$1 \quad$ Let $\widehat{\mathbb{Z}}$ denote the profinite integers and let \mathbb{Z}_{p} denote the p-adic integers for p a prime number. Throughout this question you may freely use the Chinese Remainder Theorem.
(a)(i) Prove that the ring \mathbb{Z}_{p} has no zero-divisors.
(ii) Let $n \in \mathbb{Z}$. Show that n is not a zero-divisor in $\widehat{\mathbb{Z}}$.
(iii) Let $n \in \mathbb{Z}$ and $\alpha \in \widehat{\mathbb{Z}}$. Show that if $\alpha n \in \mathbb{Z}$ then $\alpha \in \mathbb{Z}$.
(b)(i) Let $\left(G_{i}\right)_{i \in I}$ be an inverse system of finite groups, let $G=\lim _{i}$ and let $p_{i}: G \rightarrow G_{i}$ be the projection map. Let H be a subgroup of G. Show that H is closed if and only if $H=\underset{\varliminf}{\lim } p_{i}(H)$.
(ii) Is \mathbb{Z} a closed subgroup of $\widehat{\mathbb{Z}}$?
(iii) Show that $\widehat{\mathbb{Z}} / \mathbb{Z}$, equipped with the quotient topology, is a torsion-free compact group. Prove that it is not a profinite group.
(c) Show that $\alpha \in \widehat{\mathbb{Z}}$ topologically generates $\widehat{\mathbb{Z}}$ if and only if α does not equal $p \beta$ for any prime number p and any $\beta \in \widehat{\mathbb{Z}}$.

