
Introduction to Pure
Mathematics

Sets, Functions and Relations

This introductory course is intended for first-year students, to
provide a good grounding in the essential language of pure math-
ematics, establish the notation used and point out common mis-
conceptions. Course information and further study skills docu-
mentation are available from the Faculty website.

Dr Gareth Wilkes Revised August 29, 2024

https://www.maths.cam.ac.uk/undergrad/undergrad

Introduction

One of the biggest jumps from school mathematics to university mathematics
is in the level of abstraction required, particularly in ‘pure’ mathematics.
Part of the difficulty of this transition is that the language and style of that
mathematics change at the same time as you are trying to learn new material,
like group theory or number theory.

This short introductory course is intended to assist with that transition.
We will discuss the fundamental terminology in terms of which all other
mathematics is phrased – sets, functions and equivalence relations. It is, in
a sense, a course about ‘concepts shorn of content’.

Sets and functions are the foundations of all branches of mathematics.
Once you are familiar with the basic manipulations and language of these
objects, you can go on to explore more interesting mathematical concepts.
That is, once you have the ‘words’ of the language of mathematics, you can
begin to combine them into ever more interesting and meaningful mathemat-
ical ‘sentences’.

Much of the material covered in this course will also be covered at some
point during your ‘Numbers and Sets’ course. However I, in collaboration
with other experienced supervisors and Directors of Studies in the University,
feel that it will be beneficial to meet these concepts in detail in a dedicated
course at the beginning of your university education. You will then be better
prepared for all your courses, and will have a better understanding when
these concepts arise in other courses like Numbers and Sets.

One final comment: on the use of mathematical symbols as abbreviations
for logical terms. The symbols ‘∀’ and ‘∃’ for ‘for all’ and ‘there exists’
often cause more confusion for new students than they are worth. Once you
are more used to writing formal mathematical sentences, you can begin to
abbreviate them using symbols. However for this introductory course I have
chosen to avoid using these abbreviations. This makes the mathematics a
little wordy at times, and you could consider which points the use of these
symbols might make things look cleaner. I have written more fully about the
use and interpretation of the symbols ∀ and ∃ elsewhere1.

As for other logical symbols, ‘⇔’ and ‘⇒’ are rather less troublesome –
provided they are used correctly – but I have still written them in words as
‘if and only if’ and ‘implies’ in this guide.

The formal logic symbols ‘∧’, ‘∨’ and ‘¬’ for ‘and’, ‘or’ and ‘not’ seldom do
anything but make your mathematics more difficult to read – and remember,
mathematics is intended to be read by humans, not computers. I never use

1‘A Brief Guide to Mathematical Writing’, available here.

i

https://libguides.cam.ac.uk/maths/studyskills

∧, ∨ or ¬ in my own writing, however advanced the level.

ii

How to use these notes

These notes, like all lecture notes, are intended to accompany the lectures
rather than replace them. There is no expectation that you will have read
these notes before the lectures. Some students find it beneficial to annotate
a copy of the notes during the lectures rather than making their own notes;
but for most, these typed notes will be most used after the lectures, as a
means to supplement their own notes or as a reference for the future.

Throughout these notes there are various exercises. They are placed at
their logical positions amid the material, but are also gathered onto a separate
worksheet for easier reference. No solutions will be provided; if you find an
exercise challenging, discuss it with another mathematician – either your
fellow students or a supervisor. This is a much better way to understand
something confusing than being given the solution on a piece of paper.

In common with many things at university-level study, the amount of
effort you put into these exercises is up to you. Ignore them, and you cannot
benefit from them; attempt them and you may learn something. This is,
after all, your degree and no one else’s.

Scattered throughout this document are comments and exercises in
boxes like this one. These are intended to be more advanced, subtle
or obscure points of mathematics. Read them if you are comfortable
with the main material and are interested; otherwise they may be
safely ignored.

iii

Contents

Introduction i

How to use these notes iii

1 Sets 1
Specifying a set . 1
Equality of sets . 3
More set constructions . 4

2 Functions 9
Equality of functions . 10
‘Well-defined’ functions . 13
Injectivity and surjectivity . 15
Images and pre-images . 17

3 Equivalence relations 20
Equivalence classes and well-defined functions 23

iv

1 Sets

What is a set? We could try to say something like ‘a set is a collection
of objects’ as a definition, but that only begs the question of ‘what is a
collection?’. In fact, mathematics begins with two things that cannot be
defined – because there are no concepts more basic to define them in terms
of. We have an idea called a ‘set’, and a concept called ‘being an element of
a set’. The sentence ‘x is an element of A’ is written x ∈ A. Everything else
in mathematics can be defined beginning from these two concepts.

Specifying a set

The simplest way to write a set is to list all its elements, between a pair of
braces. So A = {1, 2, 3} is the set whose elements are 1, 2 and 3 (and nothing
else). The set {} with no elements at all is called the empty set, written ∅.

Of course, writing a set so explicitly does seem to require that you know
all its elements in advance. More commonly you may see a set in which
each element is given a ‘label’. For example, if you knew that a set A had
four elements, you might very naturally label them with the natural numbers
from 1 to 4 and write

A = {a1, a2, a3, a4}.

If I had said ‘117’ instead of ‘4’, obviously I wouldn’t want to write out 117
symbols. We would instead describe the elements of our set as ‘the elements
ai where i ranges from 1 to 117’. This kind of expression is what may be
called an indexed set. If I is the set of labels used (the ‘indexing set’) then
we may write

A = {ai | i ∈ I}

to say that we have labelled the elements of A as ai, where we have one
element of A labelled with each element i of I. It is not guaranteed that
these elements are all different; perhaps we do not yet know enough about A
to list its elements with no repetitions, so we may have given some elements
several labels.

Very commonly, as above, I is the set of natural numbers, or a subset of
it. For the sake of laziness we often use an ellipsis . . . to specify a range of
integers. Our first example above may be written

A = {a1, a2, a3, a4} or {a1, . . . , a4} or {ai | i ∈ {1, . . . , 4}}.

1

One might also see2

A = {ai | 1 ≤ i ≤ 4}.

Similarly, for a whole sequence of elements labelled by the natural num-
bers3, we may write

A = {a0, a1, a2, . . .} instead of A = {ai | i ∈ N}.

However there is no reason for I to be limited to a collection of natural num-
bers. Perhaps A has its elements indexed by the real numbers; for example,
the unit circle in the complex plane may be written

S = {eiθ | θ ∈ R}.

In this case, every element has received infinitely many labels: for instance,
the element 1 = ei0 = e2πi is labelled by θ = 0 and θ = 2π, among others.

Indexed sets are generally used as a way of labelling the elements of a pre-
existing set. Very often, of course, we will want to construct new sets from
old ones. Perhaps the most common way to do this is to define a set using
a property. Such a construction starts with some ‘known’ set and builds a
new set by taking only those elements which satisfy a certain property. The
general format is {x ∈ X | x is . . .}.

For example, here are three ways of specifying the set of even natural
numbers.

E = {0, 2, 4, 6, . . .} (explicit listing)

= {ai | i ∈ N}, where ai = 2i (indexed set)

= {n ∈ N | 2 is a factor of n} (property).

Notation. The same symbol | is used for both an indexed set and a set
defined by a property. This symbol can be read ‘where’ or ‘such that’ de-
pending on context (and what sounds nicest). Many mathematicians use a
colon : instead of a pipe |, or use both symbols interchangeably, or try to
reserve one for indexed sets and one for sets defined by a property. I prefer
the pipe for my part, but I may be in the minority.

2This is, strictly speaking, ambiguous; is the indexing set here just {1, 2, 3, 4} or does
it include every real number between 1 and 4?

3Whether the set N includes the number 0 depends a bit on to whom you are talking
and what branch of mathematics you are studying. For pure set theory, 0 is generally
included in N. In contexts where sequences are being studied, like Analysis, we usually
start N with the element 1 so that a sequence reads (a1, a2, a3, . . .).

2

There is a good reason for insisting that sets defined by a property
should be subsets of an already existing set – to avoid paradoxes. One
famous example is Russell’s Paradox. Suppose you try to definea the
‘set’

A = {x | x /∈ x},

the ‘set of all sets that are not elements of themselves’. The fatal
question is whether A is an element of itself. Each of A ∈ A and
A /∈ A implies the other, an impossibility which means that the set
A cannot exist. This also means we cannot have a ‘set of all sets’, as
such a thing would contain A as a subset.

aThe slash through the membership symbol turns it into a negative, /∈ ‘is not
an element of’.

Equality of sets

Throughout the above discussion we have been using the symbol = to say
that two sets are equal. It is worth pausing to dwell on what exactly equality
of sets means.

Definition. Two sets A and B are equal, written A = B, if they have the
same elements; that is,

x ∈ A if and only if x ∈ B.

The set A is a subset of B, written A ⊆ B, if every element of A is an
element of B:

x ∈ A implies x ∈ B.

Thus A = B if and only if A ⊆ B and B ⊆ A.
This last statement is no mere tautology: it is very often how you actually

prove two sets are equal. Take an arbitrary element of A, and prove it belongs
to B. Then take an arbitrary element of B and prove it belongs to A.

Observe that set equality only cares about which elements belong to a
set, not ‘how many times they were included’. The sets

A = {1, 2} and B = {1, 1, 2, 2, 2, 1}

are the same: every element of A is an element of B and vice versa. A
variant notion of ‘set’ where we care about the possibility of including an
element more than once is called a ‘multiset’, but that is a different branch
of mathematics.

3

Note that only which elements belong to a set matter, not the way in
which that set was defined. Very often new students will write monstruous
manipulations of entire sets: trying to turn the conditions or properties which
defined A into the conditions or properties that defined B. It is usually far
better to take the elements one at a time.

Conversely, to show that two sets are different, you only need to find a
single element of one set that does not belong in the other. Saying that
the properties defining the two sets are different is not enough; for example,
‘being an odd prime’ and ‘not being a power of 2’ are very different properties
in general, but the two sets

A = {x ∈ {1, . . . , 5} | x is an odd prime}
B = {x ∈ {1, . . . , 5} | x is not a power of 2}

are equal – they have the same elements 3 and 5.
Meanwhile, to show that the sets

A = {x ∈ {1, . . . , 7} | x is an odd prime}
B = {x ∈ {1, . . . , 7} | x is not a power of 2}

are not equal, no grandiose argument about why being prime and not being
a power of 2 are different is needed. Simply point out that 6 ∈ B but 6 /∈ A.

More set constructions

So far, we have built our sets by taking subsets of things we already know
about. There are other ways to build new sets from old ones. You probably
have seen these before, but it is worth recapping them to establish all the
notation properly.

Unions

Take a set of sets A – that is, each element A ∈ A will be a set. Let us write
A as an indexed set A = {Ai | i ∈ I}. We can form the union of the sets Ai

– the set of all elements which belong to at least one Ai. The notation for
the union is

⋃
i∈I Ai, so we may express this definition by writing:

x ∈
⋃
i∈I

Ai if and only if there exists i ∈ I such that x ∈ Ai.

4

If we haven’t chosen an indexing for the set A, one may see the union
written simply4 as ⋃

A∈A

A.

There are variant notations in the case when I is a subset of the natural
numbers, with which you may be more familiar. If I = {1, 2}, so that A
contains just two sets A1 and A2, we write A1 ∪ A2 for the union. For
I = {1, . . . , n} we may write any of

⋃
i∈I

Ai or
n⋃

i=1

Ai or A1 ∪ · · · ∪ An;

all of these mean exactly the same thing.
When I = {1, 2, 3, . . .} we can imitate the notation for an infinite sum by

writing ⋃
i∈I

Ai =
∞⋃
i=1

Ai.

I advise against writing ‘A1∪A2∪ · · · ’. This makes it look like there is some
sort of limiting process happening, which there isn’t – the union happens ‘all
in one go’.

Intersections

Similarly, take a non-empty set of sets A = {Ai | i ∈ I}. We can form the
intersection of the sets Ai – the set of all elements which belong to every Ai.
The intersection is written with the symbol

⋂
, so now we have the definition

x ∈
⋂
i∈I

Ai if and only if x ∈ Ai for all i ∈ I.

Exercise. Why did I insist that A was non-empty? What happens
if I is the empty set ∅? What would happen for a union?

Once again, there are several variant notations. We may write:

�

⋂
A∈AA if A has not been indexed; or

�

⋂n
i=1Ai or A1 ∩ · · · ∩ An if I = {1, . . . , n}; or

�

⋂∞
i=1Ai if I = {1, 2, 3 . . .}.

4Or even more briefly as
⋃
A, which I personally don’t use – I think it is so terse as to

be confusing.

5

Complements

In school you may have been taught the pernicious notation Ac for the com-
plement of a set A – the set of ‘everything not in A’. This is bad notation
and should be avoided in most cases.

Why do I say this is bad notation? Consider the set E of even natural
numbers. What is the ‘complement’ Ec? The ‘set of odd numbers’ is a
sensible guess. But what about 1/2? Shouldn’t 1/2 be in there? What
about

√
−1? What about a fluffy unicorn? All of these are ‘things that are

not even numbers’, so shouldn’t they be in the complement Ec?
The point I am trying to make is that the notation Ac is too vague, and

generates a ‘set’ that is ‘too large’ (see the box on Russell’s paradox above).
The phrase ‘the set of everything not in A’ needs to tell us what sort of
‘thing’ we’re considering: that is, a complement is an operation of two sets,
not one.

Given two sets X and A, the complement X ∖A is the set of all elements
of X which are not in A:

X ∖ A = {x ∈ X | x /∈ A}.

Note that it is not necessary for A to be a subset of X in this definition,
although it often will be. As an example, it is perfectly sensible to write

{prime numbers}∖ {odd numbers} = {2}.

Not every odd number is prime, but this is irrelevant; all we are doing is
taking the set of prime numbers and removing all those prime numbers which
happen to be odd.

Exercise. Find an example to show that

X ∖ (A∖B) = (X ∖ A) ∪B

need not always be true. Think of a condition that guarantees the above
equation must hold.

Notation. There are several other symbols used for complement; as well as
X ∖A you will also meet the notations X −A and X \A. The minus sign −
is fine but occasionally looks a little misleading; sometimes students expand
X−(A−B) to something like (X−A)∪B because it looks like a subtraction,
but this equality is false in general.

The more steeply tilted backslash X \ A is also used in some branches
of mathematics – in particular Group Theory – for an operation of ‘taking

6

a quotient on the left’. You may well see this used for a set of cosets. It is
usually clear from context which use is meant, but it is good to be aware of
the conflict. For this reason I generally write my set subtractions with a 45
degree slash X ∖ A.

The notation X/A – a forward slash – is definitely wrong.

In spite of my criticisms, one may still see the notation Ac in use; most
commonly in Probability and related topics, where the overarching set X is
fairly obvious.

In common with all mathematical notation however, it is ultimately yours
to use however you like, provided it is clearly defined. If you are about to
answer a question where you know you’ll have to write X ∖ A a hundred
times, it will save considerable ink to say ‘in this question Ac means X ∖A’
at the start. Once you have defined the notation, you are free to use it.

Products

An ordered pair is a pair of objects (a, b), regarded as a single ‘symbol’ in its
own right. Two ordered pairs (a, b) and (a′, b′) are equal if a = a′ and b = b′.

Given two sets A and B, the (Cartesian or direct) product A × B of A
and B is the set of all ordered pairs (a, b) where a ∈ A and b ∈ B:

A×B = {(a, b) | a ∈ A and b ∈ B}.

Notation. Observe that the same notation is used for an ordered pair (a, b)
and for an open interval. If I just write (0, 1) with no context at all, it is
unclear whether I mean the point (0, 1) ∈ R× R or the open interval

(0, 1) = {x ∈ R | 0 < x < 1}.

This is why we must be careful with our definitions in mathematics – we do
not have enough symbols to give everything a unique meaning. Including
extra words in your mathematics can help – if I say ‘the interval (0, 1)’ then
I remind the reader what sort of object (0, 1) is.

7

I claimed earlier that everything in mathematics can be defined in
terms of sets and the relation ∈; but I seem to have broken that
promise by introducing the new symbol (a, b). The key word was
‘can’ be defined. In the most formal set logic courses, the ordered
pair (a, b) is defined as the set

(a, b) = {{a}, {a, b}}.

You can check for yourself that this construction has the claimed
property: (a, b) = (a′, b′) if and only if a = a′ and b = b′.
So an ordered pair can be defined in terms of set operations; but no
one in their right mind would actually think about an ordered pair
in this way.

Similarly, if one has n sets A1, . . . , An then one can form the product of
all the Ai to be the set of ‘ordered n-tuples’:

n∏
i=1

Ai = A1 × · · · × An = {(a1, . . . , an) | ai ∈ Ai}.

We do not usually worry much about the bracketing here (‘associativity
of ×’): (A × B) × C, A × (B × C) and A × B × C are usually regarded as
essentially the same5, even though the elements of each look slightly different:
((a, b), c) versus (a, (b, c)) versus (a, b, c). Sometimes you want to leave the
brackets in, if you’re treating the different sets in different ways.

Note however that A × B and B × A are usually different sets, as they
have different elements: the ordered pair (a, b) ∈ A×B is not an element of
B × A unless a ∈ B and b ∈ A.

When the sets in a product are equal, we often write A × A = A2, A ×
A× A = A3, and so on.

Exercise. Work out what the word ‘usually’ means in the sentence above.
That is, when is A×B = B × A true? Be careful...

One can also try to define products of infinite families of sets. For
instance, if we have one set Ai for each i = 1, 2, 3 . . . then

∏∞
i=1Ai is

the set of all sequences (a1, a2, a3, . . .) where ai ∈ Ai. Infinite products
can run into some weird issues of foundational logic, however, so I’m
leaving them out of the ‘introductory’ course.

5In language we will meet later, there are ‘canonical bijections’ between them.

8

Power sets

If A is a set, then we can form the power set P(A) of A to be the set of all
subsets of A:

B ∈ P(A) if and only if B ⊆ A.

Note that the empty set ∅ is always an element of P(A).

2 Functions

One often reads definitions of the word ‘function’ along the lines of:

Definition. A function f : X → Y is a rule that assigns to each element x
of X an element f(x) of Y .

This will do for now, but I dislike the word ‘rule’ here. It would be better
to have a nondescript word like ‘object’ instead of ‘rule’ – this sounds more
vague, but is less misleading. I will explain the issue with the word ‘rule’
shortly.

Whatever word we use, the key point is that to define a function f we
need to specify three things:

� a set X, called the domain of f ;

� a set Y , called the codomain of f ; and

� for every element x ∈ X, a single element f(x) ∈ Y , called the value
of f at x.

All three of these things are necessary; simply writing ‘the function f(x) = x2’
is not a sufficient definition. The sets are an important part of the definition,
especially the domain. The domain tells us the set of values that can be
‘fed to’ the function f as an input. The codomain tells us the set of possible
values f(x) could conceivably take, but there is no claim that all these values
are actually given by f(x) for some x.

Note also that the function is called ‘f ’, not ‘f(x)’. The symbol f(x)
refers to a single value of the function f evaluated at the point x. This may
seem like pedantry, but becomes very important if, for example, Y is a col-
lection of functions.

9

Again, having claimed that ‘set’ and ‘element’ should be the only
undefined terms in mathematics, I seem to be breaking the rules
when I use a word like ‘rule’ or worse, ‘object’. There is, in fact,
a way to say what a function is in terms of set theory. A function
f : X → Y may be defined as a subset f ⊆ X×Y such that for every
x ∈ X there is exactly one y ∈ Y such that (x, y) ∈ f ; that element y
is then called f(x). As with the formal definition of ‘ordered pair’, it
is almost never useful to work with this definition – although it does
justify the notion of ‘equality of functions’ I will define below.

The two most common ways of writing a function definition are via an
equation ‘f(x) = . . .’, viz.:

Define f : R → R by f(x) = x2 − 1.

or using the symbol 7→, read as ‘which maps . . . to . . .’:

Define f : R → R, x 7→ x2 − 1.

These sentences have exactly the same meaning.

Equality of functions

Just as we did with sets, we must define what it means for two functions to
be ‘the same’.

Definition. Two functions f and g are equal if they have the same domain
and the same value at every point of that domain.

You may possibly have been expecting the codomain to appear here too.
It is part of the definition of a function, but is not usually important for
the statement f = g. The codomain is most important for knowing when
a composition is valid, and in questions of surjectivity (see below for both
these cases).

This definition explains why the word ‘rule’ is misleading in the definition
of the word ‘function’. Consider the following three functions.

f : {0, 1} → R g : {0, 1} → C h : R → R
x 7→ x x 7→ x2 x 7→ x2

The functions f and g are certainly different ‘rules’ or ‘formulas’; you are
doing different things when computing values of f and g. However f and g
have the same domain {0, 1} and take the same value at every point of that
domain, since 02 = 0 and 12 = 1. So f and g are the same function – there

10

is no way to distinguish the functions f and g. A function is not the same
thing as a formula.

Meanwhile g and h appear to be defined by the same ‘rule’. They are
nevertheless different functions, because they have different domains of defi-
nition: h(2) = 4 is a perfectly sensible value of h, but g(2) is not a permissible
thing to write: it is not defined.

The fact that I happened to write C rather than R for the codomain of
g is not really relevant here; since all the values of g are in R I could have
written g : {0, 1} → R without changing g in any important way.

As with sets, this definition of equality should be borne in mind when
assessing equality of two functions with the same domain: they are equal if
you can prove that they take the same value at every point of that domain.
This may be in the form of a string of equation manipulations; or it may be
a case-by-case breakdown.

To show that two functions on the same domain are not equal, there is no
need for a complicated argument to say why the two formulae you happen to
have used to define f and g are different – all you need to do is find a single
element x of the correct domain such that f(x) ̸= g(x).

In the example above, there is clearly some relationship between the func-
tions g and h. This relationship is expressed through the language of a
‘restriction’.

Definition. Let f : X → Y be a function and let A be a subset of X. The
restriction f |A of f to A is the function

f |A : A → Y

defined by f |A(a) = f(a) for all a ∈ A.

If g : A → Y is a function and g = f |A, we may call f an extension of g to
X. Note the indefinite article here; there is no such thing as ‘the’ extension
of g to X. If you want to extend a function to a larger domain, you have to
define it!

So, in our example above, we have

f = g = h|{0,1}.

If we also included the function k : R → R, x 7→ x, then k|{0,1} = f = h|{0,1}
but k ̸= h since k(2) ̸= h(2).

Composition of functions

If f : X → Y and g : Z → W are functions, and the codomain Y of f is
contained in the domain Z of g, one may form the composition g ◦ f (also

11

written simply gf); this is the function g ◦ f : X → W defined by

(g ◦ f)(x) = g(f(x)).

Note that it is important for the codomain of f to be a subset of the domain
of g – otherwise we do not know that the value f(x) is a valid input to feed
to the function g.

Identity and inclusion maps

Given a set X, the identity map, or identity function, on X is the function

idX : X → X, idX(x) = x.

If A is a subset of X then the inclusion map of A into X is the function

ιA : A → X, ιA(a) = a.

The notation idX is pretty common; the notation ιA is less standard and it
is best to explicitly give an inclusion map a name if you want to use it.

Inclusion maps can be useful for changing the domain and codomain of a
function. Given a function f : X → Y and a subset A of X, we may ‘shrink
the domain of X to A’ by forming the composition f ◦ ιA : A → Y . Observe
that this is exactly the same thing as the restriction of f to A:

f |A = f ◦ ιA.

Indeed, the inclusion map itself is simply a restriction of the identity map:
ιA = idX |A.

We can similarly ‘enlarge the codomain’ of f : if Y is a subset of
Z, and ιY : Y → Z is the inclusion map, then we have a function
ιY ◦f : X → Z. This can be a useful thing to do if you want separate
names for, say, a function f : X → R and the function g : X → C
defined by g(x) = f(x); one could write g = ιR ◦ f . Note that, unlike
with a restriction, f and g have the same domain and the same values
on that domain, so formally they satisfy our definition of ‘equality of
functions’.

Exercise. Let X and Y be non-empty sets such that X has n elements and
Y has m elements (written |X| = n, |Y | = m). How many functions are
there from X to Y ?

12

Exercise. The set of all functions from X to Y is sometimes denoted
Y X . Does this make sense, given your answer to the last exercise?
What is Y X when:

1. Y is non-empty but X = ∅?

2. X is non-empty but Y = ∅?

3. X and Y are both empty?

What does this tell you about the value we ‘should’ assign to the
quantities 10, 01 and 00?

‘Well-defined’ functions

You will often meet the phrase ‘this function is well-defined’ in pure mathe-
matics. This is rather an odd sentence; there is no such thing as a function
which is not ‘well-defined’. This phrase is supposed to mean: “We have
written down something that looks like the definition of a function. It is
well-defined in the sense that it actually is a function: every element of the
domain has been assigned exactly one value in the codomain”.

Often it is fairly obvious that a function is well-defined, and no further
comment is needed. Whenever you define a function, take a moment to
consider whether it is actually well-defined. It may be that you do not need
to say anything; sentences like ‘x = y implies f(x) = f(y) so f is single-
valued’ are a bit strange and unnecessary. But it may be that there is an
issue that you need to address.

It may perhaps be best to show this concept by means of examples.

Example 2.1. Which of the following ‘functions’ is well-defined?

f : [0, 1] → R g : [0, 1] → R

f(x) =

{
x 0 ≤ x ≤ 1/2

2− x 1/2 ≤ x ≤ 1
g(x) =

{
x 0 ≤ x ≤ 1/2

1− x 1/2 ≤ x ≤ 1

Here f is not well-defined – that is, it is not really a function. I have given
‘f(1/2)’ two different values when it should only have one unique value.
For g, we have again defined g(1/2) twice, by different formulae, but since
1/2 = 1 − 1/2 we still have the unique value g(1/2) = 1/2. So g is actually
a function, and we may say ‘g is well-defined’.

13

Example 2.2. Which of these functions is well-defined?

f : R → R∖ {0} g : R → R∖ {0} h : C → C∖ {0}
x 7→ x2 − 1 x 7→ x2 + 4 x 7→ x2 + 4

Here f is not well-defined. Even though each point of the domain has been
assigned a unique value, some of these values are not in the correct codomain:
‘f(1)’ is not an element of R∖{0}. You may protest that f is sensible enough,
as a function from R → R. Indeed it is, but that isn’t what we have written.
Having written f : R → R∖ {0}, we must verify that all values of f actually
lie in the given codomain6.

However, g is well-defined: x2 + 4 is always in R∖ {0} for x ∈ R. If you
defined this function yourself in a question you might add a sentence “note
that x2 + 4 ̸= 0 for all x ∈ R, so g is well-defined”.

Just like f , the ‘function’ h is not well-defined, because it has ‘values’
outside the correct codomain: h(2i) is not in C ∖ {0}. Even though it is
‘defined’ by the same formula as the function g, there is a problem with
h. This reinforces the message that a formula is not the same thing as a
function: the domain and codomain are important too.

Example 2.3. A common one: a plausible-looking formula may fail to define
a function at every point of the domain. The classic example is something
like

f : R → R, x 7→ 1/x

which does not assign any value to x = 0.
What you should not say is something like ‘1/0 doesn’t exist so f(0) is

undefined’ – the failure of f to be well-defined is your fault for not defining
it properly! If f is defined by

f : R → R, f(x) =

{
1/x (x ̸= 0)

117.4 (x = 0)

then f is well-defined! No one is claiming 1/0 = 117.4; again, a function is
not the same thing as a formula!

Example 2.4. Possibly the most important type of problem where ‘well-
defined’ is relevant is any problem where choice is involved. Consider the
following attempt at a function definition.

6This issue comes up often in Group Theory. In some texts you will see an explicit
axiom of ‘closure’ for a group operation ∗, stating g ∗ h ∈ G for g, h ∈ G. Other texts will
leave this more implicit, by stating that (g, h) 7→ g ∗h defines a function G×G → G. The
condition you must check in the two cases is the same!

14

Define f : Q → N by f(x) = q where x = p/q for integers p and
q.

The problem here is that there are many choices for how to write the rational
number x. What value does f(1/2) have? 2? But 1/2 = 2/4, so we also have
f(1/2) = 4! Because we haven’t specified which choice to make, f is not a
well-defined function (that is, it isn’t a function at all).

Watch out for situations where an element may have several different
‘names’, or ‘labels’, or ‘representations’.

In this case, we may fix the function definition by choosing a specific
representation to use; for example by saying x = p/q where q > 0 and p and
q have no common factors. This specifies a unique way of writing x and we
are now comfortable defining f(x) = q.

Here it was possible to be very explicit. Sometimes we simply fix one
choice arbitrarily and use that. We may say ‘for each x ∈ Q choose px, qx ∈ Z
with px/qx = x and set f(x) = qx’. The great disadvantage of this is that,
unless we know which values we chose, we have no idea how to compute f .
This kind of arbitrary choice is common in arguments about the ‘countability’
of infinite sets, which you will meet towards the end of your Numbers and
Sets course.

The other common circumstance in which a function depending on a
choice is well-defined is when it did not, in fact, matter which choice was
made. For example, the function g : Q → Q given by g(x) = (p− q)/q where
x = p/q is well-defined, since (p− q)/q has the same value (x− 1) no matter
which representative fraction we choose for x. We will meet many examples
of this type later when we talk about equivalence relations.

Exercise. ‘Define’ two functions f, g : C∖{0} → R by f(reiθ) = r, g(reiθ) =
θ. Which of these functions are well-defined?

Injectivity and surjectivity

There are several important adjectives that are frequently applied to func-
tions.

Definition. A function f : X → Y is injective if, for all elements x1 ̸= x2

of X, we have f(x1) ̸= f(x2). Equivalently, f is injective if f(x1) = f(x2)
implies x1 = x2.

‘Injective’ is sometimes also called ‘one-to-one’. For an injective function,
each element y ∈ Y is equal to f(x) for at most one x ∈ X. Two different
elements of X are never mapped to the same place by f .

15

Note that injectivity depends critically on the domain of f . The function
f : (0,∞) → R defined by f(x) = x2 is injective, but the function g : R → R
defined by the same formula g(x) = x2 is not injective because g(−1) = g(1).

The adjective ‘injective’ also has a noun form – an injection is an injective
function. The other adjectives defined in this section have similar noun forms.

Definition. A function f : X → Y surjects Y , or is surjective, if for every
element y ∈ Y there exists some x ∈ X such that f(x) = y.

‘Surjective’ is also called ‘onto’. Note that there could be many x ∈ X
which are mapped to each y ∈ Y ; all ‘surjective’ tells you is that there is at
least one such x ∈ X.

Note that while ‘injective’ only cared about the domain, ‘surjective’ de-
pends crucially on both the domain and the codomain used to define f .

For example, the function f : R → R defined by x 7→ x2 is not surjective
because there is no x ∈ R such that f(x) = −1. We aren’t allowed to just
say ‘f(x) = −1 for x = i’ because i is not in the domain of f .

If instead we define the function f : R → [0,∞) by x 7→ x2, then f is
surjective – the value −1 is no longer in the given codomain, so we no longer
care about it.

You may have noticed that the definition of ‘surjective’ causes prob-
lems with our definition of ‘equality of functions’. The two functions
called f in the last two paragraphs are equal, but one is surjective and
one is not. This is because ‘surjective’ depends both on the function
f and a specified choice of codomain for f . If this is ever an issue,
the phrasing ‘f surjects Y ’ may be preferable.

Definition. If f : X → Y is both injective and surjective, then f is called
bijective.

When f is bijective, every y ∈ Y is equal to f(x) for exactly one x ∈ X.
We may then define a function g : Y → X by declaring g(y) to be the unique
value x ∈ X with f(x) = y. This function g is called the inverse of f , written
g = f−1.

Exercise. Prove that f : X → Y is bijective if and only if there is a unique
function g : Y → X such that g ◦f = idX and f ◦g = idY , where idX denotes
the identity function on a set X.

Sometimes writing down such a function g is easier than directly checking
‘injective’ and ‘surjective’.

16

Exercise. Which of the following functions are injective? Which are surjec-
tive?

1. f : C → C, x 7→ x3.

2. f : R → R2, x 7→ (x2, x3).

3. f : R → (0,∞), x 7→ ex.

4. f : (0,∞)× R → C, (x, y) 7→ xeiy.

[Observe the conflict here between the uses of the notation (a, b) that
we mentioned before. Here (0,∞) can only reasonably mean a set – the
open interval {x ∈ R | x > 0}. Meanwhile (x, y) must mean an element
of (0,∞)× R – an ordered pairs with x ∈ (0,∞) and y ∈ R.]

5. f : R → R defined by

f(x) =

{
x (x ≥ 0),

−x3 (x ≤ 0).

We are now in a position to explain what was said earlier about the sets
(A×B)× C and A× (B × C) being ‘essentially the same’: the function

f : (A×B)× C → A× (B × C)

((a, b), c) 7→ (a, (b, c)).

defines a bijection between them.
This function f is an example of what mathematicians call a canonical

bijection. The word ‘canonical’ is another word that mathematicians use
a lot but defies an easy definition. Loosely, it means that no choices are
made in the definition of f , which looks the same no matter which sets we
are dealing with. One may also think of the word ‘canonical’ as meaning
‘the obvious reasonable thing to write down’ – if you asked two reasonable
mathematicians to give you definitions of a canonical object, they will write
down the same thing.

For instance, if you ask two mathematicians to give you ‘the canonical
injection f : Q → R’, they will both write down the function x 7→ x. There
are plenty of other injections from Q to R, but a reasonable mathematician
will never call a weird function like, say, x 7→ x

√
2/π7 the ‘canonical’ injection

Q → R.
Similarly, if A, B and C are sets, there may be many many bijections from

(A × B) × C to A × (B × C) involving all manner of shuffling of elements.
There is only one ‘canonical’ bijection though: the only reasonable, obvious
map to write down which looks the same no matter what A, B and C are is
the canonical bijection f defined above.

17

Images and pre-images

The concepts of injectivity and surjectivity are closely linked to set operations
called the image and pre-image.

Definition. Let f : X → Y be a function.
For any subset A ⊆ X, the image of A under f is the set of all elements

of Y which equal f(a) for some a ∈ A:

imf (A) = {f(a) | a ∈ A}
= {y ∈ Y | there exists a ∈ A with y = f(a)}.

For a subset B ⊆ Y , the pre-image of B under f is the set of all elements
x of X such that f(x) lies in B:

preimf (B) = {x ∈ X | f(x) ∈ B}.

Note how similar the image {f(a) | a ∈ A} looks to an indexed set.
In fact they are essentially the same thing: an indexed set A = {ai |
i ∈ I} is the same thing as a set A with a choice of surjective function
f : I → A, f(i) = ai.

Notation. The notations I have given above are very precise, and cannot
reasonably be confused with anything else. They take the form of an ‘image
function’

imf : P(X) → P(Y)

and a ‘pre-image function’

preimf : P(Y) → P(X).

Unfortunately, no-one really uses these notations. Instead, we ‘overload’ or
‘abuse’ the notation f : we write f(A) = imf (A). Since A is a subset of X,
not an element, we should not really write this, but we do7. That is, we
use the same letter f to denote both the original function f and the image
function imf . Occasionally people will use square brackets to denote the set
operation: f [A] = imf (A).

Meanwhile, the pre-image function preimf gets the notation f−1:

f−1(B) = preimf (B).

7Things get even worse if A is both an element ofX and a subset... what ifX = {x, {x}}
and A = {x}?

18

Writing this does not mean that there actually is an inverse function f−1 to
f ; we have not assumed that f is bijective. We are simply using the same
symbol for the pre-image function, which always exists, as for the inverse
function, which only exists if f is a bijection.

If f actually is bijective, so that the inverse function f−1 : Y → X exists,
the two possible meanings of ‘f−1(B)’ agree:

imf−1(B) = preimf (B) = f−1(B).

Definition. The image8 of the function f : X → Y is the set

im(f) = f(X) = {f(x) | x ∈ X}.

In a sense, the image of f is ‘the smallest sensible codomain for f ’. A
function always surjects its own image.

A function f : X → Y is then surjective if and only if f(X) = Y . Al-
ternatively, f is surjective if and only if9 f−1({y}) is non-empty for every
y ∈ Y .

For y ∈ Y , the set f−1({y}) is the set of all elements x ∈ X such that
f(x) = y. So injectivity can also be expressed using pre-images: a function
is injective if and only if f−1({y}) has zero or one elements for every y ∈ Y .

A function f : X → Y is bijective if and only if f−1({y}) contains exactly
one element for every y ∈ Y – the element f−1(y).

Exercise. As practice in proving set (in)equalities, establish the following
facts about images and pre-images. Let A,A′ ⊆ X and B,B′ ⊆ Y .

1. f−1(B ∩B′) = f−1(B) ∩ f−1(B′)

2. f−1(B ∪B′) = f−1(B) ∪ f−1(B′)

3. f−1(Y ∖B) = X ∖ f−1(B)

4. f(A∩A′) ⊆ f(A)∩ f(A′). Show that equality is guaranteed when f is
injective.

5. f(A ∪ A′) = f(A) ∪ f(A′).

6. f(X ∖A) ⊇ f(X)∖ f(A). Show that equality is guaranteed when f is
injective.

8Some people use the word ‘range’ for the image. Since other people use ‘range’ to
mean ‘codomain’, however, it is best not to use it for either.

9Some people get lazy here and write f−1(y) instead of f−1({y}). I urge you not to do
this unless you really know what you’re doing.

19

7. f−1(f(A)) ⊇ A. Show that equality is guaranteed when f is injective.

8. f(f−1(B)) ⊆ B. Show that equality is guaranteed when f is surjective.

For those facts needing an extra condition to ensure equality, find an example
of a function and sets where the fact fails if f is not injective/surjective. Don’t
overcomplicate matters – always look for ‘small’ examples first.

Similar facts are true when we have arbitrary families {Ai | i ∈ I} and
{Bj | j ∈ J} of subsets of X and Y instead of just two. If you found the
above exercise easy, you may wish to think about the more general case.

3 Equivalence relations

Equivalence relations give a formal way of breaking down a set into several
smaller ‘pieces’ or ‘boxes’. Usually we would like to regard all the elements
in a ‘box’ as sharing some property or looking in some way similar, though
this is not necessary; any way of breaking down a set into ‘pieces’ will yield
an equivalence relation, as we will soon see. Before we define equivalence
relations properly, let us begin with a more mathematical formulation of the
expression ‘breaking down a set into pieces’.

Definition. Let X be a set. A partition of X is a collection of non-empty
subsets A ⊆ P(X)∖ {∅} such that:

�

⋃
A∈AA = X (‘every element of X is in a box’), and

� if A,B ∈ A then A∩B = ∅ unless A = B (‘no element is in more than
one box’).

Notation. This is sometimes phrased as ‘X is the disjoint union of the sets
A ∈ A’, written

X =
⊔
A∈A

A or X =
⋃̇
A∈A

A.

Note that there is now a well-defined function

fA : X → A

defined by f(x) = A, where A is the unique element of A with x ∈ A.

For example, the following are partitions of the set of natural numbers N:

� A = {{even numbers}, {odd numbers}}.

20

� A = {{primes}, {composites}, {0}, {1}}.

� A = {{numbers ending in 0}, . . . , {numbers ending in 9}}.

The set of all Cambridge undergraduate students may be partitioned into
{{Jesus students}, {Selwyn students}, . . .}.

Writing down all the sets of a partition like this, and listing all the ele-
ments of each set, can be a lengthy process and often it may be easier instead
to give a criterion for deciding when two elements of X belong in the same
box. The last example of a partition of N given above would be much better
written by saying ‘two numbers go in the same box if they have the same last
digit’. For the Cambridge college example, instead of listing all the Colleges
and listing all the students in each college, it would be better to say ‘two
students are in the same set if they are in the same college’.

This leads us to the idea of an equivalence relation – a partition of X
allows us to say, roughly, ‘x and y are related if they’re in the same subset
A ∈ A’. What properties would this notion of ‘related’ have? Certainly each
x is in the same box as itself; if x and y are in the same box, then y and x
are in the same box; and if x and y are in the same box, and y and z are
in the same box, then x and z are in the same box. These three properties
show up as conditions (R), (S) and (T) in the formal definition below.

Definition. A relation between a set X and a set Y is a subset R ⊆ X ×Y .
A relation on a set X is a relation between X and itself: a subsetR ⊆ X×X.
We may write xRy instead of (x, y) ∈ R.

A relation R on a set X is an equivalence relation on X if R satisfies the
following three conditions.

(R) ‘reflexive’: xRx for every x ∈ X.

(S) ‘symmetric’: if xRy then yRx.

(T) ‘transitive’: if xRy and yRz then xRz.

If A is a partition of X then the relation ‘xRy if and only if x and y are
in the same set A ∈ A’ is an equivalence relation.

Exercise. For each of the eight possible combinations of (R), (S) and (T),
find a set X and a relation R on X which satisfies those properties but not
the others. Try to keep your set X as small as possible.

Exercise. Consider the following argument.

21

Suppose R satisfies (S) and (T). Let x ∈ X and take some y ∈ X
with xRy. Then by (S) we have yRx, and by (T) these two
conditions force xRx. So (S) plus (T) implies (R).

What do you think of this argument?

Exercise. Let X be the set of all triangles in the plane. Which of the
following relations on X are equivalence relations?

1. xRy if x and y have one equal side.

2. xRy if x and y have the same set of side lengths.

3. xRy if x and y are congruent.

4. xRy if x and y have the same area.

5. xRy if x and y share a vertex.

Do 2 and 3 define the same relation?

We have already seen that partitions give rise to equivalence relations; in
fact the converse is also true.

Definition. Let X be a set and let R be an equivalence relation on X. For
each x ∈ X, the equivalence class of x is the set

[x]R = {y ∈ X | yRx}.

The set of equivalence classes of X modulo R (more rarely ‘the quotient of
X by R’) is the set

X/R = {[x]R | x ∈ X}.

Claim. X/R is a partition of X.

Proof. If x ∈ X then, by property (R), we know x ∈ [x]R. So every element
belongs to some equivalence class, and X is the union of the equivalence
classes.

Now suppose that [x]R ∩ [z]R ̸= ∅. We are required to prove that [x]R =
[z]R. Let y ∈ [x]R ∩ [z]R, so that yRx and yRz. By (S) we also have xRy
so by (T) we have xRz.

For any w ∈ [x]R we have wRx. Applying (T) again we have wRz. So
w ∈ [z]R also. We conclude [x]R ⊆ [z]R. Similarly, [x]R ⊇ [z]R and the two
equivalence classes are equal as required.

22

Note once again that the sets [x]R and [z]R are equal because they have
the same elements. The elements x and z serve as different ‘labels’ for this
one set.

We see that equivalence relations and partitions are two sides of the same
coin. Equivalence relations are often a more powerful mathematical tool:
writing a partition needs us to decide exactly which elements belong to each
set, but writing an equivalence relation only needs us to give rules to decide
when two elements belong in the same set.

Of course, this is not always true; if I partition the set {1, . . . , 7} into

A = {{1, 2, 6}, {4, 5, 7}, {3}},

there is no particularly neat equivalence relation describing this partition.
This example is better specified as a partition rather than an equivalence
relation.

A class of equivalence relations which appears all over the first-year syl-
labus is the following example. Take X = Z and let n be a positive integer.
Define an equivalence relation ∼n on Z by

x ∼n y if and only if n divides x− y.

There are n equivalence classes here; one for each possible ‘remainder mod-
ulo n’. We may choose to label these equivalence classes by the numbers
0, . . . , n − 1, and we often do, but these are only a choice of labels. The
equivalence class [1]∼n could equally well be labelled with n + 1, 2n + 1,
1− n, and so on.

There are many variant notations for this equivalence relation. Perhaps
the most common is

x ∼n y if and only if x ≡ y modulo n,

but there are others as well. In Group Theory you will encounter such nota-
tions as x+ nZ = y + nZ with exactly the same meaning.

The set of equivalence classes Z/∼n is often denoted Zn or, especially
in Group Theory and its relatives, Z/nZ. Note that Z/∼n has exactly n
elements. Each of these elements is an equivalence class; and each equivalence
class is an infinite set of integers.

Equivalence classes and well-defined functions

A very common situation in pure mathematics is the need to define a function
out of a set of equivalence classes. Given sets X and Y and an equivalence
relation R on X, how might we define a function f : X/R → Y ?

23

The natural thing to do is to take an equivalence class and label it by one
of its elements: [x]R. We might then write some expression depending on x;
for instance, a function like

f : Z/∼n → Z/∼n

[x]∼n 7→ [x+ 1]∼n .

However, we have made a choice here. We do not yet know that this function
is well-defined; what if we assigned different values to f([x]R) depending on
which label x we chose?

For such a situation, there are essentially two resolutions. One is to fix
a specific label for each equivalence class and work with that. For example,
for the equivalence relation ∼n on Z, each equivalence class [x]∼n contains
exactly one element r[x] such that 0 ≤ r < n. This gives us an unambiguous
‘label’ for each equivalence class, which can be used to define functions. For
instance, the function

f : Z/∼n → Z, [x]∼n 7→ r[x]

is well-defined; we have said exactly where to send each equivalence class,
and there is no ambiguity in which label we chose.

The other resolution – by far the more common one – is to show that
the value assigned to f([x]R) is actually independent of which choice of label
we made. For example, the function [x]∼n 7→ [x + 1]∼n given above is well-
defined. If [x]∼n = [y]∼n then n divides x − y. But then n also divides
(x+1)− (y+1) so [x+1]∼n = [y+1]∼n . Changing the label from x to y did
not change the value assigned to f([x]∼n), so this function is well-defined.

On the contrary, something like

f : Z/∼7 → Z/∼4, [x]∼7 7→ [x]∼4

is not well-defined. The equivalence class [1]∼7 could be labelled by, among
other things, 1 and 8; but [1]∼4 is not equal to [8]∼4 . So in this case the
output of f depends on a choice of label, and the function is not well-defined
(that is, it is not really a function).

Exercise. For which pairs of integers n and m is the ‘function’

f : Z/∼n → Z/∼m, [x]∼n 7→ [x]∼m

well-defined?

24

In several of the above examples, the codomain Y also happened to be a
set of equivalence classes. This is common but by no means necessary.

You may have noticed that what we really did in the above examples
was to write down a function f̂ : X → Y and attempt to define a function
f : X/R → Y by the formula

f([x]R) = f̂(x).

In order for such an f to be a well-defined function, we need its output to
not depend on the choice of label x for an equivalence class. That is, we
need to know that xRy implies f̂(x) = f̂(y). If this is the case, we say ‘f re-
spects the equivalence relationR’. Sometimes it helps clean the writing up to
give a name to f̂ , but often we just leave it implicit as in the above examples.

Indeed, every function out of X/R can be written in this way. If R is
an equivalence relation on X, denote by q : X → X/R the ‘quotient
map’ or ‘quotient function’ defined by

q(x) = [x]R.

Then for each function f : X/R → Y the composition f̂ = f ◦ q is a
function from X to Y which respects R.
We may summarise this discussion as a formal lemma.

Lemma. If f : X/R → Y is a (well-defined) function then f̂ = f ◦ q
respects the equivalence relation R. Conversely, if f̂ : X → Y respects
the equivalence relation R then the function

f : X/R → Y, f([x]R) = f̂(x)

is well-defined and f ◦ q = f̂ .

This kind of lemma, with various added adjectives, will appear again
and again in Group Theory, Linear Algebra, Topology...

Exercise. Consider the following relation on the set X = Z × (Z ∖ {0}):

(a, b) ∼ (c, d) if and only if ad = bc.

1. Show that ∼ is an equivalence relation. What happens if you try to
define this relation on Z × Z?

25

2. Show that the function

f : (X/∼)× (X/∼) → X/∼
f([(a, b)]∼, [(c, d)]∼) = [(ad+ bc, bd)]∼

is well-defined.

3. Construct a bijection g : X/∼ → Q.

Note: we have here a function of two equivalence classes; you need to
check what happens when you relabel both. Is there a more efficient way to
do that?

26

	Introduction
	How to use these notes
	Sets
	Specifying a set
	Equality of sets
	More set constructions

	Functions
	Equality of functions
	`Well-defined' functions
	Injectivity and surjectivity
	Images and pre-images

	Equivalence relations
	Equivalence classes and well-defined functions

