian normal subgroup M . Let E/M = G. Such an E is called
an extension of G by M5. There is a natural notion of equivalence between ex-
tensions: group isomorphisms which ‘remember G and M ’. That is, extensions

5Or sometimes ‘an extension of M by G’, because mathematicians cannot necessarily re-
member which way round it goes.
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E and E′ of G by M are equivalent if there is a commuting diagram of group
homomorphisms

E

1 M G 1

E′

It is an exercise to show that equivalent extensions are isomorphic as groups.
The converse is not necessarily true: you will see an example of this on the
example sheet.

How might one go about classifying extensions up to equivalence? The first
thing to note is thatM is not just an abelian group, but comes with the structure
of a G-module. The group E acts on its normal subgroup M by conjugation.
The action of M on itself is trivial since M is abelian, so this descends to an
acton of G on M by homomorphisms. If the G-action is trivial, then M is
central in E and E is called a central extension.

Given a group G and a G-module M , there is always one extension that can
be constructed: the semi-direct product6 E = M o G, which you met in Part
IB. The underlying set of this group is M ×G, with multiplication given by

(m1, g1) ? (m2, g2) = (m1 + g1 ·m2, g1g2).

Remark 5.3.1 (Notational health warning). In the formula above, G is written
as a group with multiplication operation, and the abelian group M is written
with additive notation. This makes total sense in the context; however earlier
on this page we have M being a subgroup of the (perhaps non-abelian) group E,
where really the group operation is multiplicative. The answer to this quandry
is to simply that we never really calculate much in E, but I felt I should give
the warning.

It is easy to check that the semi-direct product is an extension of G by M .
Could it be the only one?

The semidirect product has a very special property among extensions: G, as
well as being a quotient of E = M o G, is also a subgroup of E (the subgroup
{0}×G in the notation above). Expressed abstractly, this means that there is a
group homomorphism s : G→MoG such that the composite G→MoG→ G
is the identity map. Such a map is called a splitting, so another name for ‘semi-
direct product’ is split extension.

Proposition 5.3.2. Let E be an extension of G by M . Assume there is a
spitting s : G→ E. Then E is equivalent to the semidirect product M oG.

Proof. Exercise.

Now let E be an extension of G by M . Let π : E → G be the quotient
map. We will try to measure how far it is from being a semidirect product—in

6Observe the order of the notation: G acts on the left of M , and is written to the right
in the semidirect product M o G. The formula for multiplication in the semidirect product
makes it obvious why we do this.
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other words, what is the obstruction to the existence of a splitting G→ E? We
can always find a set-theoretic section s : G→ E—that is, a function such that
G

s→ E
π→ G is the identity, but which is not necessarily a group homomorphism.

Such an s is simply a choice of preimage s(g) ∈ E for each g ∈ G. Without
loss of generality assume s(1) = 1. To measure how far s is from being a group
homomorphism, consider the function

φ(g1, g2) = s(g1)s(g2)s(g1g2)−1,

which vanishes if and only if s is a group homomorphism. Note that applying
the quotient map π : E → G sends φ(g1, g2) to the identity, so in fact φ(g1, g2)
is an element of M . That is, φ : G2 →M is a 2-cochain.

More than this, φ is a 2-cocycle. To see this, calculate s(g1)s(g2)s(g3) in two
different ways:

s(g1)s(g2)s(g3) = φ(g1, g2)s(g1g2)s(g3)

= φ(g1, g2)φ(g1g2, g3)s(g1g2g3)

s(g1)s(g2)s(g3) = s(g1)φ(g2, g3)s(g2g3)

= s(g1)φ(g2, g3)s(g1)−1s(g1)s(g2g3)

= s(g1)φ(g2, g3)s(g1)−1φ(g1, g2g3)s(g1g2g3).

If we equate these two values, cancel the s(g1g2g3) term, convert the remainder
into the additive notation we use in M , and remember that the action of G is
defined by conjugation, this becomes

φ(g1, g2) + φ(g1g2, g3) = g1 · φ(g2, g3) + φ(g1, g2g3)

which, rearranged, gives the familiar form

0 = g1 · φ(g2, g3)− φ(g1g2, g3) + φ(g1, g2g3)− φ(g1, g2) = (d3φ)(g1, g2, g3)

so φ is indeed a cocycle.
Note that φ is also a normalized cocycle, in the sense that

φ(1, g) = φ(g, 1) = 0.

To summarise, an extension of G by M , together with a choice of the set-
theoretic section s, gives a normalized 2-cocycle φ ∈ Z2(G,M). What difference
does a different choice of s make? Let s′ : G→ E be another set-theoretic section
with s′(1) = 1. Then π(s(g)s′(g)−1) = 1 for all g, so s′(g)s(g)−1 = ψ(g) is a
function G→M . Let us compute the new cocycle φ′ corresponding to s′.

s′(g1)s′(g2) = ψ(g1)s(g1)ψ(g2)s(g2)

= ψ(g1)s(g1)ψ(g2)s(g1)−1s(g1)s(g2)

= ψ(g1)s(g1)ψ(g2)s(g1)−1φ(g1, g2)s(g1g2)

= ψ(g1)s(g1)ψ(g2)s(g1)−1φ(g1, g2)ψ(g1g2)−1s′(g1g2).

Thus we find (again swapping to the additive notation) that

φ′(g1, g2) = ψ(g1) + g1 · ψ(g2) + φ(g1, g2)− ψ(g1g2) = φ(g1, g2) + (d2ψ)(g1, g2)

so that φ and φ′ differ by a coboundary.
We have now proved part of the following theorem.



CHAPTER 5. COHOMOLOGY OF GROUPS 89

Theorem 5.3.3. Let G be a group and let M be a G-module. There is a
bijection {

Equivalence classes of
extensions of G by M

}
←→ H2(G,M)

We have so far proved the existence of a map from the set of extensions
to H2(G,M). The details of the remainder of the proof are largely left as an
exercise, and consists of the following parts:

� proving that equivalent extensions yield the same element of H2(G,M);

� constructing the inverse map, which takes a cohomology class and builds
an extension class from it; and

� proving that these two maps are inverse to each other.

The most important part to note for future use is the inverse map. Let [φ] ∈
H2(G,M) be a cohomology class represented by a normalized cocycle φ ∈
Z2(G,M). All cohomology classes may be represented by a normalized cocycle;
we prove this in Lemma 5.3.4, but delay that lemma until later to maintain the
flow of the argument. Define a group structure Eφ on the set M × G by the
formula

(m1, g1) ?φ (m2, g2) = (m1 + g1 ·m2 + φ(g1, g2), g1g2)

The fact that this really is a group multiplication—that is, it is associative
and elements have inverses—follows from the property that φ is a normalized
cocycle, by calculations very similar to those above which take a group and
derive a cocycle from it.

That Eφ really is an extension of G by M is readily established; M embeds
as the subgroup M × {0} ⊆ Eφ, and the set projection M ×G→ G is a group
homomorphism.

Finally, if φ′ is another normalized cocycle representing the class [φ], so that
φ− φ′ is a coboundary d2ψ, then we may define a map Eφ → Eφ′ by

(m, g) 7→ (m+ ψ(g), g)

This is a group homomorphism, and in fact an equivalence of extensions (this
uses the fact that ψ(1) = 0, which derives from the normalization of the cocycles
φ and φ′).

The proof concludes with the delayed lemma on normalization of 2-cocycles.

Lemma 5.3.4. Let φ ∈ Z2(G,M). Then there is a cochain ψ ∈ C1(G,M)
such that φ+ d2ψ is normalized. Hence every cohomology class in H2(G,M) is
represented by a normalized cocycle.

Proof. Let ψ(g) = −φ(1, g). Then

(φ+ d2ψ)(1, g) = φ(1, g)− (φ(1, g)− φ(1, g) + φ(1, 1)) = φ(1, g)− φ(1, 1)

and

(φ+ d2ψ)(g, 1) = φ(g, 1)− (g · φ(1, 1)− φ(1, g) + φ(1, g)) = φ(g, 1)− g · φ(1, 1).

By computing d3φ(1, 1, g) = 0 and d3φ(g, 1, 1) = 0 respectively one finds that
both these expressions vanish as required.
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Having established that extensions correspond with elements of H2(G,M),
let us remark upon a neat connection with Hopf’s formula from earlier.

Suppose that G has a presentation

G = 〈x1, . . . , xn | r1, . . . , rm〉

and suppose that A is an abelian group (considered as a trivial module). Let
E be a central extension of G by A. Then E is generated by A together with
the images x̄1, . . . , x̄n of the generators of G under some section G→ E. If we
define r̄i to be the word ri, written as a word in the x̄i by replacing each xi with
x̄i, then since ri vanishes in G, the element r̄i of E must equal some ai ∈ A.
Define therefore group by a presentation

E = 〈x̄1, . . . , x̄n, A | r̄1a
−1
1 , . . . , r̄ma

−1
m , A central, (Relations of A)〉

It is not difficult to show that this is actually a presentation of E, by considering
the obvious diagram

A E G

A E G

Now let F be the free group generated by x1, . . . , xn and let R be the kernel
of the natural map F → G. One may attempt to define an F -invariant homo-
morphism R → A by sending ri 7→ ai. In fact it follows from the fact that
E is genuinely an extension of G by A that this map is really a well-defined
F -invariant homomorphism.

This homomorphism depends on the initial choice of section xi 7→ x̄i of
E → G. Choosing a different section corresponds to an operation x̄i 7→ x̄ibi
where bi ∈ A. This choice of bi specifies a homomorphism b : F → A, and our
map R → A is changed by subtracting the restriction of b. In this way we
recover the correspondence

H2(G,A) ∼=
{F -invariant homomorphisms f : R→ A}

{Homomorphisms F → A}

from Hopf’s formula.
This is not necessarily a terribly good way to go about computing the co-

homology of a group: given an assignment ri 7→ ai it is rather difficult to check
whether it genuinely gives a well-defined F -invariant map. However in some
circumstances it can be a useful methodology to prove that certain extensions
are equivalent.

Example 5.3.5. Let G be the group with presentation

G = 〈x1, x2 | x1x2x
−1
1 x−1

2 x1〉.

We claim that H2(G,Z) = 0. Let a generator of Z be labelled a. Then any
central extension of G by Z has a presentation of the form

E = 〈x̄1, x̄2, a | x̄1x̄2x̄
−1
1 x̄−1

2 x̄1a
−k, a central〉

for some k ∈ Z. Now the substitution x̄1 7→ x̄1a
k has the effect

x̄1x̄2x̄
−1
1 x̄−1

2 x̄1a
−k 7→ x̄1a

kx̄2x̄
−1
1 a−kx̄−1

2 x̄1a
ka−k = x̄1x̄2x̄

−1
1 x̄−1

2 x̄1
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since a is central; so our presentation becomes

E = 〈x̄1, x̄2, a | x̄1x̄2x̄
−1
1 x̄−1

2 x̄1, a central〉,

the presentation of the split extension Z × G. Hence all extensions of G by Z
are split, and H2(G,Z) = 0.

5.3.1 Worked example: central extensions of Z2

In this section we will classify the central extensions of Z2 by Z. Firstly we
compute the cohomology groups of T = Z2. Let a and b denote generators of
T . Begin with the free resolution

0 ZT ZT 2 ZT Zβ α

of Z, where

β(z) = (z · (1− b), z · (a− 1)), α(x, y) = x · (a− 1) + y · (b− 1)

and ε is the augmentation map. This may be proved to be exact either directly–
in a similar way to Example 5.1.21—or by noting that it is a cellular chain
complex for the square tiling of the plane.

Applying HomT (−,Z) gives a chain complex

0 HomG(ZT,Z) HomG(ZT 2,Z) HomG(ZT,Z)
β∗=0 α∗=0

whence H2(T,Z) = HomT (ZT,Z) ∼= Z, with generator represented by the aug-
mentation map ZT → Z which sends 1 7→ 1.

To show that β∗ = 0, take a T -linear map f : (ZT )2 → Z and z ∈ ZT and
compute:

(β∗f)(z) = f(β)(z) = f((z(1− b), z(a− 1)))

= f((z − bz, 0) + (0, za− a))

= (1− b)f((z, 0)) + (a− 1)f((0, z)) = 0

which vanishes since the action of T on Z is trivial. The vanishing of α∗ is
similar.

Next, we need to turn this cohomology group into a form we can use to
build extensions—specifically into the form provided by the bar resolution. We
therefore use the method of Proposition 5.2.1 to build a chain map from the bar
resolution to the given resolution above, in dimensions 0, 1 and 2:

ZT{T (2)} ZT{T (1)} ZT{T (0)} Z 0

ZT ZT 2 ZT Z 0

d2

f2

d1

f1

ε

id

β α ε

In dimensions −1 and 0 we may use the identity map. Next we must construct

f1 : ZT{T (1)} → ZT 2
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such that αf1 = d1. Since the domain of this map is a free G-module with basis
{[arbs] | r, s ∈ Z}, we just need to find appropriate elements (xr,s, yr,s) ∈ ZT 2

to send these basis elements to: that is, we must solve the equation

α(xr,s, yr,s) = d1([arbs]) = arbs − 1 = (ar − 1)bs + (bs − 1)

Define a symbol

S(a, r) =

{
1 + a+ · · ·+ ar−1 (r > 0)

−a−1 − · · · − ar (r ≤ 0)

so that S(a, r)(a− 1) = ar − 1 in all cases. Then we have

α(S(a, r)bs, S(b, s)) = S(a, r)bs(a− 1) + S(b, s)(b− 1) = d1([arbs])

as required. Note that we use the fact that T is abelian, so its group ring is
commutative.

So we may define f1 by the formula

f1([arbs]) = (S(a, r)bs, S(b, s)).

To define f2, we must do essentially the same process: for each pair of
elements (arbs, atbu) ∈ T 2, find zr,s,t,u ∈ ZT such that

f1d2([arbs|atbu]) = β(zr,s,t,u).

We have

f1d2([arbs|atbu]) = f1(arbs[atbu]− [ar+tbs+u] + [arbs])

= (arbsS(a, t)bu − S(a, r + t)bs+u + S(a, r)bs,

arbsS(b, u)− S(b, s+ u) + S(b, s))

Such elements zr,s,t,u are perhaps best found by solving the case when all the
r, . . . , u are positive, and then checking that the result extends to the other
cases. Here it will be sufficient for me to note that

zr,s,t,u = S(a, r)bsS(b, u)

works, and that this may be checked for yourselves using the relation

S(a, r + t) = arS(a, t) + S(a, r).

So we define
f2([arbs|atbu]) = S(a, r)bsS(b, u).

Now let us find a cochain φ : T 2 → Z representing the cohomology class

p ∈ Z ∼= HomT (ZT,Z) = H2(T,Z)

From the previous work, such a cochain is given by the composition

φ : T 2 f2−→ ZT p·ε−→ Z
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Since ε is a ring homomorphism, and since ε(S(a, r)) = r, we find

φ(arbs, atbu) = pε(zr,s,t,u) = pru.

The group structure on the set Z × T corresponding to this cocycle is

(m, arbs) ? (n, atbu) = (n+m+ pru, ar+tbs+u).

This constitutes a classification of the central extensions of T by Z. If you wish
for a more concrete interpretation, note that the group multiplication above is
the same as provided by the matrix multiplication1 pr m

0 1 s
0 0 1

1 pt m
0 1 t
0 0 1

 =

1 p(r + t) m+ n+ pru
0 1 s+ u
0 0 1


so that all extensions of T by Z are equivalent to a group

1 pr m
0 1 s
0 0 1

 where r, s,m ∈ Z


where the chosen central copy of Z is generated by the element above for r =
s = 0,m = 1.

5.4 Cohomology of profinite groups

We will conclude the course by applying our cohomological tools to profinite
groups, and will prove some powerful theorems showing how pro-p groups in
particular are governed by their cohomology in strong ways—theorems which
are much more difficult, or are simply not true, for abstract groups.

If this course were to be totally complete and rigorous, we would now embark
upon the redevelopment of cohomology theory for profinite groups—defining
what a free profinite module is, defining chain complexes and homology groups
and showing that cohomology is well-defined and so on. This would be incredibly
tedious however, and consist of largely repeating the proofs while stating that
all maps are continuous, or that certain topologies are well-defined. Instead we
will make the following definitions—essentially converting the fact that the bar
resolution gives the cohomology from a theorem into a definition.

Definition 5.4.1. Let G be a profinite group. A finite G-module is a finite
abelian group M equipped with an action function G×M →M, (g,m) 7→ g ·m
which is continuous.

Definition 5.4.2. Let G be a profinite group and let M be a finite G-module.
Define the set of n-cochains, for n ≥ 0, to be the abelian group

Cn(G,M) = {Continuous functions φ : Gn →M}

Define maps dn : Cn−1(G,M)→ Cn(G,M) by the formula

(dnφ)(g1, . . . , gn) = g1 · φ(g2, g3, . . . , gn)− φ(g1g2, g3, . . . , gn)

+ φ(g1, g2g3, . . . , gn)− · · ·+ (−1)n−1φ(g1, g2, . . . , gn−1gn)

+ (−1)nφ(g1, g2, . . . , gn−1)
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Define the group of n-cocycles to be

Zn(G,M) = ker dn+1 ≤ Cn(G,M)

and the group of n-coboundaries to be

Bn(G,M) = im dn ≤ Cn(G,M)

Define the nth cohomology group of G with coefficients in M to be

Hn(G,M) = Zn(G,M)/Bn(G,M).

Remark 5.4.3. It is perfectly possible to extend the definition of G-module, and
of cohomology, to relax the restriction that M is finite. One such extension will
be seen on Exercise Sheet 4.

As mentioned above, the theory of cohomology of a profinite group is almost
identical to the theory of cohomology of discrete groups. Not necessarily all the
proofs will work in the way we’ve defined them—for instance, a coinduced mod-
ule is not necessarily finite—but slight modifications of the arguments ensure
that in fact all the general results carry over. We codify this as follows.

Course Convention 5.4.4. All general results from Sections 5.1 to 5.3, and
Exercise Sheet 4, may be applied to profinite groups, by substituting all groups
with profinite groups, maps with continuous maps, and modules with finite
modules.

As an example, we can translate Theorem 5.3.3 into the following statement.

Definition 5.4.5. An extension of a profinite group G by a finite G-module M
is a short exact sequence of the form

0→M → E → G→ 1

where E is a profinite group and M /o E is an open normal subgroup, and the
conjugation action of E induces the given action of G on M . Two extensions
are equivalent if there is a commuting diagram

E

1 M G 1

E′

of continuous group homomorphisms.

Theorem 5.4.6. Let G be a profinite group and let M be a finite G-module.
There is a bijection{

Equivalence classes of
extensions of G by M

}
←→ H2(G,M)
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Remark 5.4.7 (Why only finite modules?). It is perfectly legitimate to wonder
why we demanded that G-modules be finite for G a profinite group. In fact one
can expand the class a little—see Question 10 on Example Sheet 4 for some
work with one notion of the ‘correct’ class of modules—but allowing arbitrary
G-modules leads pretty rapidly to pathologies.

Assume for the sake of argument that a cohomology theory of profinite
groups exists with all our desired properties.

Let G = Ẑ. Consider the short exact sequence of abelian groups

0→ Z → Q → Q/Z → 0

all considered to be G-modules with a trivial action. If the Course Convention
is to hold, we should have H1(G,M) = Hom(G,M) (the set of continuous

homomorphisms). Note that the only continuous homomorphism from Ẑ to Q
is the zero homomorphism, since a continuous map from the compact space Ẑ
to a discrete space has finite image and Q has no non-trivial finite subgroups.
That is, H1(Ẑ,Q) = 0.

On the other hand, there are many non-trivial continuous homomorphisms
from Ẑ to Q/Z: any x ∈ Q/Z has finite order, so the function 1 7→ x ex-

tends to a continuous homomorphism Ẑ → 〈x〉 ⊆ Q/Z. Hence in fact we have

H1(Ẑ,Q/Z) ∼= Q/Z.
But now apply Proposition 5.1.28 to the above short exact sequence to find

a long exact sequence, part of which reads

0 = H1(Ẑ,Q)→ H1(Ẑ,Q/Z) ↪→ H2(Ẑ,Z)

so H2(Ẑ,Z) 6= 0, and our free group no longer has cohomological dimension 1!

5.4.1 Pro-p groups of cohomological dimension one

Recall the definition of cohomological dimension, which we restate here in the
appropriate form for profinite groups.

Definition 5.4.8. A group G has cohomological dimension n if Hm(G,M) = 0
for all m > n and all finite G-modules M , but there exists some finite G-module
M such that Hn(G,M) 6= 0.

Theorem 5.4.9. Let G be a pro-p group. Then

cd(G) = max{n : Hn(G,Fp) 6= 0}.

Corollary 5.4.10. A non-trivial pro-p group G has cohomological dimension 1
if and only if H2(G,Fp) = 0.

Proof of Corollary. The theorem implies that H2(G,Fp) = 0 if and only if G has
cohomological dimension at most 1; and by Proposition 4.1.7, ifG is a non-trivial
pro-p group then it admits a homomorphism onto Fp, whence H1(G,Fp) 6=
0.

The proof of this theorem proceeds in several stages. First we show that we
need only worry about ‘simple’ modules.
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Definition 5.4.11. A G-module M is simple if the only G-submodules of M
are M itself and {0}.

Proposition 5.4.12. Let G be a profinite group and suppose Hn(G,S) = 0 for
all finite simple G-modules S. Then Hn(G,M) = 0 for all finite G-modules M .

Proof. Suppose the result is not true, and let M be the smallest finite G-module
such that Hn(G,M) 6= 0. By hypothesis M is not simple, so has a proper non-
trivial G-submodule N . The G-modules N and M/N are both strictly smaller
than N , so Hn(G,N) = 0 = Hn(G,M/N). However the short exact sequence
of modules

0→ N →M →M/N → 0

yields, by Prop 5.1.28, a long exact sequence of cohomology groups including a
section

0 = Hn(G,N)→ Hn(G,M)→ Hn(G,M/N) = 0

which forces the contradiction Hn(G,M) = 0.

Definition 5.4.13. Let M be a finite G-module. For a prime p, we call M a
p-primary module if |M | is a power of p.

If M is any finite G-module, then the finite abelian group M decomposes in
a unique way as the direct sum of its p-Sylow subgroups

M = ⊕p primeMp.

These Sylow subgroups Mp are G-submodules of M , called its p-primary com-
ponents.

Proposition 5.4.14. Let G be a pro-p group, let M be a finite G module, and
let the p-primary component of M be Mp. Then Hn(G,M) = Hn(G,Mp).

Proof. Write M = Mp ⊕M ′, where M ′ has order coprime to p. Then

Hn(G,M) = Hn(G,Mp)⊕Hn(G,M ′)

so we need only prove that Hn(G,M ′) = 0.
This is true if G is a finite p-group, by a result you will prove on Example

Sheet 4. From this we derive the result for an arbitrary pro-p group G.
Let φ : Gn →M be a continuous cocycle. Then the preimages of the points

m ∈M are open subsets of Gn, hence are unions of basic open sets—i.e. cosets
of open subgroups Kn

i,m where Ki,m is an open normal subgroup in G. By
compactness we need only finitely many such cosets, and so only finitely many
Ki,m. Taking the intersection of all of these gives an open normal subgroup K
such that all preimages φ−1(m) are unions of cosets of Kn in Gm. Without loss
of generality (by passing to a smaller subgroup) we may assume that K acts
trivially on M .

It follows that φ descends to a cocycle (G/K)n → M . By the result just
quoted, Hn(G/K,M) = 0, so this cocycle is equals dnψ for some cochain ψ ∈
Cn−1(G/K,M). Composing ψ with the natural map Gn−1 → (G/K)n−1 shows
that φ is also a coboundary. Hence Hn(G,M) = 0.
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Remark 5.4.15. Had we formally defined direct limits in this course, the middle
section of this proof—that all cocycles factor through some (G/K)n—is essen-
tially a proof that inverse limits commute with cohomology in the sense that

Hn(G,M) = lim−→Hn(G/K,M)

where the limit is taken over those open normal subgroups K which act trivially
on M .

Proposition 5.4.16. Let G be a pro-p group. If Hn(G,Fp) = 0 for some n,
then Hn(G,M) = 0 for all finite G-modules M .

Proof. In light of the previous two propositions, it is enough to show that the
only simple p-primary G-module is Fp. This you will do on Example Sheet
4.

Proposition 5.4.17. Let G be a pro-p group. The only finite simple p-primary
G-module is Fp.

Proof. On Exercise Sheet 4.

To prove Theorem 5.4.9, it only remains to transfer the information that
cohomology vanishes to higher dimensions.

Proposition 5.4.18. Suppose that there exists N ≥ 1 such that HN (G,M) = 0
for all G-modules M . Then cd(G) ≤ N − 1.

Proof (non-examinable). In accordance with course convention, we prove this
proposition for discrete groups G. Let M be a G-module. On Example Sheet 4
you will study the coinduced module

coindKG (M) = HomK(ZG,M),

where K is a subgroup of G, and show it has the property that

Hn(G, coindKG (M)) ∼= Hn(K,M)

for all n. Consider the case K = 1, when the coinduced module consists of the
abelian group homomorphisms from ZG to M . Consider the map

α : M → Hom1(ZG,M), m 7→ (x 7→ xm)

This is a G-linear map, which is clearly injective. Let the quotient module
coind1

G(M)/α(M) be denoted M ′. Since the trivial subgroup 1 has vanishing
cohomology in dimensions at least 1, the long exact sequence in cohomology
associated to the short exact sequence of modules

0→M → coind1
G(M)→M ′ → 0

reads, for all n ≥ 1,

0 = Hn(G, coind1
G(M))→ Hn(G,M ′)→ Hn+1(G,M)→ 0

The middle map is therefore an isomorphism. If n = N then HN (G,M ′) van-
ishes by hypothesis, hence so does HN+1(G,M) for all G. Inductively this shows
Hn(G,M) = 0 for all n ≥ N as required.



CHAPTER 5. COHOMOLOGY OF GROUPS 98

Corollary 5.4.19. (Topologically finitely generated) free profinite groups and
free pro-p groups have cohomological dimension 1.

Proof. Let F be a free profinite group. Let M be any finite G-module. Let E be
an extension of F by M . Then this extension splits: let X be a free generating
set for F , and choose for each x ∈ X a preimage ex of x in E. The function
x 7→ ex now extends, by the universal property of a free profinite group, to a
continuous group homomorphism F → E splitting the extension. Hence every
extension is split, and H2(F,M) = 0 for all G-modules M .

For pro-p groups we use the same argument, for the specific case M = Fp—
then E is automatically a pro-p group, and we can apply the universal property
of a free pro-p group.

To prove the converse statement, we will prove instead the following stronger
theorem, which illustrates the powerful control that cohomology exerts on the
behaviour of pro-p groups.

Theorem 5.4.20. Let G and G′ be topologically finitely generated pro-p groups.
Let f : G→ G′ be a continuous homomorphism. Assume that

f∗ : H1(G′,Fp)→ H1(G,Fp)

is an isomorphism and

f∗ : H2(G′,Fp)→ H2(G,Fp)

is an injection. Then f is an isomorphism.

Proof (non-examinable). Let G
(′)
n = γ

(p)
n (G(′)) be the nth term of the lower

central p-series of G or G′. These are fully characteristic subgroups, so f(Gn) ⊆
G′n and f induces maps

fn : G/Gn → G′/G′n.

We show by induction that these are all isomorphisms; the result then follows
since

G(′) = lim←−G
(′)/G(′)

n .

The base case n = 1 is trivial. Assume therefore that fn is an isomorphism.
Consider the group Gn/Gn+1. By definition, Gn+1 = [G,Gn]Gpn, and is

open in G by Corollary 4.2.7. It follows that Gn/Gn+1 is a finite dimensional
vector space over Fp, so f induces an isomorphism

Gn/Gn+1 → G′n/G
′
n+1

if and only if its dual map

f∗ : Hom(G′n/G
′
n+1,Fp)→ Hom(Gn/Gn+1,Fp)

is an isomorphism.
Now, a continuous homomorphism φ : Gn → Fp factors through Gn/Gn+1 if

and only if it kills [G,Gn]Gpn. A pth power obviously vanishes when mapped to
Fp. For g ∈ G, gn ∈ Gn, we have

φ([g, gn]) = φ(g−1g−1
n ggn) = −φ(g−1gng) + φ(gn)
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So φ factors through Gn/Gn+1 if and only if it is G-invariant. It follows that

Hom(Gn/Gn+1,Fp) = Hom(Gn,Fp)G = H1(Gn,Fp)G.

This can be recognised as one of the terms in the Five Term Exact Sequence
for the short exact sequence of groups

1→ Gn → G→ G/Gn → 1

The Five Term Exact Sequence, along with the functorial behaviour of the map
f on cohomology, gives us a commuting diagram (where all coefficient modules
are Fp):

H1(G/Gn) H1(G) H1(Gn)G H2(G/Gn) H2(G)

H1(G′/G′n) H1(G′) H1(G′n)G
′

H2(G′/G′n) H2(G′)

By hypothesis, the second vertical map is an isomorphism and the fifth map is
an injection; by induction the first and fourth maps are isomorphisms; thus by
the Five Lemma7, the central map is an isomorphism also. Hence Gn/Gn+1

∼=
G′n/G

′
n+1.

Finally, we conclude the induction by noting that f now gives a commuting
diagram

1 Gn/Gn+1 G/Gn+1 G/Gn 1

1 G′n/G
′
n+1 G′/G′n+1 G′/G′n 1

∼= fn+1 fn∼=

which shows that fn+1 is an isomorphism as required.

Corollary 5.4.21. Let G be a finitely generated pro-p group of cohomological
dimension 1. Then G is a free pro-p group.

Proof. Let F be a topologically finitely generated free pro-p group of rank equal
to the minimal size of a generating set for G. Then there is a surjection f : F →
G such that the corresponding map

f∗ : F/Φ(F )→ G/Φ(G)

is an isomorphism, where Φ denotes the Frattini subgroup. Since all maps from
G to Fp factor through the Frattini quotient, we find that Hom(G/Φ(G),Fp) =
H1(G,Fp) and that

f∗ : H1(G,Fp)→ H1(F,Fp)

is an isomorphism. Since H2(G,Fp) = 0, the map f∗ on H2 is injective, so by
the theorem f is an isomorphism.

In fact we have a bonus theorem with exactly the same proof as Theorem
5.4.20!

7You met this in Algebraic Topology: the proof is simply a matter of a diagram chase.
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Theorem 5.4.22. Let G and G′ be finitely generated abstract groups. Let
f : G→ G′ be a homomorphism. Assume that

f∗ : H1(G′,Fp)→ H1(G,Fp)

is an isomorphism and

f∗ : H2(G′,Fp)→ H2(G,Fp)

is an injection. Then G and G′ have isomorphic pro-p completions.

Proof. Once again let Gn be the nth term of the lower central p-series. Then
the pro-p completion of G is the inverse limit lim←−G/Gn. The rest of the proof
proceeds as in the previous theorem.

Example 5.4.23. Let G be the group with presentation

G = 〈x1, x2 | x1x2x
−1
1 x−1

2 x1〉

from Example 5.3.5. By the argument in that example (with Z replaced by Fp),
we have H2(G,Fp) = 0. The abelianisation of G is easily seen to be isomorphic
to Z, and generated by the image of x2. Then the map Z → G, 1 7→ x2 satisfies
the conditions of the theorem and shows that the pro-p completion of G is
isomorphic to Zp.

5.4.2 Presentations of pro-p groups

We will now consider for a short time a little of the theory of group presentations
for pro-p groups, in order to contrast with the theory of discrete groups. Many
of the definitions may be made for general profinite groups just as well, but we
will be able to prove more about the pro-p world and introducing both would
lead to more confusion than it’s worth.

Definition 5.4.24. Let X be a finite set and let F be the free pro-p group
generated by X. Let R be a set of elements of F . The pro-p group with
presentation

bX |Rcp
is defined to be

G = F/〈〈R〉〉,

the quotient of F by the closed normal subgroup generated by R.

Remark 5.4.25. Note that the elements of R need not be elements of the discrete
free group generated by the xi—i.e. you may not be able to write them down.
For example the free group Z3 has an element κ such that 2κ = 1, but you can’t
write κ down in a finite way.

Remark 5.4.26. The use of symbols bX |Rcp is not the standard convention; so
far as I’m aware the standard notation uses 〈X |R〉, just as for discrete group
presentations. I decided to introduce new notation to reduce the chance of
confusion.

First we note an easy relation of normal presentations to pro-p presentations.
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Lemma 5.4.27. Let Fdisc be the free discrete group generated by X. Let R ⊆
Fdisc. Let Γ be the discrete group

Γ = 〈X |R〉

and let G be the pro-p group

G = bX |Rcp.

Then G is the pro-p completion of Γ.

Proof. The natural inclusion Fdisc → F induces a group homomorphism Γ →
G since obviously 〈〈R〉〉Fdisc ⊆ 〈〈R〉〉

F
. This in turn gives a natural surjection

ι : Γ̂(p) → G.

To show ι is an injection, let x ∈ Γ̂(p)r{1}. Then there is a map f : Γ̂(p) → P
a finite p-group P such that f(x) 6= 1. This yields a homomorphism

f̄ : F disc → Γ→ Γ̂(p) → P

such that the image of R is trivial. Then the extension of f̄ to a continuous map
F → P also kills R, and hence kills 〈〈R〉〉. Hence we get a natural map G→ P
such that

Γ̂(p) G

P

commutes. It follows that ι(x) 6= 1 as required.

We have already seen that the first cohomology controls the number of ele-
ments needed to generate a pro-p group, since

H1(G,Fp) ∼= Hom(G,Fp) ∼= Hom(G/Φ(G),Fp)

where Φ(G) is the Frattini subgroup. We can also ask how many relations we
need to impose to write down a presentation for G with a given generating set.

Theorem 5.4.28. Let G be a topologically finitely generated pro-p group and
let X be a finite topological generating set for G. Let rX be the minimal size of
a set R ⊆ F (X), where F (X) is the free pro-p group generated by X, such that

G = bX |Rcp.

Then
|X| − rX = dimFp H

1(G,Fp)− dimFp H
2(G,Fp).

Remark 5.4.29. There is a slight ambiguity in the notation here, since a par-
ticular presentation does not really specify how the generating set X maps to
the group (even if we use the same letters). A more precise way to state the
theorem would be to note that the generating set X specifies a surjective map
F (X) → G whose kernel is a closed normal subgroup N of F (X). Then rX is
the smallest size of a set R such that N = 〈〈R〉〉.
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Remark 5.4.30. Before proving this theorem, I will remark how different the
situation is for presentations of discrete groups. Again, for a group Γ and a
finite generating set X of Γ, let ρX be the smallest cardinality of a set R in the
free group on X such that

Γ = 〈X |R〉

The theorem above says that in pro-p groups, |X| − rX is a constant value,
and tells us what this value is. For infinite discrete groups it is known that
|X|−ρX does depend on the generating set X, even to the extent that different
generating sets of the same size can have different ρX . Both these questions
seem to be open for finite groups.

Another interesting question concerns finite p-groups. If G is a finite p-
group with generating set X, need it be true that ρX = rX? There is an
obvious inequality: rX ≤ ρX since every discrete presentation G = 〈X |R〉 for a
finite p-group G is also a pro-p presentation G = bX |Rcp. Does equality hold?
Astonishingly this seems to be an open question! Much is deep and unknown
about presentations of groups. Seen in this light Theorem 5.4.28 becomes rather
more surprising!

Let us embark on the proof. First some topology.

Lemma 5.4.31 (Non-examinable). Let G and L be non-trivial profinite groups
and assume that L acts continuously on G—so that there is a continuous func-
tion L × G → G giving the action (g, l) 7→ l · g. Then G has a proper open
normal subgroup which is invariant under the action of L.

Proof. Let U be an open normal subgroup of G. We claim that

L̃ = {l ∈ L | l · U = U}

is open in L. If we assume the claim, then L̃ has finite index in L, so there are
only finitely many subgroups of G of the form l · U . The intersection

⋂
l · U

is now an intersection of finitely many open normal subgroups of G—so is an
open normal subgroup of G, and it is certainly L-invariant as required.

It remains to prove the claim. Let ρ : L × G → G denote the action. Fix
l ∈ L̃. We must find an open neighbourhood of l inside L̃. For each u ∈ U
we have (l, u) ∈ ρ−1U . Since ρ is continuous, there are open sets Au ⊆ L and
Bu ⊆ U such that (l, u) ∈ Au × Bu ⊆ ρ−1(U). Now, U is compact, and the
open sets Bu cover U—hence there is a finite subcover. Take u1, . . . , uk such
that U =

⋃
Bui . Let A =

⋂
Aui . This is a finite intersection, so is an open

subset of L containing l. But if a ∈ A and v ∈ U , then v ∈ Bui
for some i, so

that a · v ∈ ρ(Aui
×Bui

) ⊆ U . Hence A ⊆ L̃, and L̃ is open as claimed.

Lemma 5.4.32 (Non-examinable). Let F be a pro-p group and let N be a closed
normal subgroup of F . There exists a set R of size r which generates N as a
closed normal subgroup of F if and only if

dimFp H
1(N,Fp)F/N ≤ r.

Proof. First we will put the quantity on the left into a more manageable form.

H1(N,Fp)F/N = Hom(N,Fp)F/N

= {φ : N → Fp | φ(fnf−1) = φ(n) ∀n ∈ N, f ∈ F}
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Now, if N = 〈〈R〉〉, where R is a finite set, then a map φ ∈ H1(N,Fp)F/N is
determined by its image on R, so certainly there is an injection

H1(N,Fp)F/N ↪→ F|R|p

from which the inequality

dimFp H
1(N,Fp)F/N ≤ r

follows.
Now suppose that

dimFp H
1(N,Fp)F/N = r;

we will find a set R which normally generates N and such that |R| = r. Any
map from N to Fp factors through N/Φ(N). If it is F -invariant then it also
factors through N/Φ(N)[N,F ]. This latter is an Fp-vector space to which
H1(N,Fp)F/N is dual. Therefore there exists a set R of r elements of N which
yield a basis of N/Φ(N)[N,F ], to which a given basis of H1(N,Fp)F/N is dual.
Then any map φ ∈ H1(N,Fp)F/N which vanishes when restricted to R is zero.

We will show that this implies that N = 〈〈R〉〉.
Let N ′ = 〈〈R〉〉 and suppose N ′ 6= N . Then N ′Φ(N) 6= N , and so M =

N/Φ(N)N ′ 6= 0. This latter group is a non-trivial abelian pro-p group with a
continuous F -action, so by Lemma 5.4.31 there is an F -invariant open normal
subgroup U of M . Then M/U is a finite pro-p F -module, and so by Proposition
5.4.17 there is an F -invariant map M/U → Fp. This gives in turn a non-
trivial F -invariant map N → Fp, which vanishes on N ′, and hence on R. This
contradiction concludes the proof.

Proof of Theorem 5.4.28. Let X be a generating set for G and let N be the ker-
nel of the natural map F (X)→ G. Then rX is the size of a minimal generating
set for N as a closed normal subgroup of F = F (X). By the previous lemma,
we have

rX = dimFp H
1(N,Fp)F/N

Now apply the Five Term Exact Sequence. Since F (X) is free pro-p, and thus
of cohomological dimension 1, the five term exact sequence takes the form

0→ H1(G,Fp)→ H1(F,Fp)
α→ H1(N,Fp)F/N

β→ H2(G,Fp)→ H2(F,Fp) = 0

Consider the image of the map marked α. By the rank-nullity theorem this is
equal to

dimFp im(α) = dimFp H
1(F,Fp)− dimFp H

1(G,Fp) = |X| − dimFp H
1(G,Fp)

On the other hand, by exactness the image of α equals the kernel of β; again
the rank-nullity theorem implies

dimFp im(α) = dimFp H
1(N,Fp)F/N −dimFp H

2(G,Fp) = rX−dimFp H
2(G,Fp)

Equating these two formulae and re-arranging completes the proof of the theo-
rem.
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