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My intention when I went to Oxford as an undergraduate was to be a
physicist, but to do some mathematics first. In the first undergraduate
year of mathematics, John Hammersley gave a course which included
the quaternion proof of the Four-Squares Theorem, the ‘elementary’
proof of the Prime Number Theorem, and an introduction to Opera-
tional Research. It was strong meat for first-year undergraduates, and
I’m sure that there was little which I understood fully. But it was mar-
vellous material, conveyed with style and infectious excitement; and,
more than anything, it persuaded me to stay with mathematics.

My intention when I was invited to contribute to this volume
was to submit something on one or other of two concrete problems of
interest to John Hammersley. But, unfortunately, while John had been
able to convey enthusiasm to us students, it was of course impossible
for him to grant us some of his creativity with hard problems; and, left
therefore to my own devices, I have failed to make progress with either
problem. Meanwhile . . .

It seems that number-theorists have recently become interested in
path-integral representations of the Riemann ζ-function. Such repre-
sentations have for a long time been familiar to aficionados of Brownian
excursion theory — I am sure that Kai Lai Chung and many others have
known them as long as I have. C.M. Newman (1975) had explained that
if it could be shown that a certain probability density function is ‘fer-
romagnetic’, then the Riemann Hypothesis would follow. The fact that
this density function arises fairly naturally in the study of Brownian
motion (of which more, I hope, in a later paper with Tim Mortimer)
therefore has a certain entertainment value, though perhaps nothing
more. Here — with thanks, apologies for not being brighter, and very
best wishes, to John Hammersley — is a talk I gave recently to some
of the number-theorists at Cambridge.

The theory of Brownian motion contains many remarkable identities. Many
now have a complete explanation, though even in certain of these cases,
there was a time when they were regarded as ‘coincidences’. Amongst the
identities for which a proper explanation remains to be found are some
which are closely related to Riemann’s ξ-function.
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Markov process generated by 1

2∆.

2. Cauchy’s Proof of the Functional Equation. Jacobi’s theta-function
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4. The Excursion Picture of Reflecting Brownian Motion on [0,∞). In
terms of local time at 0, the excursions away from 0 are the points
of a Poisson point process in excursion space. We can build reflecting
Brownian motion from this.

5. The Itô Excursion Law: Bessel Descriptions. The nicest descriptions
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Time and space get mixed up.

6. Integrated Local Time. Local time gives a way of ‘interchanging time
and space’.

7. Ferromagnetism and the Lee-Yang Theorem. Zeros on a line.

Appendix. Proof of equation (5.1).

1. What is Brownian Motion?

For t > 0 and x, y ∈ R, define

pt(x, y) = (2πt)−1/2 exp{−(y − x)2/2t}. (1.1)

Thus pt(x, ·) is the density of the normal distribution of mean x and vari-
ance t. The fact that p solves the heat equation:

Dtp = 1
2Dxxp = 1

2Dyyp (1.2)

is best regarded as expressing the formula

Pt = exp(t 1
2∆), where Ptf(x) :=

∫

R

pt(x, y)f(y)dy, (1.3)

which is made precise by Hille-Yosida theory. Let C be the smallest σ-
algebra on ‘path-space’ C[0,∞) such that, for each t > 0, the evaluation
map w 7→ w(t) on C[0,∞) is C measurable.
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Wiener’s Theorem. For x ∈ R, there exists a unique measure W x on
(C[0,∞), C) such that for n ∈ N, for 0 < t1 < t2 < . . . < tn and for
A1, A2, . . . , An ∈ B(R),

W x({w ∈ C[0,∞) : wti
∈ Ai (1 ≤ i ≤ n)})

=

∫

x1∈A1

· · ·
∫

xn∈An

n
∏

i=1

{

pti−ti−1
(xi−1, xi)dxi

}

(1.4)

where t0 = 0, x0 = x.

The probability measure W x is called Wiener measure corresponding
to starting position x.

Suppose that we have a set-up (Ω,F , Px, B) where Ω is a set, F is a
σ-algebra on Ω, each Px is a probability measure on (Ω,F), and

B: Ω → C[0,∞), B−1 : C → F ,

ω 7→ (t 7→ Bt(ω)).

Then B is called a Brownian motion if Px ◦ B−1 = W x (x ∈ R) on C.

Canonical Brownian motion is the set-up:

(Ω,F , Px, B) = (C[0,∞), C, W x, id).

Properties (1.3) and (1.4) say: Brownian motion is Markovian with tran-
sition density function p and with generator 1

2∆.

Expectation. If Z : Ω → R is F -measurable, we define

E
xZ =

∫

Ω

Z(w)Px(dw).

Example. For Borel function f on R, Exf(Bt) =
∫

f(y)Px(Bt ∈ dy) =
Ptf(x).

2. Cauchy’s Proof of the Functional Equation

Let Γ be the circle Γ = R/Z
√

2π, and let π (no confusion possible!) be the
projection π : R → Γ. If B is BM(R) (a Brownian motion on R), then
BΓ := π ◦ B is a BM(Γ), Markovian with transition density function

pΓ
t (x, y) =

∑

{z:πz=y}
pt(x, z) (2.1)
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and generator 1
2∆Γ. Now, 1

2∆G has

normalized eigenfunctions: (2π)−1/4ein
√

2πθ (n ∈ Z),
corresponding eigenvalues: −n2π.

Hence PΓ
t := exp(t 1

2∆Γ) has eigenvalues e−n2πt, so that

Trace
(

PΓ
t

)

= θ(t) :=
∑

n∈Z

e−n2πt.

But, using (2.1) and the obvious fact that Trace(PΓ
t ) =

√
2πpΓ

t (0, 0), we
see that

Trace(PΓ
t ) =

√
2π
∑

n∈Z

(2πt)−1/2 exp(−n2 · 2π/2t) = t−1/2θ(t−1).

So, we have
θ(t) = t−1/2θ(t−1). (Jacobi)

As everyone knows, ζ(z) =
∑

n∈N
n−z extended analytically from {Rz >

1} to C\{1}. It was already known to Riemann that Jacobi’s functional
equation for θ implies the functional equation

ξ(z) = ξ(1 − z)

for ξ (or ζ), where ξ is the entire function:

ξ(z) = 1
2z(z − 1)π−z/2Γ(1

2z)ζ(z).

The Riemann Hypothesis says: if ξ(z) = 0, then Rz = 1
2 .

3. Brownian Bridges and Bessel Bridges

(a) The 1-dimensional case. Intuitively, Brownian bridge with values in R,
BB(R), is BM(R) with time-parameter set [0,1] conditioned to be at 0 at
times 0 and 1. Rigorously, there is unique measure W 0,0 on C[0, 1] with
obvious σ-algebra C[0, 1] (= B(C[0, 1])!) such that for every h ∈ Cb(C[0, 1]),

∫

C[0,1]

h(w)W 0,0(dw) = lim
ǫ↓0

∫

C[0,∞)∩{w:|w(1)|<ǫ} h
(

w|[0,1]

)

W 0(dw)

W 0{|w(1)| < ǫ} .

A set-up (Ω,F , P, BB), where BB : Ω → C[0, 1] etc, is called a BB(R) if

P ◦ BB−1 = W 0,0 on C[0, 1].

Example. Suppose that (Ω,F , Px, B) is a BM(R), and that we set

BBt(ω) :=

{

tB
(

1−t
t , ω

)

if 0 < t < 1,

0 if t ∈ {0, 1}.

Then (Ω,F , P0, BB) is a BB(R).
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(3.1) Theorem. Let BB be a BB(R), and set

R(ω) :=

√

2

π

(

supt≤1BBt(ω) − inft≤1BBt(ω)
)

.

Then, for all z in C,

ξ(z) = 1
2E(Rz) = 1

2

∫

Ω

R(ω)z
P(dω).

This, or some equivalent, has been known for some time. It appears
in a fine paper by Biane and Yor (1987). I would like to say something
about how the result relates to ‘interchanging space and time’, and also to
the following Fourier expansion of BB(R).

(b) Let (Ω,F , P) carry independent random variables G1, G2, . . . each
normally distributed with mean 0 and variance 1. Define

BBt(ω) :=
∑

n≥1

Gn(ω)

nπ

√
2 sin(nπt), 0 ≤ t ≤ 1.

Then (Ω,F , P, BB) is a BB(R). Note that Parseval says:

∫ 1

0

BBt(ω)2dt =
∑ Gn(ω)2

n2π2
. (3.2)

(c) Brownian motion in R
n, BM(Rn). We build BM(Rn) by making the

component processes independent BM(R) processes. Since

C([0,∞); Rn) =
n
∏

i=1

C([0,∞); R) canonically,

we can define, for x ∈ Rn,

(

Wx on (C[0,∞); Rn)
)

=

n
∏

i=1

(

W xi on C([0,∞); R)
)

. (3.3)

A BM(Rn) is a set-up (Ω,F , Px:x ∈ Rn,B), B: Ω → C([0,∞); Rn) such
that Px ◦ B−1 = Wx. A BM(Rn) is Markovian with generator

1
2∆ =

∑

1
2

∂2

∂x2
i

= 1
2

∂2

∂r2
+

n − 1

2r

∂

∂r
+

1

r2
· 1

2∆Sn−1

. (3.4)

The first formula for ∆ only reiterates the product measure structure (3.3).
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(d) Bessel process BES(n) on [0,∞). Invariance of the family W· under
O(n) implies that the radial part r = |B| of a BM(Rn) B is Markovian

with generator 1
2

d2

dr2 + n−1
2r

d
dr ; and we say that r is BES(n), Bessel process

on [0,∞) associated with dimension n. The second formula for 1
2∆ at (3.4)

means:

dr = dβ +
n − 1

2r
dt, β a BM(R),

Bt

rt
= BMSn−1

(∫ t

0

r−2
s ds

)

.

Making the first of these precise: if (Ω,F , Px,B) is a BM(Rn), then, for
x 6= 0, P

x ◦ β−1 = W |x|, where

βt(ω) := |Bt(ω)| −
∫ t

0

n − 1

2|Bs(ω)|ds.

(e) Brownian bridge in Rn, BB(Rn). If (Ω,F , Px,B) is a BM(Rn), and
BBt(ω) := tB

(

1−t
t

)

, then P0 ◦ BB−1 = W0,0 :=
∏n

i=1 W 0,0. So, we say
that (Ω,F , P0,BB) is a BB(Rn).

(f) BES(n)BR with values in [0,∞). If (Ω,F , P, r) is a BES(n) starting
at 0, then (Ω,F , P, tr

(

1−t
t

)

) is a BES(n)BR.

Pythagoras says: if (Ωi,F i, Pi, BBi) is a BB(R) (1 ≤ i ≤ n) and we
set (Ω,F , P) =

∏n
i=1(Ω

i,F i, Pi), then (Ω,F , P, r̂) is a BES(n)BR, where

r̂t(ω) :=

(

n
∑

i=1

BBi
t(ω)2

)1/2

.

4. The Excursion Picture of Reflecting Brownian Motion

Consider a reservoir which can hold any volume of water from −∞ up to
0. Suppose input to reservoir is a BM(R) process B starting at 0. This is
represented by upper curve. Then

Lt = overflow by time t = sups≤tBs.

Actual volume at time t
= Yt = Bt − Lt.

(Xt) = (−Yt) is reflecting BM
(RBM) on [0,∞), with the

same law as (|Bt|).
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New picture X : RBM, L local time at 0
for X (as above).

Define
γτ : = inf {t: Lt > τ}

For circled excursion of
X away from 0,

Lu = Lv = τ (say),
γ(τ−)=u, γ(τ)=v.

Path in circle:

U is space of is excursion at local time τ :
excursion paths eτ (t) = X(t + γτ−), 0 ≤ t ≤ γτ − γτ .

Itô’s Theorem. The points (τ, eτ (t)) in [0,∞) × U are the points of a
Poisson point process. (N.B. We have point (τ, eτ ) if and only if γτ > γτ−.)
Numbers falling in disjoint regions of [0,∞)×U are independent variables.
There exists a sigma-finite measure n on U such that for (measurable)
Γ ⊆ [0,∞) × U , the number NΓ of points in Γ has Poisson distribution
parameter λ(Γ), that is,

P(NΓ = k) = eλ(Γ)λ(Γ)k/k! where λ = Lebesgue × n.

The measure n on the space of excursion paths is called the Itô excursion

law. Given n, we can build X from its excursions.

5. The Itô Excursion Law: Bessel Descriptions

Picture of M : maximum (at time V1).
an excursion V = V1 + V2: lifetime.
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Description I.
I(a): n(V ∈ dv) = 1√

2πv3
dv (Lévy);

I(b): under n, conditional on V , {V −1/2e(tV ) : 0 ≤ t ≤ 1} is a
BES(3)BR (Williams (1970) — after Lévy, Itô and McKean);

Description II.

II(a): n(M ∈ dm) = m−2dm (Lévy);
II(b): under n, conditional on M , {et : t ≤ V1} and {eV −t: t ≤ V2} are

independent BES(3) processes started at 0 and run until they hit
M (Williams (1970)).

Now consider the pictures (which relate to I(b) with V = 1 and II(b)
with M = 1 — both ‘scaled’ versions):

Biane and Yor (1987) explain (see Appendix for a more direct proof) the
initially-surprising fact that agreement of Descriptions I and II implies:

1
2E

{(

√

2

π
R

)z}

= 1
2E







(

πT

2

)

1
2− 1

2 z






. (5.1)

It has been known for a long time (and will now be proved) that the
right-hand side of (5.1) equals ξ(z). The fact that the left-hand side of
(5.1) equals ξ(z) is (because of a result of Vervaat (1979)) equivalent to
Theorem 3.1.

A calculation. Consider the following picture:

H is the hitting time of position 1
for BES(3)

Recall that BES(3) has generator

radial
(

1
2∆R

3

)

= 1
2

d2

dx2 + 1
x

d
dx .

Standard theory says that u(x) = Exe−λH satisfies

1
2u′′ + x−1u′ = λu on (0, 1), u(1) = 1,

u bounded near 0.
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Hence u(x) = sinh γx
γx · γ

sinhγ , γ = (2λ)1/2.
It follows that if T = T1 + T2, where T1 and T2 have the same distri-

bution as H under P0, then

Ee−λT =

(

γ

sinh γ

)2

.

For Rz > 0, we have

E

∞
∫

λ=0

e−λT λz−1dλ = E

∞
∫

u=0

e−u
( u

T

)z−1 du

T
= Γ(z)E(T−z),

so that

Γ(z)E(T−z) =

∞
∫

0

(

γ

sinh γ

)2

λz−1dλ =

∞
∫

0

8λ

(eγ − e−γ)2
λz−1dλ

= 8

∞
∫

0

e−2γ
∞
∑

n=0

(n + 1)e−2nγλzdλ

= 8
∞
∑

n=1

∞
∫

0

ne−2n
√

2λλzdλ = 8
∞
∑

n=1

∞
∫

0

ne−u

(

u2

8n2

)z

· u

4n2
du

= 2

∞
∑

n=1

n−(1+2z)Γ(2z + 2)8−z = 2Γ(2z + 2)ζ(1 + 2z)8−z.

Using duplication formula for Γ, we find that, initially for Rz > 1,

1
2E







(

πT

2

)

1
2− 1

2 z






= ξ(z)



= 1
2E







(

πT

2

)

1
2 z






if we assume
functional
equation



 .

6. Integrated Local Time

Hints that interchanging time and space might be relevant have already
been given. One of the standard ways of achieving such an interchange is
via the celebrated Ray-Knight theorem.

Again consider the picture

but now insist that the BES(3)r starts at 0.
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Theorem (Ray, Knight). For Λ ∈ B[0, 1],

measure{t < H : r(t) ∈ Λ} =

∫

Λ

r̂2(x)2dx,

where r̂2 is a BES(2)BR.

Hence

H =

1
∫

0

r̂2(x)2dx =
∑

n

G2
1,n + G2

2,n

n2π2
, G’s independent N(0, 1),

using Pythagoras to tell us that a BES(2)BR2 is the sum of the squares of
two independent BB(R) processes and also using the Parseval result (3.2).

Now the sum of the squares of two independent N(0, 1) variables is
exponential with mean 2, so

E exp

(

−λ
G2

1,n + G2
2,n

n2π2

)

=
1

1 + λ · 2
n2π2

.

Hence

Ee−λH =
∞
∏

n=1

1

1 + γ2

n2π2

=
γ

sinh γ
, γ = (2λ)1/2,

giving another explanation for the γ/ sinhγ term and hence of ξ.

7. Ferromagnetism and the Lee-Yang Theorem

I end with a result from another branch of probability theory which it
would be fascinating to combine with results of earlier sections.

By an isolated ferromagnetic spin- 1
2 system on N sites is meant the

following set up:
ρ is measure { 1

2 , 1
2}N on {−1, 1}N ,

β ≥ 0 (β is inverse temperature), Jij ≥ 0(i < j) (interaction),

for x ∈ {−1, 1}N , H(x) = −
∑∑

i<j
Jijxixj (Hamiltonian),

ν is a probability measure on {−1, 1}N (Gibbs measure) with

dν

dρ
= exp(−βH)/Z,

where Z =
∫

exp(−βH)dρ (partition function).
Define spins Xi (1 ≤ i ≤ n) via Xi(x) = xi. Call a variable Y special
mean-zero ferromagnetic if for some non-negative numbers λi (1 ≤ i ≤ N),

Y =
∑

i

λiXi.
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Now call a random variable Y mean-zero ferromagnetic if there exists
a sequence Y (n) of special mean-zero ferromagnetic random variables such
that

(i) Y (n) ⇒ Y , that is, Eh(Y (n)) → Eh(Y ) ∀h ∈ Cb(R),

(ii) E((Y (n))2 → E(Y 2).
Examples.

(i) If Y ∼ N(0, σ2), then Y is mean-zero ferromagnetic, and EezY =

eσ2z2/2.
(ii) If Y ∼ U [−γ, γ], then Y is mean-zero ferromagnetic, and EezY =

sinh γz
γz =

∏∞
n=1

(

1 + γ2z2

n2π2

)

.

Theorem (Lee-Yang-Newman). If Y is mean-zero ferromagnetic, then

EezY = ebz2
∏

j

(

1 +
z2

α2
j

)

, all αj real.

Appendix. Proof of (5.1)

Notation
True Itô excursion: Lifetime V , maximum M .
‘Scaled’ excursion of duration 1 = BES(3)BR: R maximum height.

Excursion of height 1; T duration, so that T = T1 + T2, etc, as before.
Descriptions I and II show that under the Itô excursion law n,

(M, V ) ∼ (M, M2T ) ∼ (RV 1/2, V ).

Biane and Yor remind us (and some of us needed reminding!) that,
because n has infinite total mass, we canNOT conclude that T−1/2 ∼ R.

Correct analysis using n(M ∈ dx) = x−2dx, n(V ∈ dv) = (2πv3)−1/2dv:
for a test function g

n(g(M, V )) =

∫

x

∫

y

1

x2
g(x, y)P(x2T ∈ dy) dx

=

∫

x

∫

y

g(x, y)fT

( y

x2

) 1

x2
· 1

x2
dxdy

=

∫

x

∫

y

1
√

2πy3
g(x, y)P(y1/2R ∈ dx) dy

=

∫

x

∫

y

g(x, y)fR

(

x

y1/2

)

· 1

y1/2
· 1
√

2πy3
dxdy,
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whence, on taking r = xy−1/2,

fR(r) =
√

2π
1

r4
fT

(

1

r2

)

.

(This is trivially equivalent to (5.1).)
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