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1. Introduction

We consider the d-dimensional hypercubic lattice with vertices being the
integer points in R

d. Two points are connected by an edge if they are
unit distance apart. We write (x1, x2, . . . , xd) for the coordinates of a
vertex v and e = (v1, v2) for the edge joining the vertices v1 and v2 whose
coordinates must differ by unity in exactly one coordinate.

A bond animal is a connected subgraph of the lattice and a site animal
is a connected section graph of the lattice. The distinction is that for each
pair of vertices v1 and v2 in a site animal, which differ by unity in exactly
one coordinate, the edge e = (v1, v2) must be in the site animal. That is,
for site animals, edges are induced by the vertices. We shall be interested
in the number of bond or site animals, with n vertices, where two animals
are identical if one can be translated into the other. We write An for the
number of site animals with n vertices and an for the number of bond
animals with n vertices. For instance, for the square lattice (i.e. d = 2),
a1 = 1, a2 = 2, a3 = 6, a4 = 23, a5 = 95, . . . and A1 = 1, A2 = 2, A3 = 6,
A4 = 19, A5 = 63, . . . .

In each case an interesting subset is the corresponding set of animals
without cycles which we call bond trees and site trees. We write tn and
Tn for the numbers of bond trees and site trees with n vertices. Again in
d = 2, t1 = 1, t2 = 2, t3 = 6, t4 = 22, t5 = 87, . . . and T1 = 1, T2 = 2,
T3 = 6, T4 = 18, T5 = 55, . . . .

These animals and trees have been considered as models of branched
polymers with excluded volume in much the same way that self-avoiding
walks have been used as models of linear polymers with excluded volume,
and the techniques used to handle the animal problem are closely related to
techniques in the theory of self-avoiding walks (Hammersley 1957; Kesten
1963). Lattice animals are also closely related to percolation clusters al-
though the associated weights are different in the two problems (Broadbent
and Hammersley 1957; Kesten 1982).

A good deal of the literature on site animals uses the language of
polyominoes. A cell of the square lattice is the boundary and interior
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of a unit square having its vertices at lattice vertices and a polyomino is a
connected set of cells which are joined at their edges (Golomb 1954; Klarner
1967). Because the square lattice is self-dual the number of polyominoes
with n cells is precisely the number of site animals with n vertices. (Where
polyominoes are regarded as distinct when one cannot be translated into
another, they are sometimes called fixed polyominoes.)

The primary interest is in the asymptotic behaviour of an, An, tn and
Tn. There are many papers which develop methods for obtaining bounds

on A
1/n
n and we shall review some of these. Concatenation arguments eas-

ily establish the existence of the limit limn→∞(1/n) logAn once an upper

bound on A
1/n
n is available and we shall indicate the corresponding argu-

ments to establish the existence of the limits, the growth constants,

Λ0 = lim
n→∞

T 1/n
n

λ0 = lim
n→∞

t1/n
n

Λ = lim
n→∞

A1/n
n

λ = lim
n→∞

a1/n
n .

(1.1)

In fact the only difficulty is to show that a
1/n
n is bounded above. The

inequalities Λ0 ≤ Λ and λ0 ≤ λ are immediate and we show that

Λ0 < Λ < λ0 < λ. (1.2)

Roughly speaking, Sections 2–4 describe what is now known rigorously.
Section 5 looks at the rates of approach to the limits in (1.1). There,
very little is known but there are some informed guesses based on field
theoretic arguments and numerical results. It seems that all four limits are
approached at roughly the same rate, that this rate is characterized by a
critical exponent and that the exponent is independent of the dimension of
the problem for d ≥ 8, but depends on d (but not on the particular lattice
in R

d) for d < 8. In Section 6 we consider animals on a lattice subset and,
in particular, animals in wedge and slab geometries. Section 7 contains a
collection of unsolved problems.

Like many other combinatorial problems these are closely connected to
problems in physics, are easy to state and understand, but are remarkably
difficult to solve.

2. Existence of Limits

We first prove that a
1/n
n is bounded above, using a method which is an

extension of an idea due to Klarner (1967).
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We define the top (bottom) vertex of a set S0 of vertices as follows.
First construct the subset S1 ⊂ S0 such that the coordinate x1 of every
vertex in S1 has the maximum (minimum) value over all vertices in S0. We
then recursively construct Sk ⊂ Sk−1 such that the coordinate xk of every
vertex in Sk has the maximum (minimum) value over all vertices in Sk−1.
Let j be the smallest integer such that Sj contains precisely one vertex,
and call this vertex t (respectively b), the top (respectively bottom) vertex
of S0.

We now construct a unique ordering of the vertices and edges of a
bond animal. A vertex can have up to 2d edges emanating from it and we
assign an order l1, l2, . . . , l2d. We specify the added constraint that the edge
in the −x̂1 direction comes before the edges in the ±x̂2 directions in this
ordering. We number the bottom vertex v1. The k edges incident on the
bottom vertex are numbered 1, 2, . . . , k according to their order in the list
{li}, and the vertices connected to the bottom vertex through these edges
are numbered 2, . . . , k + 1. We now continue this numbering at vertex v2,
labelling any edges incident on v2 and vertices connected to v2, which have
not previously been labelled, and so on through v3, v4, . . . .

We next code the animal, proceeding through the vertices in order,
using the following procedure. The vertex vk, k > 1, is connected by an
edge to at least one vertex vj with j < k. Let j be the smallest such
value and let r be the order of the edge (vk, vj) emanating from vk in the
ordering {li} described above. Then number the ith edge (in the ordering
{li}) emanating from vk with the number si = (i − r) mod (2d) for each
i = 1, . . . , 2d, i 6= r. Place the number zero in the {(2d− 1)(k − 1) + si}th
location of a vector of length (2d− 1)n if the ith edge is not in the animal
or if it is incident on vm for some m < k. Otherwise place the number 1
in the {(2d − 1)(k − 1) + si}th location of the vector. In the special case
k = 1, assume the edge (v1 − x̂2, v1) is in the animal and then proceed as
for vk. In this way there is a vector of length (2d − 1)n associated with
each animal. The total number of ones in this vector is equal to the total
number of bonds in the animal. If an animal has b bonds these can be
chosen in at most

(

(2d−1)n
b

)

ways and the number of animals satisfies

an ≤

dn
∑

b=n−1

(

(2d − 1)n

b

)

≤ (d − 1)n

(

(2d − 1)n

⌊(d − 1/2)n⌋

)

(2.1)

(⌊x⌋ denotes the greatest integer less than or equal to x) and it follows that

a1/n
n ≤ 22d−1 (2.2)

for all n.
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Each animal with n vertices can be concatenated with each animal
with m vertices by translating so that the coordinates (x1(b), x2(b), . . . ) of
the bottom vertex of one animal and the coordinates (x1(t), x2(t), . . . ) of
the top vertex of the second animal are such that

x1(b) = x1(t) + 1

xj(b) = xj(t) ∀j 6= 1.
(2.3)

Adding an edge to join these two adjacent vertices results in an animal
with m + n vertices and every pair of m and n animals gives a distinct
(n + m)-animal so that

anam ≤ an+m. (2.4)

From (2.2) and (2.4) it follows that

sup
n>0

n−1 log an = lim
n→∞

n−1 log an = log λ ≤ (2d − 1) log 2, (2.5)

where λ is called the growth constant of bond animals. Similar concate-
nation arguments establish the existence of the limits in (1.1) since Tn, tn

and An are all less than or equal to an and so T
1/n
n etc. are all bounded

above.

3. Upper and Lower Bounds on the Growth Constants

In this section we give a brief account of several methods for finding upper
and lower bounds on the growth constants. Perhaps the most obvious
approach for obtaining a lower bound is to use (2.5) directly since (2.5)
implies that

a1/n
n ≤ λ ∀n, (3.1)

and with corresponding inequalities for Λ0, Λ and λ0. The numbers of
bond and site animals and bond and site trees are known exactly for small
n (see e.g. Gaunt et al. 1976, Gaunt and Ruskin 1978, Redelmeier 1981,
Gaunt et al. 1982). For instance, using Redelmeier’s result that A24 =
5239988770268 on the square lattice, we have Λ ≥ 3.388. By noticing that
the concatenation can be carried out in each of d directions (3.1) can be
improved to

(dn)1/n ≤ λ (3.2)

and, for site animals on the square lattice, we have Λ ≥ 3.487. Similar
calculations yield Λ0 ≥ 3.1533, λ0 ≥ 4.1507 and λ ≥ 4.3486.

An alternative but closely related method has been discussed by Rands
and Welsh (1981). This is related to an idea of Moser described in Klarner
and Rivest (1973). We call an animal α composite if there exist two animals
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α1 and α2 which yield α under the concatenation described in Section 2.
If no such pair of animals exists we call α a prime animal with respect to
bond decomposition. If we write pn for the number of these prime animals
with n vertices then

an = pn +

n−1
∑

i=1

pn−iai, n ≥ 1. (3.3)

If we construct generating functions

A(x) =

∞
∑

n=0

anxn (3.4)

and

P (x) =

∞
∑

n=1

pnxn (3.5)

then
A(x) = 1 + P (x)A(x) (3.6)

and A(x) is singular when P (x) = 1.
If an is known exactly for n ≤ N then pn can be determined for

n ≤ N from (3.3). If we write PN (x) for the polynomial with degree N
whose coefficients are equal to the coefficients of P (x) up to xN then Rogers
(1979) shows that the unique positive zero (1/λN ) of PN (x)−1 = 0 is such
that λN ≤ λ and converges to λ as N → ∞. Using this method Rands and
Welsh show that, for the square lattice, Λ ≥ 3.57.

A substantial improvement results from a comparatively minor change
in the concatenation operation. Instead of joining the top vertex of one
animal to the bottom vertex of a second animal by adding a bond, they
construct an animal by superimposing the top vertex of one and the bottom
vertex of another. This gives another definition of primality (prime with
respect to site decomposition) and the previous argument goes through
with only minor changes. The resulting bound is improved to Λ ≥ 3.7355.

The configurational data which are now known exactly allow these
bounds to be improved and corresponding bounds to be determined for the
other growth constants. For the square lattice, Redelmeier’s results for site
animals give Λ ≥ 3.791. The second concatenation approach can be used
for bond animals and for bond trees on the square lattice and, using the
available counts (Gaunt and Ruskin 1978; Gaunt et al. 1982), we obtain
the bounds λ ≥ 4.544 and λ0 ≥ 4.462. This second concatenation does not
work for site trees (since two site trees concatenated in this way do not
necessarily yield a tree) but, using the results of Gaunt et al. (1976), the
first concatenation gives Λ0 ≥ 3.300.
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The first concatenation argument can be extended in the following
way. With the definition of top and bottom vertex given in Section 2, an
animal is composite if there exists an edge in the x1-direction which when
removed decomposes the animal into two animals whose top and bottom
vertices were incident on this edge. If no such edge exists we call the animal
prime with respect to x1.

We now extend our definitions of top and bottom vertices to i-top and
i-bottom vertices in the following way. We first construct the set of vertices
such that coordinate xi has maximum (minimum) value, and the subset of
this such that xi+1 has maximum (minimum) value, and so on, cyclically,
to xi−1. This gives a unique i-top (i-bottom) vertex.

If an animal is prime with respect to x1 we can look for a further
decomposition removing an edge in the x2-direction to give two animals
whose 2-top and 2-bottom vertices were incident on this edge. If no such
edge is present the animal is prime with respect to x2, and so on. This
implies that the pn of (3.3) can be written in terms of the numbers pn(2)
of animals prime with respect to x2 as

pn = pn(2) +

n−1
∑

i=1

pn−i(2)pi (3.7)

and, in terms of their generating functions,

P (x) =
(

1 + P (x)
)

P2(x) (3.8)

where

P2(x) =

∞
∑

n=1

pn(2)xn. (3.9)

Hence

A(x) =

(

1 − P2(x)
)

(

1 − 2P2(x)
) (3.10)

and A has a singular point at the positive root of P2(x) = 1/2.
This approach gives an improved bound for site trees on the square

lattice, Λ0 ≥ 3.381, but does not improve the bounds for Λ, λ0, or λ.
We note that this approach does not generalize to the site decomposition
process.

All of these methods for deriving lower bounds rely on counting ani-
mals exactly for small n. The bounds are capable of improvement by de-
termining further terms in the series but the computational effort required
is considerable.

We also mention, without much detail, several other approaches to
computing lower bounds. We focus on site animals on the square lattice
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but the methods could be extended to other cases. If a site animal is such
that the bonds in each row (column) of the lattice are contiguous we call
the animal row (column) convex. An animal is convex if it is both row and
column convex. Clearly these are subsets of the site animals and counting
these subsets yields lower bounds on Λ, though these problems are also
interesting in their own right. Row convex animals have been counted by
Klarner (1965) and convex animals by Klarner and Rivest (1974) and by
Delest and Viennot (1984). On a different tack, Read (1962) has used a
transfer matrix method to count site animals confined between two parallel
lines. Although each of these approaches has attractive features we believe
that the renewal sequence method of Rands and Welsh shows most promise
for calculating good lower bounds.

In his original paper on site animals Eden (1961) shows that Λ ≤ 27/4
in d = 2. (Our argument in Section 2 that λ ≤ 22d−1 is based on his
approach.) Klarner and Rivest (1973) have reformulated Eden’s approach
in a way which allows successive improvement and we sketch their argument
here. Each site animal is associated with a unique spanning tree and these
trees can be regarded as a sequence of ‘twigs’, chosen from a fixed finite
set. The number of site animals is bounded above by the number of ways
of concatenating the twigs. Based on this argument, there is a particular
set of twigs which gives the Eden bound Λ ≤ 27/4. We note that this
argument and the same set of twigs also works for bond trees and gives
λ0 ≤ 27/4 in d = 2. Furthermore, this same set of twigs can be used to
obtain the upper bound λ ≤ 8 in d = 2 derived by us in Section 2. Klarner
and Rivest describe a procedure for choosing sets of twigs which lead to
successive improvements of the bound on Λ. Their best bound obtained in
this way is Λ ≤ 4.649551.

4. Applications of a Pattern Theorem

To motivate this section we begin by describing some work by Kesten (1963)
on the number of self-avoiding walks on a lattice. Kesten defined a pattern
to be any finite self-avoiding walk, i.e. any finite sequence of edges such that
no vertex of the lattice is visited more than once. He proved that if there
exists a self-avoiding walk on which the pattern appears three times then
the pattern appears at least once on all except exponentially few sufficiently
long self-avoiding walks. Kesten used this theorem to establish that, if cn is
the number of n-step self-avoiding walks, the limit limn→∞ cn+2/cn exists.
The theorem has proved useful in a variety of other areas, e.g. in studying
walks confined to a subset of a lattice (Hammersley and Whittington 1985).

Recently Madras (1988) has proved a corresponding pattern theorem
for lattice animals and related structures which we state as follows.

We focus on the case of bond animals though the theorem applies to
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certain subsets of these as well. Let L be the simple hypercubic lattice in
R

d and let P = (P1, P2) be a proper pattern if P1 and P2 are disjoint subsets
of L such that for any n there exists an animal with m > n vertices weakly
embeddable in L which contains all of P1 and none of P2. The number
an(P ) of animals with n vertices in which P does not occur is such that

lim sup
n→∞

n−1 log an(P ) < log λ. (4.1)

The theorem is valid if bond animals are replaced by site animals or
by bond trees; i.e.

lim sup
n→∞

n−1 log An(P ) < log Λ (4.2)

and
lim sup

n→∞

n−1 log tn(P ) < log λ0. (4.3)

It is easy to prove that Λ0 ≤ Λ ≤ λ0 ≤ λ and Rands and Welsh (1981)
conjectured that Λ < λ0 while Gaunt et al. (1982) conjectured that Λ0 <
Λ and λ0 < λ. Each of these strict inequalities can be established by
an application of Madras’ pattern theorem. If we consider P1 to be the
elementary square and P2 to be the empty set, P = (P1, P2) occurs in both
site animals and in bond animals but not in site trees or bond trees and
this immediately gives

Λ0 < Λ (4.4)

and
λ0 < λ. (4.5)

Following Klarner (1967) we construct a spanning tree for each site
animal. The vertices of the spanning tree are those of the animal and are
numbered according to the vertex numbering scheme described in Section
2. We complete the spanning tree by adding edges as follows. We join the
first and second vertices. We then consider each vertex in turn and add
an edge to join this vertex to the vertex with smallest number which is
adjacent to it in the lattice. These spanning trees are a subset of the bond
trees and correspond 1-1 with the site animals. It is clear that the pattern
in which P1 is ⊐ and P2 is the complement of P1 in � can appear in a
bond tree but not in the spanning tree (as defined above) of a site animal.
Hence

Λ < λ0. (4.6)

Madras et al. (1988) gave an alternative proof that λ0 < λ and this argu-
ment can be strengthened to show that

λ − λ0 ≥ (0.00003758)λ0 ≥ 0.0001677. (4.7)
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5. The Subdominant Asymptotic Behaviour

The results described up to now tell us nothing about the rates of approach
to the limits in (1.1). Physicists (e.g. Lubensky and Isaacson 1979) expect
that

an ∼ Cn−θλn (5.1)

which implies that the limit

lim
n→∞

(

log[an/λn]

log n

)

= −θ (5.2)

exists. Proving that this limit exists would be a major advance. Similarly,
it is believed that

tn ∼ C0n
−θ0λn

0 (5.3)

and there are arguments (and some numerical results) suggesting that θ =
θ0 (Lubensky and Isaacson 1979; Duarte and Ruskin 1981; Gaunt et al.
1982). The value of θ is believed to be lattice independent and to depend
only on the dimension. (Notice that λ is lattice dependent.) In addition,
θ is believed to be independent of d for d ≥ dc = 8, where dc is called
the upper critical dimension. For self-avoiding walks, the existence of an
upper critical dimension has now been established (Slade 1987). There is
an intriguing proposal (Parisi and Sourlas 1981) that θ is connected to the
Yang-Lee edge singularity exponent in d − 2 dimensions and, since this
exponent is known exactly for d = 0 and 1, this suggests that θ(d = 2) = 1
and θ(d = 3) = 3/2. These values are certainly consistent with the available
numerical evidence.

An attempt has been made to connect the results on trees with those
on animals by asking for the number of animals with fixed cyclomatic index.
If an(c) is the number of bond animals with n vertices and c elementary
cycles then an(0) ≡ tn and

an =
∑

c≥0

an(c). (5.4)

It is fairly easy to prove that

lim
n→∞

n−1 log an(c) ≡ log λc (5.5)

exists and that
λc = λ0 ∀c. (5.6)

By analogy with (5.1) one expects that

an(c) ∼ Ccn
−θcλn

0 (5.7)
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and it has been shown (Soteros and Whittington 1988) that if θ0 exists
then θc exists (in an analogous way to (5.2)) and that

θc = θ0 − c. (5.8)

While there are heuristic arguments (Whittington, Torrie, and Gaunt 1983)
that this is consistent with θ = θ0, much remains to be done in this area.

6. Lattice Animals on Lattice Subsets

In this section we consider the number of lattice animals with n vertices,
confined to lie in a subset of the square lattice. This is closely related
to some work on self-avoiding walks in restricted geometries (Hammers-
ley and Whittington 1985) and to similar problems in percolation theory
(Grimmett 1983) and the Ising problem (Chayes and Chayes 1986).

We shall consider two particular cases: animals in wedges and animals
in slits. We define an f -wedge of the square lattice to be the subset of the
square lattice {(x, y) : x ≥ 0, 0 ≤ y ≤ f(x)} where f(x) is a non-negative
function of x. We now ask for the number an(f) of animals with n vertices
with one vertex at the origin and with all other vertices in the f -wedge. It
is easy (following a line of argument due to Hammersley and Whittington
(1985)) to show that, provided that limx→∞ f(x) = ∞,

lim
n→∞

n−1 log an(f) = log λ (6.1)

independent of f . A situation of some physical interest is when

f(x) = αx. (6.2)

If one assumes that

an(αx) ∼ n−θ(α)λn (6.3)

the question is: how does θ depend on α? Of course, this is all modulo
the existence of the exponent θ. There are some numerical results due to
De’Bell and Lookman (1985) but nothing else. In the case of self-avoiding
walks there are some definite predictions from conformal invariance ar-
guments and these are in good agreement with the numerical results of
Guttmann and Torrie (1984) and Cardy and Redner (1984). (The con-
formal invariance argument does not work for animals since there is no
Hamiltonian formulation of the animal problem.)

The corresponding slit problem asks for the number an(L) of animals
with n vertices such that no vertex has y coordinate less than zero or
greater than L and at least one vertex has y coordinate zero. Two animals
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are considered identical if one can be translated into the other in the x-
direction. By concatenation in the x-direction it is easy to show that

lim
n→∞

n−1 log an(L) = sup
n>0

n−1 log an(L) = log λ(L) (6.4)

and interest focuses on the L-dependence of λ(L).
Madras’ pattern theorem readily establishes that

λ(L + 1) > λ(L) (6.5)

and, following Hammersley and Whittington (1985), it is easy to prove that

lim
L→∞

λ(L) = λ. (6.6)

Can one say anything further about the L dependence? It is presumably
the case that log λ(L) is a concave function of L, and a reasonable guess
(supported by a scaling argument) would be that

log λ − log λ(L) ∼ L−φ (6.7)

but this seems to be difficult to prove.

7. Unsolved Problems

In this final section we list some of the unsolved problems which we have
mentioned earlier.
(i) Calculate any of the growth constants for any non-trivial lattice.
(ii) Show that an = λneO(log n).
(iii) Prove that the log n term in (ii) has the same coefficient for trees and

for animals, and for the site and bond cases.
(iv) Provide some rigorous results on the sub-dominant term for animals

in a wedge of angle α.
(v) Investigate the L dependence of λ(L) for animals in a slit geometry.
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