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1. Introduction

Random graphs have become objects of increasing interest over the last
thirty years. Two sets of physical models which have particularly stimu-
lated this development are those of polymerisation and of percolation.

The early polymerisation work is associated especially with the names
of Flory, Stockmayer, Gordon and Good. An approach in which one sets up
a reversible Markov model of association/dissociation and analyses its equi-
librium properties is set out systematically in Whittle (1986). Percolation
theory is firmly associated with the name of Hammersley, who initiated and
so greatly developed the subject. For reviews see Hammersley and Welsh
(1980) and Kesten (1982).

Finally, largely in isolation from either of the above movements, pure
mathematicians developed an interest in the subject, beginning with Erdős
and co-workers, and continued notably by Stepanov and Bollobás. The
work of this school is systematically presented in Bollobás (1985).

However, there are now new applications developing, which will require
fundamental theoretical advances. I think especially of the study of neural
networks. These are viewed as random graphs, partly because their size
and complexity makes the statistical approach inevitable, and partly also
because (just as in communication theory), the further one penetrates into
the subject, the more one realises that the statistical approach is ‘right’.

The interest of a neural network is that impulses and activity of some
kind are propagated around it. One is then motivated to a study which
has received only sporadic attention hitherto and of which this article can
only be a token: of directed dynamics on a random graph.

The view of a neural net as a random graph is explicit in the papers of
Kauffman (1969), Little and Shaw (1978) and Hopfield (1982), for example.
More recent papers are those by Derrida and co-workers and by the author,
listed in the references, particular aspects of which we shall refer to later.

2. Random Graphs and Reversible Dynamics

Our starting point is some earlier work of the author’s (see Whittle 1986
and references quoted there) which we now summarise for convenience.
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The configuration C of a random graph on N nodes is specified by C =
{sab; a, b = 1, 2, . . . , N} where sab is the number of arcs directed from node
a to node b. In a ‘first-shell’ Markov model this has equilibrium distribution

PN (C) ∝ QN(C) =

[

∏

a,b

hsab

sab!

][

∏

j

H
Nj

j

]

. (2.1)

Here h has the form

h =
1

2κV
(2.2)

where κ is a constant and V is volume. Despite the fact that distance
and dimension do not enter into this description, one needs an ‘extension’
parameter, supplied by V . The interesting results emerge in the thermo-
dynamic limit, when N and V become infinite in constant ratio

ρ = N/V

interpretable as the ‘node density’.

The quantity Nj in (2.1) is the number of nodes which have degree j
(or, in polymerisation terminology, the number of units which have formed
j bonds). The final factor in (2.1) then represents the component of a
Gibbs distribution dependent on ‘configuration energy’, this energy being
supposed to be dependent on ‘first-shell’ effects alone in this model. One
can also include the effect of differing rates of arc-formation between and
within components of the graph (i.e. differing rates of inter- and intra-
molecular association) but, for simplicity, we shall dispense with this.

Distribution (2.1) is a consequence of a model, but such an immediate
one that we can view (2.1) as itself constituting the assumption and the
model. The quantity

QN =
∑

C
QN (C)

is the partition function for this statistical model. We can view it as the
unnormalised probability generating function (p.g.f.) of the random vari-
ables Nj , with the quantities Hj serving both as parameters of the model
and as marker variables for the Nj in the p.g.f.. (To be more specific: QN

would be the un-normalised p.g.f. with arguments zj if Hj were replaced
by Hjzj for all j.)

Define the function

H(ξ) =

∞
∑

j=0

Hjξ
j

j!
. (2.3)
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Theorem 1. Suppose logH(ξ) of less than quadratic growth at infinity.
Then for model (2.1) the partition function QN has the evaluation

QN =

√

κV

2π

∫ ∞

−∞
H(ξ)Ne−κV ξ2/2 dξ. (2.4)

The value ξ̄ of ξ maximising the integrand of (2.4) is, in the thermo-
dynamic limit, that maximising

J(ξ) = ρ logH(ξ) − κξ2/2. (2.5)

This determines the statistics of node degree in that, for example

E(Nj) ∝
Hj ξ̄

j

j!
.

The components of the random graph would be identified as the poly-
mer molecules themselves in the polymerisation context. What is interest-
ing is that the evaluation (2.4) of QN effectively determines the polymer
statistics. The natural level of description of a polymer for model (2.1) is
r = {rj ; j = 0, 1, 2, . . .} where rj is the number of nodes in the component
of degree j. Let us term such a polymer an r-mer; it will contain

R =
∑

j

rj

nodes. Let nr be the number of r-mers, so that necessarily

∑

r

Rnr = N. (2.6)

Theorem 2. Suppose that log (
∑∞

N=0QN/N !) has the formal expansion
∑

r γr in powers of the Hj , where γr is the term in
∏

j H
rj

j . Then the nr are
distributed as independent Poisson variables with respective expectations
γr, conditioned by the constraint (2.6).

This theorem has an obvious analogue in all the variants of the model
which follow.

The model demonstrates a phase transition, in that, as ρ increases
through a critical value ρc, the assembly of polymers passes from the ‘sol’
to the ‘gel’ state (the graph changes from having many modest-sized com-
ponents to having a dominant component, which includes most nodes).
This transition is not revealed in the behaviour of J(ξ) itself, which has a
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single non-negative maximising value ξ̄ for all ρ. However, it is revealed in
the representation

J(ξ) = min
θ

[

θH(ξ) −
κξ2

2
− ρ log θ

]

. (2.7)

The square bracket possesses a saddle-point (min-max in (θ, ξ)) only for
ρ ≤ ρc.

Suppose now that the nodes of the graph can be ‘coloured’ in that
there is a variable α at each node which can take values α = 1, 2, . . . , p.
Let c(a) denote the value of α at node a; this can be regarded as the
value at a of a field defined on the graph. The configuration C of the
graph will now specify both the arc multiplicities s = {sab} and the field
c = {c(a)}. Under probability transition rules for C which are Markov and
reversible but otherwise rather general one deduces the generalisation of
the equilibrium distribution (2.1)

PN (C) ∝ QN (C) =

(

∏

α

σMα
α

)(

∏

a,b

hsab

ab

sab!

)(

∏

j

∏

α

H
Nαj

αj

)

. (2.8)

Here Mα is the number of nodes at which the field takes the value α, and
hab depends on field values at a and b in that

hab =
1

2V κc(a)c(b)
.

The ‘degree’ j is now a vector of integers j = (j1, j2, . . . , jp) and Nαj is
the number of nodes with state value α from which jβ arcs are directed to
nodes of state value β (β = 1, 2, . . . , p).

Model (2.8) allows field dynamics on the graph, but two points should
be noted. First, these dynamics are reversible, in that (2.8) is deduced from
a reversible model. Second, the model is one that allows field value and
graph configuration to interact, in that each affects the transition rules
of the other. This is exactly what is desired for some applications (e.g.
the Ising and socio-economic models discussed in Whittle 1986). However,
if one were seeking to represent a neural network then (i) dynamics on
the network would not be reversible, and (ii) the interaction mentioned
would be an interaction of form and function. It is natural that form (the
network) should influence function (the field). However, for function to
influence form represents adaptation, or learning, which is a feature one
may or may not wish to incorporate.

The generalisation of the partition function evaluation (2.4) is inter-
esting. Suppose all field values are possible, so that distribution (2.8) is
subject only to the constraint

∑

α

∑

j

Nαj = N.
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Define the functions of a p-vector variable ξ = (ξ1, ξ2, . . . , ξp)

Hα(ξ) =
∑

j

Hαj

∏

β

ξ
jβ

β

jβ !
.

Theorem 3. Suppose log
(
∑

α σαHα(ξ)
)

of less than quadratic growth at
infinity. Then for model (2.8) the partition function QN has the evaluation

QN =

(

∏

α,β

καβV

2π

)1/2 ∫
[

∑

α

σαHα(ξ)

]N

exp

[

−
V

2

∑

α

∑

β

ξαβξβα

]

dη

(2.9)
where the integral is over all real η, and ξ, η are related by

ξαβ =











1√
2
(ηαβ + iηβα) (β < α)

ηαα (β = α)
1√
2
(ηαβ − iηβα) (β > α).

(2.10)

The complex form of these integrals has considerable significance, as
we shall see in part.

One may now ask whether the contribution to the integral (2.9) comes
essentially from a single value ξ̄ of ξ in the thermodynamic limit, as in
the ‘fieldless’ case p = 1. Indeed, this seems to be true, at a real value ξ̄
derived in the following manner. Consider the real form of transformation
(2.10)

ξαβ =











1√
2
(ζαβ + ζβα) (β < α)

ζαα (β = α)
1√
2
(ζαβ − ζβα) (β > α)

(2.11)

and seek for the real values of the ζαβ that maximise the integrand of (2.9)
for α ≥ β and minimise it for α < β. Relations (2.11) determine ξ̄ in terms
of the saddle-point ζ̄ thus located.

It is interesting that for the case p = 2, when nodes can adopt exactly
two states (particle and antiparticle?), one is then led to consider a function
of four variables, and to seek for a value at which this is maximal with
respect to three of the variables, and minimal with respect to one. That
is, one has three local ‘space-like’ axes and one local ‘time-like’ axis.

Criticality shows itself as before, in that the form analogous to (2.7)
may or may not possess a saddle-point of the required type. However,
the integrand of (2.9) may now itself possess several saddle-points of the
required type. The fact that the effective saddle-point may switch as pa-
rameters change leads to new phase transitions (see Section 3).

The spin-glass models of memory considered by various authors (see
e.g. Amit et al. 1985) could also be regarded as the specification of re-
versible dynamics upon a random graph. A comparison deserves fuller
discussion than we can afford here.
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3. The ‘Locally Tree-Like’ Property

If we view the arcs as bonds, then models (2.1) and (2.8) permit multiple
bonding, self-bonding and the formation of cycles. All these effects become
less probable as one approaches the thermodynamic limit. Roughly speak-
ing, the V −1 dependence in (2.2) and its vector analogue ensures that the
number of bonds a node forms is roughly independent of V , for given ρ.
As V increases, the probability that these bonds take place with assigned

other nodes tends to zero.

This effect also manifests itself in that the γr of Theorem 2 depends
upon V by a factor V R−L, where

L =
1

2

∑

j

jrj

is the number of bonds in the polymer (arcs in the component). For a poly-
mer of given size R, polymers with cycles (i.e. L > R− 1) are discouraged
relative to the tree-form (for which L = R− 1) as V increases. This effect
can be countervailed by the combinatorial fact that the number of ways of
introducing cycles increases rapidly with R.

However, one can certainly establish the following property. Consider
a given node, and its neighbourhood of radius D (i.e. the set of nodes
which are connected to the initial node by paths of length not exceeding
D). Consider the subgraph GD of the full graph G in this neighbourhood.

Theorem 4. GD is, for given D, a tree with probability one in the ther-
modynamic limit.

This we shall speak of as the ‘locally tree-like’ (LTL) property. The
property could be stated (and will indeed be required) in stronger forms,
the mildest of these being that Theorem 4 should continue to hold if D
is allowed to increase to infinity at a suitable rate as the thermodynamic
limit is approached.

Several authors have made an effective appeal to this property in the
neural network context (see the four papers listed by Derrida and co-
authors, and Hilhorst and Nijmeijer 1987). Suppose, for example, that
one has directed dynamics on the graph, which do not show long-range
order, in that the field values at nodes far apart on the graph are indepen-
dent. Then one consequence of the LTL property and short-range order
is (very roughly expressed) that field-statistics are the same whether the
graph is fixed (although randomly chosen) or randomly evolving (by rules
independent of the field) — the so-called quenched and annealed cases.

However, a consequence to which we shall make more explicit appeal is
that, if we consider the dynamic inputs to a node via the arcs entering that
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node, then these will be statistically independent. This is because the sub-
graphs which these inputs have traversed are, with probability approaching
unity, mutually disjoint out to any given radius.

As an example of this effect, suppose we consider a simplification of
model (2.8) in which graph-statistics are uninfluenced by field values to the

extent that the factor
∏

j

∏

α H
Njα

jα is simply replaced by
∏

j H
Nj

j , as in
(2.1). Let us also set

κ−1
αβ = ψαβ

and define the symmetric matrix Ψ = (ψαβ). One can then deduce (Whittle
1989c) the following simplification of Theorem 3.

Theorem 5. Under the conditions stated the partition function QN has
the evaluation

QN ∝ |Ψ|−1

∫
[

∑

α

σαH(ξα)

]N

exp
[

− 1
2V ξ

′Ψ−1ξ
]

dξ. (3.1)

Here ξ = (ξ1, ξ2, . . . , ξp), the function H has the definition (2.3), and the
integral in (3.1) is the complex integral ensuring the u-identity

∫

exp
(

u′ξ − 1
2ξ

′Ψ−1ξ
)

dξ ∝ exp
(

1
2u

′Ψu
)

. (3.2)

We can be explicit about this integral. The symmetric matrix Ψ will
have a diagonal representation

Ψ = U ′ ΛU

where U is a real orthogonal matrix and Λ a diagonal matrix, with diagonal
(λ1, λ2, . . . , λp). Define η = Uξ. Then the integral in (3.1), (3.2) is along
the whole real ηα axis if λα > 0, and the whole imaginary ηα axis if λα < 0
(α = 1, 2, . . . , p).

We can write the integrand of (3.1) as exp(V J) where

J(ξ) = ρ log

(

∑

α

σαH(ξα)

)

− 1
2ξ

′Ψ−1ξ.

One can show (op. cit.) that the principal contribution to the integral
comes from a real value ξ̄ where ξ̄ is an appropriate saddle-point of J .
Further,

ρα ∝ σαH(ξ̄α) (3.3)

where ρα is the expected density of nodes at which the field takes value α.
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Consider now the symmetric two-state case

ψ11 = ψ22 = ψ1

ψ12 = ψ21 = ψ2

σ1 = σ2.

These states could represent two possible orientations of spin at the nodes
of a random lattice. The quantities ψ1 and ψ2 then represent strengths
of bonding between nodes of like or unlike spin respectively. Let us also
suppose that

Hj =

{

1 j = r + 1

0 j 6= r + 1.

We are then effectively considering an Ising model on a random graph
whose nodes are all constrained to have degree r + 1. Let us also define

µ =
(

ξ̄1/ξ̄2
)r
.

Then the saddle-point characterisation gives the equation

µ =

(

ψ1µ+ ψ2

ψ1 + ψ2µ

)r

(3.4)

for µ, and equation (3.3) gives the characterisation

µ =

(

ρ1

ρ2

)r/(r+1)

. (3.5)

But equation (3.4) is exactly the equation which occurs in Spitzer’s treat-
ment (1975) of an Ising model on an r-branching tree. The fact that we
recover it is a stronger manifestation of the LTL property: a graph of
constant degree r + 1 which is a tree will be an r-branching tree.

In Spitzer’s case µ had the interpretation

µ = ρ′1/ρ
′
2 (3.6)

where ρ′α is proportional to the probability that the field value at the root

of the tree is α. The difference between (3.5), (3.6) comes from the fact
that ρα is proportional to the probability that the field value at a randomly

chosen node is α.
As is known from Spitzer’s work, equation (3.4) can have one or sev-

eral real solutions, depending upon parameter values. The transition cor-
responds to the transition of magnetisation: of alignment of spins.
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4. Directed Graphs

Actual neural dynamics are directed and irreversible. Consideration of di-
rected dynamics certainly implies that one must consider a directed graph.
Models (2.1), (2.8) may have seemed to be models for a directed graph,
in that sab is specified as the number of arcs from a to b. However, the
distribution PN (C) is invariant under permutation of sab and sba, and in
this sense there is no real directionality.

To achieve directionality, we modify model (2.1) to

PN (C) ∝ QN(C) =

(

∏

a,b

hsab

sab!

)(

∏

j,k

H
Njk

jk

)

(4.1)

where h has evaluation (2.2) as before, and Njk is the number of nodes of
degree (j, k). By this double degree we mean that j arcs leave the node
and k enter it.

We now give two of the most important conclusions from Whittle
(1989b). Define the function

H(ξ1, ξ2) =
∑

j

∑

k

Hjk
ξj
1ξ

k
2

j! k!
.

Theorem 6. Suppose logH(ξ1, ξ2) of less than quadratic growth at infin-
ity. Then the partition function QN has the evaluation

QN =
2κV

π

∫∫ ∞

−∞
H(η1+iη2, η1−iη2)

N exp
[

−2κV (η2
1+η2

2)
]

dη1 dη2. (4.2)

The complex form of the integral is interesting and essential. It en-
forces the constraint

∑

j

∑

k

Njk(j − k) = 0 (4.3)

that the total numbers of outgoing and incoming arcs should be equal.

Theorem 7. In the thermodynamic limit, the dominant contribution to
integral (4.2) comes from the value ξ̄ = (ξ̄1, ξ̄2), this being the real value
that simultaneously maximises

J(ξ) = ρ logH(ξ1, ξ2) − 2κV ξ1ξ2

with respect to ξ1ξ2 and minimises it with respect to ξ1/ξ2.

So we find, for example, that

E(Njk) ∝ Hjk
ξ̄j
1 ξ̄

k
2

j! k!
(4.4)
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to within terms of smaller order in V . Expression (4.4) then defines the
distribution pjk of the random variable (j, k), where this is the degree of a
randomly chosen node. Relation (4.3) will have the implication

E(j − k) = 0.

5. Directed Dynamics

The study of directed dynamics is not yet advanced. Consider, for example,
the case of a purely linear graph, for which a = 1, 2, 3, . . . represent the
consecutive nodes. This might constitute a discrete model of a nerve fibre.
As ever, c(a) is the value of field at node a.

A simple specification of directed dynamics would be to say that tran-
sitions in c(a) were conditioned by the values of c(a) and c(a−1). Suppose
now one wishes to evaluate the equilibrium distribution of c(a) conditional
on c(1) for large a. This evaluation is not simple, because the relevant
Markov process is infinite-dimensional, not p-dimensional. Might one ex-
pect c(a) to become independent of c(1) as a becomes infinite? In other
words, is there long-range order or not? If one is speaking of the nerve fibre
model then one would hope for long-range order, for faithful propagation
along the fibre of impulses injected at a = 1 would imply dependence at all
distances.

One model for which one can conjecture conclusions is a random Jack-
son network. Let us consider the simplest form of such a network, for
which c(a) represents the number of ‘quanta’ at node a, and the transition
(c(a), c(b)) → (c(a) − 1, c(b) + 1), in which a quantum passes from node a
to node b has intensity c(a)sab. In a large, fixed, closed network the stream
of quanta from node a to node b will then be a Poisson stream of rate
fab = wasab. Here the parameters wa are subject to the balance conditions

∑

b

(fab − fba) = 0 (a = 1, 2, . . . , N).

Suppose we consider a random such network with directed network
statistics specified by (4.1).

Conjecture. In the thermodynamic limit the quantum stream along a
randomly chosen arc is Poisson with random rate f , where the character-
istic function φ(ζ) = E(eζf ) of f satisfies

φ(ζ) =

∑

j

∑

k jpjkφ(ζ/j)k

∑

j

∑

k jpjk
. (5.1)
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Here pjk is the distribution of node degree (j, k) determined in Section 3,
and both summations exclude j = 0.

‘Proof’: Suppose the arc chosen emanates from a node of degree (j, k).
By the LTL property the inputs to the node will be independent, each
Poisson with a rate having characteristic function φ(ζ). Since the sum of
the k independent inputs is then divided into j streams of equal rate, this
rate on the output arcs will have characteristic function φ(ζ/j)k. Averaging
over j, k we deduce the identity (5.1). In averaging we use a distribution
proportional to jpjk, because the fact that we have chosen an arc randomly
will weight the distribution pjk by the factor j. In particular, the value
j = 0 is excluded — a point worth making, since inverse powers of j will
occur if we consider coefficients of powers of ζ in expression (5.1).

Relation (5.1) gives determining equations for the moments of f . One
finds that f = 0 unless P (j = 0) = 0; nodes should have zero probability
of being ‘absorbing’ if there is to be a continuing flow. If this condition is
satisfied then there is an undetermined parameter in the f -distribution: the
number of quanta contained in the graph component in which the chosen
arc lies.

Our ‘proof’ is of course not a proof, because it appeals to a stronger
form of the LTL property than has been established.
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