1 Let $\widehat{\mathbb{Z}}$ denote the profinite integers and let \mathbb{Z}_p denote the *p*-adic integers for *p* a prime number. Throughout this question you may freely use the Chinese Remainder Theorem.

- (a)(i) Prove that the ring \mathbb{Z}_p has no zero-divisors.
 - (ii) Let $n \in \mathbb{Z}$. Show that n is not a zero-divisor in $\widehat{\mathbb{Z}}$.
 - (iii) Let $n \in \mathbb{Z}$ and $\alpha \in \widehat{\mathbb{Z}}$. Show that if $\alpha n \in \mathbb{Z}$ then $\alpha \in \mathbb{Z}$.
- (b)(i) Let $(G_i)_{i \in I}$ be an inverse system of finite groups, let $G = \varprojlim G_i$ and let $p_i \colon G \to G_i$ be the projection map. Let H be a subgroup of G. Show that H is closed if and only if $H = \varprojlim p_i(H)$.
 - (ii) Is \mathbb{Z} a closed subgroup of $\widehat{\mathbb{Z}}$?
 - (iii) Show that $\widehat{\mathbb{Z}}/\mathbb{Z}$, equipped with the quotient topology, is a torsion-free compact group. Prove that it is not a profinite group.

(c) Show that $\alpha \in \widehat{\mathbb{Z}}$ topologically generates $\widehat{\mathbb{Z}}$ if and only if α does not equal $p\beta$ for any prime number p and any $\beta \in \widehat{\mathbb{Z}}$.