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1. Introduction

For nearly a century, statisticians have been intrigued by the problems of
developing a satisfactory methodology for the analysis of spatial data; see
Student (1914), for an early example. It is only since the early 1970’s,
however, that the statistical analysis of large data sets, using flexible para-
metric models has become a feasible proposition.

On the practical side, progress has been made possible by the avail-
ability of relatively cheap, computerised resources for the collection and
analysis of data. The study of digital images and the use of satellite data
for remote sensing are prominent examples in this respect. On the method-
ological side, substantial progress is associated with the introduction of
Markov random fields (MRFs), as a class of parametric models for spatial
data (Besag 1974). Shaped by these developments, spatial statistics has
emerged as perhaps the most dynamic and computer intensive of all the
areas of statistical endeavour; building upon models used originally in the
description of physical systems and borrowing and improving upon ideas
from computational physics.

Monte Carlo methods, in particular, have played a dominant role in
dealing with problems of inference. The practicalities of working with high
dimensional parameter sets within a Bayesian framework, have led to the
invention of refreshing and novel techniques (Geman and Geman 1984),
which promise to have a profound effect on the way in which Bayesian
methods are used in more general contexts and which may serve to reinte-
grate these methods into the main body of applied statistics.

Much of physics is concerned with providing an understanding of the
spatial organisation of matter and it is not suprising that many of the ideas
which have become central in the theory of spatial statistics should have
their origins in physical theory. The introduction of MRFs into the theory
of statistics is yet another example of the continuing transfer of knowledge
from the world of theoretical physics. John Hammersley whose interests in-
clude both domains of study, was ideally placed to facilitate the process of
cross-fertilisation. Others who were involved in this instance include Ney-
man and Besag. Neyman was responsible for bringing Hammersley and a
number of other visitors, including myself, to the University of California,
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Berkeley in the summer of 1971. Hammersley gave an advanced course of
lectures on probabilistic problems in physics, which included among other
things a discussion of Spitzer’s (1971) characterisation of two-state MRFs
on a square lattice. This characterisation had been obtained independently
by Averintsev (1970). Hammersley and I were able to generalise the results
to arbitrary graphs and lattices, and to identify the central importance of
the clique functions, as terms in the potential of a generalised Gibbs dis-
tribution. Hammersley returned to Oxford and sent a copy of the Berkeley
paper to Besag who had already obtained partial results for rectangular
lattices (Besag 1972). Besag then wrote to Hammersley with a much sim-
pler, analytical proof of the general result, which appeared later in his very
influential paper on spatial statistics (Besag 1974). Three other authors
published proofs of the main theorem at about this time (Grimmett 1973;
Preston 1973; Sherman 1973). A simple derivation is also possible using
the factorisation theorem of Brook (1964). The basic theorem has more
recently become important in non-spatial applications, most notably in the
description of dependence structure for log-linear models (Ove and Strauss
1981; Darroch et al. 1980).

The Berkeley paper was never published and only a few copies were
distributed. There are, however, many references to it in the literature
and although the main result is stated as a named theorem in Kotz and
Johnson (1983, Vol. 3, p. 570) there is, perhaps inevitably, some confusion
about the exact contents. The method of proof in the unpublished paper
is constructive and the operator techniques used are unusual. For these
reasons it seems appropriate to take this opportunity to state the main
results and to describe the methods by which they were obtained. This is
done in Section 2.

The Markov property for random fields can be formulated in great
generality (Preston 1974; Rozanov 1982). For statistical applications, an
important step forward was the extension to point processes (Strauss 1975;
Ripley and Kelly 1977). An excellent review of this topic is given by Bad-
deley and Møller (1989), who consider further generalisations to cover the
case of marked point processes in which the neighbourhood relations for
the marks are given by the graphical structure of the points.

A challenging problem is that of constructing random mosaics which
are spatially Markov. A special case is the problem of subdividing two-
dimensional space into regions whose boundaries are made up of line seg-
ments. In a remarkable paper, Arak (1982) showed that a time-homogen-
eous annihilating/birth particle system can give rise to space-time trajec-
tories which have a two dimensional Markov property. These results were
generalised by Arak and Surgailis (1989), to cover a wide class Markov
polygonal fields. In Section 3 we consider how these processes might be
used in the analysis of polygonal images. Some light is shed on a conjec-
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ture by Arak and Surgailis (1989) and a method of simulating the posterior
distribution of a polygonal image is proposed.

2. Markov Fields on Finite Graphs

2.1. Notation

Let G = (Z, E) be an undirected graph, where Z = {z1, z2, . . . , zn} is a
finite set of sites and E is a set of simple edges, i.e. a set of unordered pairs
of distinct sites. Two sites which form an edge are said to be neighbours of
each other. We use capital letters U, V, . . . , X, Y for subsets of Z and write
X + Y for the union of X and Y , and X − Y for the set {x ∈ X : x /∈ Y }.
A lower-case letter stands for both an element of Z and also the associated
singleton set. The set of all subsets of Z, including ∅ and Z itself is denoted
by Ω. For any Y we define ∂Y , the boundary of Y by

∂Y = {x : (x, y) ∈ E, x /∈ Y, y ∈ Y }.

A set Y is said to be a clique if and only if

Y ⊆ y + ∂y, ∀y ∈ Y ;

in other words Y is a clique if and only if it is a singleton or if every member
of Y is a neighbour of every other member of Y .

We associate with each site zi, a finite set of colours Ci, i = 1, 2, . . . , n.
To avoid trivial cases we will assume that the cardinality of each set is
greater than one. We also assume, without loss of generality, that every
set contains a colour which we can agree to call black. Suppose that for
each zi we select a colour from Ci, i = 1, 2, . . . , n. Such an assignment of
colours to sites is called a colouring of Z. A typical colouring is denoted by
χ. Let χY denote the colouring obtained from χ by changing the colours
on the sites in Y to black. A partial colouring has colours assigned on
only a subset of sites. The partial colouring obtained by considering which
colours have been assigned to sites in X by the colouring χ is denoted by
χX . In particular, the colour at a site z is written as χz . The set of all
possible colourings of Z is given by C = C1 ×C2×· · ·×Cn. A set Y is said
to be light relative to χ if no site in Y is black under the colouring χ. We
define Lχ to be the set of cliques which are light relative to χ.

Let us now consider a probability distribution on C with mass function
P satisfying

∑

χ∈C P (χ) = 1 and the positivity condition P (χ) > 0, ∀χ ∈ C.

We denote the marginal probability of the partial colouring χY by P (χY ).
This latter probability is obtained by summing P over all colourings which
agree with χ on Y . We say that P is Markovian for the set X if and only
if it satisfies the positivity condition and

P (χ)/P (χZ−X) = P (χX+∂X)/P (χ∂X), ∀χ ∈ C.
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We call this condition M(X). If we postulate M(z) for all singleton sets
z ∈ Z, we say P is locally Markovian. If we postulate M(X) for all X ⊆ Z
we say it is globally Markovian. The main theorems are as follows.

Theorem 1. Global and local Markov properties are equivalent.

Theorem 2. P is Markovian if and only if it can be written in the form

P (χ)/P (χZ) = exp

(

∑

Y ∈Lχ

Q(χY )

)

,

where Q is an arbitrary real-valued function of light colourings on cliques.

Furthermore, if P is Markovian then the associated function Q is given

by

Q(χY ) =
∑

X⊆Y

(−1)|X| log P (χ(Z−Y )+X), ∀Y ∈ Lχ,

where |X | denotes the cardinality of X .

The theorems are proved by introducing an operator algebra.

2.2. The Blackening Algebra

Let R be the set of all real-valued functions defined on C. We define the
pure blackening operator BY by

BY R(χ) = R(χY ), R ∈ R.

Since
BXBY R(χ) = BXR(χY ) = R(χX+Y ) = BX+Y R(χ),

in terms of the operators we have

BXBY = BY BX = BX+Y

so that pure operators commute.
A mixed blackening operator α1BX1

+ · · · + αmBXm
is a finite linear

combination of pure operators, where α1, . . . , αm are real-valued coeffi-
cients. For such an operator we have

(α1BX1
+ · · · + αmBXm

)R(χ) = α1R(χX1
) + · · · + αmR(χXm

).

Mixed operators multiply according to
∑

αiBXi

∑

βjBY j =
∑

αiβjBXi+Yj
.

The identity operator is denoted by 1 = B∅ and the zero operator by 0.
With the preceding definitions, the blackening operators can be seen to
form a commutative algebra.

The following lemma is a simple consequence of the definitions:
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Lemma 1. If X ⊆ Y then (1 − BX)BY = 0.

An operator which is equal to its square is called a projector. Every
pure operator is a projector. In general, if B is a projector then so is 1−B.
It follows that

BX + BY − BX+Y = 1 − (1 − BX)(1 − BY )

is also a projector. In the special case Y = Z − (X + ∂X), for which
X + Y = Z − ∂X , we denote the projector by βX , i.e.

βX = BX + BZ−(X+∂X) − BZ−∂X = BX + BZ−(X+∂X)(1 − BX).

We also define B∗
z = BZ−(z+∂z)(1−Bz), so that βz = Bz + B∗

z . Finally we
define the projector β =

∏

z∈Z βz. Writing B∗
Y =

∏

z∈Y B∗
z and B∗

∅ = 1,
we have

β =
∏

z∈Z

(Bz + B∗
z ) =

∑

Y ∈Ω

BZ−Y B∗
Y . (2.1)

Lemma 2. If Y 6= ∅ and Y is not a light clique relative to χ, then

B∗
Y R(χ) = 0, ∀R ∈ R.

Proof: (i) Suppose that Y is not a clique. Then Y has two distinct
elements, x, y, say, such that x is not a neighbour of y, i.e. x ∈ Z−(y+∂y).
From Lemma 1, it follows that BZ−(y+∂y)(1 − Bx), and hence B∗

Y , equals
0.
(ii) Suppose that Y is not light relative to χ, then Y contains a site z which
is already black, so that (1 − Bz)R(χ), and hence B∗

Y R(χ) equals 0. �

Let us now consider the subset of R which is invariant under the
operator β. Denoting this subset by I(β), we have

I(β) = {R : βR = R, R ∈ R} = {βR : R ∈ R}.

If R is arbitrary then from Lemma 2 and (2.1) we have

βR(χ) = R(χZ) +
∑

Y ∈Lχ

B∗
Y BZ−Y R(χ). (2.2)

Furthermore, if Y is a clique then Y ⊆ z + ∂z for any z ∈ Y , so that
Z − Y ⊇ Z − (z + ∂z) and BZ−Y = BZ−(z+∂z)BZ−Y by Lemma 1. It
follows that for arbitrary R ∈ R we have the further simplification

βR(χ) = R(χZ) +
∑

Y ∈Lχ

∏

z∈Y

(1 − Bz)R(χZ−Y ). (2.3)
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Lemma 3. The invariant subset I(β) consists of those functions R ∈ R
which have the representation

R(χ) = S(χZ) +
∑

X∈Lχ

S(χZ−X) (2.4)

for some S ∈ R.

Proof: (i) Let R have the representation (2.4) for some S ∈ R. We will
apply (2.3) to show that βR = R. Since there are no light cliques in χZ ,
we have R(χZ) = S(χZ). Notice that if Y ∈ Lχ, then LχZ−Y

is just the
set of all nonempty subsets of Y . It follows that when R is given by (2.4)
then

R(χZ−Y ) =
∑

X⊆Y

S(χZ−X), (2.5)

Furthermore,
∏

z∈Y

(1 − Bz)R(χZ−Y ) = S(χZ−Y ), (2.6)

since if z ∈ Y then

(1 − Bz)R(χZ−Y ) = R(χZ−Y ) − R(χZ−Y +z) =
∑

z⊆X⊆Y

S(χZ−X).

From (2.3) we therefore have βR = R.
(ii) Suppose now that R ∈ I(β), i.e. R = βR. Since

∏

z∈Y (1−Bz)R(χZ−Y )
is some function of χZ−Y , say S(χZ−Y ), and R(χZ) can be taken to be
S(χZ), it follows immediately that R can be expressed as the right-hand
side of (2.4). �

Lemma 4. If X ⊆ Z, then I(β) ⊆ I(βX).

Proof: Let R ∈ I(β), then R will have a representation as in Lemma 3.
Since βX is linear it suffices to show that

βXS(χZ) = S(χZ)

and
βXS(χZ−Y ) = S(χZ−Y )

for all cliques Y . Writing βX as

βX = 1 − (1 − BX)(1 − BZ−(X+∂X))

the first of the equalities follows immediately. To establish the second
equality it is sufficient to show that

(1 − BX)(1 − BZ−(X+∂X))BZ−Y = 0. (2.7)
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But if Y is a clique it cannot be partly in X and partly in Z − (X + ∂X).
Suppose that Y ⊆ X then

Z − (X + ∂X) ⊆ Z − X ⊆ Z − Y

and therefore (2.7) is satisfied as a consequence of Lemma 1. Alternatively,
suppose that Y ⊆ Z − (X + ∂X), then Z − Y ⊇ X + ∂X ⊇ X , so that the
equation is again satisfied by Lemma 1. �

Lemma 5. The invariant set I(β) is given by ∩z∈ZI(βz).

Proof: As a special case of Lemma 4 we have I(β) ⊆ I(βz), ∀z ∈ Z, which
implies that I(β) ⊆ ∩z∈ZI(βz). On the other hand, if R ∈ ∩z∈ZI(βz) then
R = βzR, ∀z ∈ Z, and hence R =

∏

z∈Z βzR, so that R ∈ I(β). �

2.3. Proofs of Theorems 1 and 2

We show firstly, that the Markov condition M(X) is equivalent to

P (χ)/P (χX) = P (χZ−(X+∂X))/P (χZ−∂X), ∀χ ∈ C. (2.8)

Under condition M(X) we have

P (χ) = P (χX+∂X)P (χZ−X)/P (χ∂X), ∀χ ∈ C. (2.9)

Equation (2.8) then follows by making the substitutions χX , χZ−(X+∂X)

and χZ−∂X , and noting that χZ−X
X = χZ−X , χ∂X

X = χ∂X etc. Conversely,
if (2.8) holds, then

P (χ) = P (χX)P (χZ−(X+∂X))/P (χZ−∂X).

By summation over the appropriate subsets of C, the marginal probabil-
ities which appear in condition M(X) can now be expressed as marginal
probabilities of blackened colourings, which can be simplified as in the first
part of the proof. Condition M(X) is then verified by substitution.

Proof of Theorem 1: From (2.8), condition M(X) is equivalent to

R(χ) − R(χX) = R(χZ−(X+∂X)) − R(χZ−∂X), ∀χ ∈ C

where R(χ) = log P (χ). In other words,

βXR(χ) = R(χ), ∀χ ∈ C.

Condition M(X) is therefore equivalent to R ∈ I(βX).
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Theorem 1 then follows immediately since if P is locally Markovian
then R ∈ ∩z∈ZI(βz) = I(β) ⊆ I(βX) by Lemma 4 and hence P is globally
Markovian. �

Proof of Theorem 2: From Lemma 3, R ∈ I(β) iff

R(χ) − R(χZ) =
∑

X∈Lχ

S(χZ−X), ∀χ ∈ C

for some S ∈ R. Defining Q(χX) to be S(χZ−X), the proof of the first part
of Theorem 2 is complete. For the last part, notice that Q(χY ) = S(χZ−Y )
is given by

Q(χY ) =
∏

z∈Y

(1 − Bz)R(χZ−Y ),

as in (2.6). The result now follows since the operator
∏

z∈Y (1 − Bz) has

the expansion
∑

X⊆Y (−1)|X|BX . �

3. Markov Polygonal Mosaics

The random fields described in Section 2 have proved to be useful models
in the analysis of two-dimensional images (Geman and Geman 1984; Besag
1983). For image analysis, the sites of the graph, z1, · · · , zn correspond to
pixels in a digitised picture. In the Bayesian framework χ, the unknown
colouring of Z, i.e. the true scene, is treated as a realisation of a Markov
random field. The observations of the pixel values O = {Oz, z ∈ Z} are
assumed to be random corruptions of the true scene. In the simplest case,
the likelihood is assumed to be proportional to

exp

(

∑

z∈Z

h(Oz | χz)

)

. (3.1)

Up to an additive constant, the logarithm of the posterior density of χ is
therefore

∑

Y ∈Lχ

Q(χY ) +
∑

z∈Z

h(Oz | χz),

which can expressed as
∑

Y ∈Lχ

Q∗(χY )

where the singleton clique functions Q∗(χz) have been modified by inclusion
of terms from the likelihood. It follows that the family of MRFs is conjugate
with likelihoods of the form (3.1).
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Bayes estimates of the true scene can be made by a variety of tech-
niques. Simulated annealing can be used to find maximum a posteriori

estimates and the Gibbs sampler can be used to find estimates with min-
imum mean square error and estimates with minimum mis-classification
error (Geman and Geman 1984).

When large artificial structures are present in the scene, it may be
more natural to model true scenes as random mosaics which subdivide
two-dimensional space into regions whose boundaries are made up of line
segments. These random fields are defined on a continuous space rather
than on the nodes of a graph.

3.1. Polygonal Colouring Measure

The simplest building block for polygonal fields is the Poisson line process
(Kendall and Moran 1963). To describe the construction we introduce the
following notation.

Let T ⊂ R
2 be a convex bounded domain. Let Ln

T be the family of
all sets of n distinct lines which intersect T and let LT = ∪∞

n=0L
n
T , with

L0
T defined to be {∅}, the family consisting of the empty set alone. We

consider a Poisson line process defined on LT . To fix ideas we will assume
that the process is homogeneous and isotropic with intensity λ, so that the
number of lines crossing a disc of diameter d has a Poisson distribution
with mean λd and the mean number of lines intersecting T is λdT , where
dT is the mean diameter of T . We write µT for the Poisson line measure
on LT , and we denote the conditional line measure on Ln

T by νn
T , so that

µT (A) =

∞
∑

n=0

e−λdT (λdT )n

n!
νn

T (A ∩ Ln
T ), (3.2)

for events A ⊂ LT .

Suppose that C is a finite set of colours and χ maps T into C. The
colouring is said to be polygonal if and only if the set of discontinuity points
of χ is the union of intervals of a finite number of distinct lines, where each
line contributes exactly one interval. We disregard intervals of zero length.
Associated with each polygonal colouring χ there is the unique set of lines
which contain the discontinuity points. We call this set 〈χ〉. For an open set
S ⊂ T we define 〈χS〉 to be the set of lines associated with discontinuities
of χ on S. If S is not open, we define 〈χS〉 as the limit for a sequence of
diminishing open neighbourhoods of S. We denote the set of all polygonal
colourings χ such that 〈χ〉 = ℓ by Ωℓ

T , ℓ ∈ LT and write ΩT = ∪ℓ∈LT
Ωℓ

T .
The polygonal colouring measure is then defined to be

γT (A) =

∫

LT

|A ∩ Ωℓ
T |µT (dℓ), (3.3)
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where A is a measurable subset of ΩT and | · | denotes cardinality. We
consider distributions on ΩT which are absolutely continuous with respect
to γT . These can be specified by a density f : ΩT → [0,∞). The associated
probability measure is therefore given by

P f
T (A) =

∫

A
f(χ)γT (dχ)

∫

ΩT
f(χ)γT (dχ)

, (3.4)

provided that the denominator is finite.

3.2. The Uniform Density

Arak and Surgailis (1989) conjectured that it might be possible for γT to

be finite, i.e. for P f
T (A) to be a probability measure, when f is constant.

The following theorem gives a sufficient condition for this to be so.

Theorem 3. If |C| = 2 and λdT < 1, then
∫

LT
|Ωℓ

T |µT (dℓ) < ∞.

Before proving the theorem, we must introduce a little more notation.
An extended polygonal colouring is a function χ+ : R

2 → C, whose discon-
tinuity points are the union of intervals of lines in LT , but here the intervals
are either semi-infinite, infinite, or of finite positive length. We write 〈χ+〉
for the line set associated with χ+. The set of all extended colourings for
which 〈χ+〉 = ℓ, is denoted by Θℓ

T , ℓ ∈ LT , and ΘT = ∪ℓ∈LT
Θℓ

T . We now
restrict our attention to the case |C| = 2. Since |Θℓ

T | depends only on the
cardinality of ℓ (say n) we will write it simply as 2cn; the factor 2 arising
from the two possible colourings for a given discontinuity set.

Lemma 6. The sequence {cn} satifies the recurrence relation

cn+1 = cn + 4ncn−1 +

n
∑

j=2

n!

(n − j)!

(

2j + 5
2

)

cn−j

with c0 = c1 = 1. Furthermore, the power series

g(u) =

∞
∑

n=0

cnun

n!

has radius of convergence 1 and is given by

4 log g(u) = −6u − u2 +
8u

1 − u
− 2 log(1 − u).

For brevity the proof of this lemma is omitted. The proof of the
theorem follows from the lemma by noting that |Ωℓ

T | ≤ |Θℓ
T |, ∀ℓ ∈ LT , so

that from (3.2) and (3.3)

γT (ΩT ) ≤ 2g(λdT )e−λdT , λdT < 1.
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Polygonal fields do not necessarily have a Markov property. However,
Arak and Surgailis (1989) have established a sufficient condition for this to
be so, namely that f is of the form f(χ) = e−F (χ), where F : ΩT → R∪{∞}
is an additive function (Rozanov 1982).

Examples of additive functions are: the total length of the intercolour
boundary of χ, the number of times that the boundary between two colours
turns so as to circle a particular colour and most importantly functions of
the form

F (χ) =

∫

T

k(χ(t))α(dt),

where α is a measure on T and k : C → R.

3.3. Statistical Applications

Additive functions arise naturally in statistical contexts. Thus, if χ is the
true scene and observations of χ are limited to realisations of a spatial
Poisson process whose intensity at point t is η(χ(t)), t ∈ T , then the
likelihood of the data is proportional to

exp

(

−

∫

T

η(χ(t))dt +

∫

T

log η(χ(t))N(dt)

)

(3.5)

where N(A), A ⊂ T is the counting measure of the observed point pat-
tern. If the prior density of the true scene is proportional to exp

(

−F0(χ)
)

,
then applying Bayes Theorem, the posterior density of χ is proportional to
exp

(

−F ∗(χ)
)

, where

F ∗(χ) = F0(χ) +

∫

T

η(χ(t))dt −

∫

T

log η(χ(t))N(dt). (3.6)

It follows that if F0 is additive then so is F ∗. In other words, polygonal
Markov fields are conjugate with Poisson sampling. It is therefore im-
portant to be able to simulate Markov polygonal fields, in particular the
posterior distributions within this family.

3.4. Conditional Distributions

Polygonal Markov fields are Markov in the following sense. Let S ⊂ T be
an open set with a smooth boundary ∂S = S̄ − S and let ξ = (χ∂S , 〈χ∂S〉)
then the distribution of χS given ξ is the same as that of χS given χT−S .
Convex sets are of particular interest, and we will assume that S is convex
from now on. Note that the information in ξ consists of the colouring on
the boundary χ∂S and also the identification of those lines, intersecting
∂S, which separate different boundary colours. The conditional polygonal
measure on S is

γS(A | ξ) =

∫

LS

∣

∣A ∩ Ωℓ
S(ξ)

∣

∣ µS(dℓ),
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where A is a measurable subset of ΩS and Ωℓ
S(ξ) is the set of polygonal

colourings on S which have discontinuity lines ℓ ∪ 〈χ∂S〉 and which are
consistent with the boundary conditions ξ. For fields which are specified
by an additive function F , Arak and Surgailis (1989) have shown that
the conditional distribution of χS is absolutely continuous with respect to
γS(· | ξ), with density proportional to exp

(

−F (χS)
)

.
The principal advantage of having an explicit form for the conditional

density, is that Monte Carlo methods, such as the Gibbs sampler can be
applied to simulate the process.

3.5. Monte Carlo Simulation of Markov Polygonal Fields

The idea is to run a Markov process on the state space ΩT , whose equilib-
rium will be the desired field. The set T can be taken to be a rectangle.
The procedure is as follows.

Let χ be the current state of the Markov process.
(a) Select a rectangle S, at random in T .
(b) Put down a realisation of a Poisson line process with intensity ρ in

S. Suppose that the lines of the process are ℓ and that they are n in
number.

(c) Calculate K(ξ, ℓ) given by

[K(ξ, ℓ)]−1 =
∑

ω∈Ωℓ
S
(ξ)

e−F (ω),

and select a new colouring for S, from the distribution with probability
mass function K(ξ, ℓ) exp(−F (ω)), ω ∈ Ωℓ

S(ξ).
(d) Let

q =
(ρ

λ

)n0−n K(ξ, ℓ0)

K(ξ, ℓ)
,

where ℓ0 = 〈χS〉 − 〈χ∂S〉 and n0 is the cardinality of ℓ0. Change the
colouring on S to χS

∗ if q is greater than 1. If q is less than 1, then with
probability q change the colouring to χS

∗ and with probability 1 − q
leave the colouring unchanged.

(e) Go to (a).
The algorithm is a special case of the general class of algorithms dis-

cussed by Hastings (1970). If we let

P (A | ℓ) = K(ξ, ℓ)
∑

ω∈Ωℓ
S
(ξ)

1A(ω)e−F (ω),

then the probability distribution for the candidate colouring χS
∗ is

∞
∑

n=0

e−ρdS(ρdS)n

n!

∫

Ln
S

P (A | ℓ) νn
S (dℓ),
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which has density

e−(ρ−λ)dS (ρ/λ)ne−F (χS
∗
)K(ξ, ℓ),

with respect to γS(· | ξ). The expression in (d) is therefore the appropriate
ratio of required and sampled densities. The parameter ρ can be adjusted
to maximise the acceptance probability.
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