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1. Introduction

The motivation of this paper is to attempt to review and classify the diffi-
culty of a range of problems, arising in the statistical mechanics of physical
systems and to which I was introduced by J.M. Hammersley in the early six-
ties. Their common characteristics at the time were that they all seemed
hard and there was little existing mathematical machinery which was of
much use in dealing with them. Twenty years later the situation has not
changed dramatically; there do exist some mathematical techniques which
appear to be tools in trade for this area, subadditive functions and transfer
matrices for example, but they are still relatively few and despite a great
deal of effort the number of exact answers which are known to the many
problems posed is extremely small. Below we shall attempt to explain why
this should be so by showing how the problems originally studied are spe-
cial cases of a wide range of problems which can, in a well defined sense, be
regarded as the most intractable enumeration problems that can sensibly
be posed.

We do this by relating the problems to their position in the hierarchy of
computational complexity theory. While concepts such as P (polynomial
time) and NP (nondeterministic polynomial time) have rapidly become
commonplace ideas in mathematics since their introduction via Cook’s the-
orem in 1970, the counting analogue of NP, denoted by #P, introduced by
Valiant (1979a) and like NP also having complete or hardest problems has
received less attention. As we shall see, most of the natural problems aris-
ing in statistical physics can be described in this framework and as first
pointed out by Valiant (1979a,b) and Jerrum (1981, 1987) this goes a long
way towards explaining their apparent intractability. There are however
what can almost be described as ‘pockets of resistance’, for example some
of these problems do have ‘exact’ solutions for some 2-dimensional lattices,
and whether or not this is a phenomenon of dimension or planarity or the
very special nature of the lattice is an interesting and unanswered question
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to which we return at the conclusion.

2. The Statistical Physics Problems

In this section I define slightly generalised versions of the main problems
from statistical physics which we shall be considering. By ‘generalised’ I
mean that instead of formulating them as problems on one of the stan-
dard lattices the underlying structure will be a general graph. The graph
theoretic notation will be standard (see Bondy and Murty 1976).

Percolation Theory

As originally propounded by Broadbent and Hammersley (1957) this is
concerned with the spread of blight through a medium in which the ele-
ments of the medium independently permit or fail to permit passage. More
formally this can be described as follows.

Let G be an arbitrary undirected graph and let p, 0 ≤ p ≤ 1 be fixed.
Suppose now that each edge of G is, independently of each other edge, re-
moved with probability q = 1−p. Denote the resulting (random) subgraph
of G by ω and let P (G; p) denote the probability that ω is spanning, that
is that in ω it is possible to move from any vertex of G to any other. We
call P (G; p) the percolation probability of G. It is clearly a measure of the
reliability or vulnerability of G regarded as a communication network and
has the standard S-shaped curve as p varies between 0 and 1, and is called
the all terminal reliability by Provan and Ball (1983).

When G is a lattice we let P (p) denote the probability that the com-
ponent of ω which contains the origin is infinite. It is easy to see that there
exists a critical probability pc defined by

pc = inf{p : P (p) > 0}.

Determining pc exactly is extraordinarily difficult; see for example the proof
by Kesten (1980) that pc = 1

2 for the square lattice. As far as I am aware
exact results are known only for some 2-dimensional lattices. For further
details we refer to the monographs of Kesten (1982) and Grimmett (1989).

The Ising Model

This is a problem of long standing and can be defined for a general graph
as follows. Let σ be an assignation of positive (+1) and negative (−1) spins
to the vertices of a graph G. The interaction energy E(σ) is defined by

E(σ) = −J
∑

i∼j

σiσj − H
∑

i

σi

where the first summation is only over i, j which are adjacent in G, H is
the external magnetic field and J is the coupling constant. The partition
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function Z is then given by

Z(G) =
∑

σ

exp(−βE(σ))

where the sum is over all possible spin configurations. The fundamental
problem is to determine Z(G), though as far as the applications to physics
are concerned it would suffice to find the thermodynamic limit of Z as G
moved through an increasing sequence of subgraphs of the d-dimensional
lattice. The Onsager solution (see Percus 1971) for the case d = 2 with
zero external magnetic field is the classic result of this area. As yet there
is no extension known in higher dimensions.

Self Avoiding Walks

The basic question about self avoiding walks on a lattice is to determine
f(n), the number of paths starting at the origin, having n edges, and
visiting no point more than once. Hammersley (1957) used subadditivity
to prove the existence of a constant θ such that

lim
n→∞

[f(n)]1/n = θ.

The constant θ clearly depends on the lattice, but even for the 2-dimens-
ional square lattice its value is not known exactly; the best exact bounds
give only 2.58 . . . ≤ θ ≤ 2.72 . . . . The natural generalisation of this to a
general graph G is to let Wn(G) be the number of paths in G of length
n and which pass through each vertex at most once. When n + 1 equals
the number of vertices of G this is the well known problem of counting the
Hamiltonian paths of G.

Animals or Polyominoes

Conceptually very close to self avoiding walks, counting animals or poly-
ominoes has been for a long time a popular if frustrating sport, see for
example the article by Whittington in this volume. Although usually de-
fined for lattices we can define an animal of size n on an arbitrary graph
G to be any subset X of the vertex set V (G) such that the subgraph of G
induced by X is connected and |X | = n. We let an(G) denote the number
of such animals. When G is a lattice L it is easy to use subadditivity to
prove that

lim
n→∞

[an(L)]1/n = a(L)

exists, but determining this limit exactly, or merely obtaining close bounds,
again seems to be extraordinarily difficult, even for the square lattice.
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The Monomer-Dimer Problem

This arises in the study of physical systems involving diatomic molecules
(dimers). For a general graph G a formal description of the problem is to
ask for the number of arrangements of N1 dimers and N2 monomers on the
edges and vertices of G such that each dimer is placed on an edge, each
monomer on a vertex, and each vertex of G is either occupied by exactly
one monomer or is the endvertex of exactly one dimer. Clearly for this to
be possible

2N1 + N2 = |V (G)| = N.

The ratio N2/N is called the monomer density.
When there are no monomers we have what is known as the dimer

problem, it can be rephrased as counting the number of perfect matchings
of a graph (a matching is a set of edges no two of which share a common
vertex, it is a perfect matching of G if each vertex of G is the endpoint of
one edge of the matching).

Similarly the monomer dimer problem is exactly the problem of count-
ing the number of matchings of a given size in a graph.

Ice-Type Models

The simplest ice-type model can be described as follows. Let G be any
regular 4-valent graph and let Zice, the partition function, count the number
of orientations of the edges of G which satisfy the rule that the number of
arrows into each vertex equals the number of arrows out. In graph theoretic
terminology Zice counts the number of Eulerian orientations of G. Details
of the physical motivation for this and a description of a range of ice-type
models can be found in Baxter (1982). A remarkable result about the ice
model is that of Lieb (1967) who showed that if Zice(m, n) denotes the ice
partition function on the m × n section of the square lattice then

lim
m,n→∞

[Zice(m, n)]1/mn = (4/3)3/2.

No extension of this to higher dimensions is known.

The q-State Potts Model

This is naturally defined for any graph G and positive integer q as follows.
A state σ of the vertex set of G is a function which assigns to each vertex
i of G a spin σi, where σi ∈ {1, 2, . . . , q}. The energy associated with state
σ is defined to be

E(σ) = −J
∑

δ(σi, σj)

where the summation is over all distinct i, j ∈ V (G) which are joined by
an edge and δ is the usual delta function taking values 1 and 0 depending
on whether σi equals σj or not.
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The partition function Z(G) is then defined by

Z(G) =
∑

σ

exp{−KE(σ)/J}

where J, K are physical constants, see Baxter (1982). For q = 2 it is just
the Ising model.

3. Computational Complexity

The basic notions of computational complexity are now familiar concepts in
most branches of mathematics. One of the main purposes of the theory is to
classify and explain the gap that seems to separate tractable computational
problems from the apparently intractable. Deciding whether or not P = NP
is probably the most important problem in theoretical computer science.
The extension of these ideas to enumeration problems has received less
attention and we will briefly review the main concepts here.

We regard a computational (enumeration) problem as a function map-
ping inputs to solutions, (graphs to the number of their 3-vertex colourings
for example). A problem is polynomial time computable if there exists an al-
gorithm which computes the function in a length of time (number of steps)
bounded by a polynomial in the size of the problem instance. The class of
such problems we denote by P. If A and B are two problems we say that
A is polynomial time Turing reducible to B, written A ∝ B, if it is possible
with the aid of a subroutine for problem B to solve A in polynomial time,
in other words the number of steps needed to solve A (apart from calls to
the subroutine for B) is polynomially bounded.

The class #P can be described informally as the class of enumeration
problems in which the structures being counted are recognisable in polyno-
mial time. In other words there is an algorithm which runs in polynomial
time and which will verify that a given structure has the form needed to be
included in the count. For example counting hamiltonian paths in a graph
is in #P because it is easy to check in polynomial time that a given set of
edges is a hamiltonian path.

Like NP, #P has a class of ‘hardest’ problems called the #P-complete

problems. They can be formally described by, problem A belonging to #P
is #P-complete if for any other problem B ∈ #P, we have B ∝ A. The
classic example of a #P-complete problem is counting truth assignments
of a Boolean function. This consists of

INPUT: A Boolean formula φ in variables x1, x2, . . . , xn and the
connectives ∨, ∧, ¬.

QUESTION: How many distinct assignments of truth values to the x1,
x2, . . . , xn make φ true?
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The #P-complete problems tend to be the enumerative counterparts
of NP-complete problems though it has to be emphasized that there is no
exact formulation of this remark.

As with NP, we define a problem to be #P-hard if any problem in
#P is polynomial time reducible to it. In other words A is #P-hard if the
existence of a polynomial time algorithm for A would imply the existence
of a polynomial time algorithm for any problem in #P.

It is clear from this that describing a problem as #P-hard or #P-
complete is very strong evidence of its inherent intractability. There are
now several thousand problems known to be #P-complete. A polynomial
time algorithm for any one of them would imply #P = P and this in turn
would imply NP = P. For a more precise formulation we refer to Garey
and Johnson (1979).

4. The Complexity of the Physical Problems

We now turn to an examination of the status in the complexity hierarchy
of the previously discussed physical problems.

Self Avoiding Walks

As defined, counting the number of self avoiding walks of n steps on a
graph G of n + 1 vertices is exactly the problem of counting the number of
Hamiltonian paths in G. Recall that a path is Hamiltonian if it visits each
vertex exactly once. This is one of the classical #P-complete problems and
is known to be #P-complete even when restricted to planar graphs with
maximum degree 3.

It is not surprising therefore that no exact result about self avoiding
walks seems to be known except for tree like structures such as Bethe
lattices.

The Dimer Problem

For a general graph this is exactly the problem of counting perfect match-
ings. As far as complexity is concerned it is probably the most intriguing of
the problems discussed in that there is a clear cut distinction between pla-
nar and nonplanar structures. This is because of the following statements
which are partial restatements of classic theorems of Kasteleyn (1967) and
Valiant (1979a).
(1) Counting perfect matchings in a planar graph can be done in polyno-

mial time.
(2) Counting perfect matchings in a general graph is a #P-complete prob-

lem.
The difference between the two statements (1) and (2) is partially explained
by the following observation.
(3) For planar graphs, counting perfect matchings reduces to evaluating
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the Pfaffian of a matrix and this is equivalent to evaluating a determi-
nant. For general graphs the problem is equivalent to evaluating the
permanent of a 0–1 matrix.
The permanent of a matrix A is just the expansion of the determinant

of A with all terms having positive signs. Paradoxically (at least at the
naive level) this makes it hard to compute.

The method of dealing with planar graphs is an extension of the
method developed by Kasteleyn (1961) and Temperley and Fisher (1961) to
show that on the 2-dimensional square lattice, if f(N) denotes the number
of dimer coverings of an N × N section, then

lim
n→∞

[f(N)]1/N2

= e2G/π = 1.791622 . . .

where G is Catalan’s constant given by

G =

∞
∑

k=0

(−1)k

(2k + 1)2
.

The fact that in higher dimensions the lattices are nonplanar would suggest
in view of (2), that it will be exceedingly difficult to obtain any such exact
result.

The Monomer-Dimer Problem

Even for planar graphs the general version of the monomer dimer problem
is #P-complete. This was first shown by Jerrum (1981, 1987), who showed
that counting the total number of matchings in a graph is #P-complete.
Its apparent intractability goes someway towards explaining the paucity
of exact results. As far as I am aware there have not been significant
improvements for the 2-dimensional square lattice over the rather weak
bounds given in Bondy and Welsh (1966) and Hammersley and Menon
(1970).

We next turn to the remaining problems under discussion, namely
percolation, Ising, Potts and the ice problem. It turns out that they can
all be regarded as specific evaluations of a well known graph polynomial.
We treat this briefly first.

The Dichromate or Whitney-Tutte Polynomial

A crucial concept in what follows is the following graph polynomial intro-
duced by Tutte (1947). It is closely related to the rank generating function
introduced by Whitney (1932) and has a natural extension to vector spaces
and matroids. In this context it has interpretations as the weight enumera-
tor of a linear code (see Welsh 1976) and has recently been observed to have
considerable significance in the theory of knots, see for example Kauffman
(1987) or Lickorish (1988).
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However in this article we will restrict attention to graphs and then it
can be fairly simply defined as follows.

Let G be a graph with edge set E. For any subset A of E we define
the rank r(A) by

r(A) = v(A) − k(A)

where v(A) is the number of vertices of G incident with A and k(A) is the
number of (connected) components of the subgraph spanned by A. Then
define the Tutte polynomial of G to be the 2-variable polynomial

T (G; x, y) =
∑

A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A). (4.1)

Hence if I is an isthmus and L denotes a loop

T (I; x, y) = x, T (L; x, y) = y. (4.2)

This, together with the recursion formulae

T (G; x, y) = T (G′
e; x, y) + T (G′′

e ; x, y) (4.3)

whenever e is not an isthmus or a loop, effectively determines T uniquely.
Here G′

e and G′′
e are the graphs obtained from G by respectively deleting

and contracting the edge e. When e is an isthmus or loop replacing (4.2)
by

T (G; x, y) =

{

xT (G′
e; x, y) e an isthmus

yT (G′
e; x, y) e a loop

(4.4)

gives a complete recursion formula for calculating T for any graph G.
A more striking property of the Tutte polynomial is the following. A

function f defined on the set of all graphs is an invariant if whenever G1

and G2 are isomorphic f(G1) = f(G2). A special case of the main result
of Oxley and Welsh (1979) is the following.

Theorem 1. Let f be a graph invariant taking values in a commutative
ring R satisfying for some a, b ∈ R, the relation

f(G) = af(G′
e) + bf(G′′

e ) (4.5)

when e is not a loop or isthmus, and

f(G) = f({e})f(G′
e)

when e is a loop or isthmus. Then f is given by

f(G) = a|E|−|V |+1b|V |−1T (G; x/b, y/a). (4.6)
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Using this theorem it is now easy to prove that all the remaining
problems of statistical physics described in the last section can be reduced
to evaluating the Tutte polynomial of the graph along particular curves in
the x, y–plane. The proof technique is just to verify that the quantity in
question, be it partition function, probability, or enumeration satisfies a
recursive formula of the type (4.5) for suitable a and b.

This method gives the following interpretations of T .

Percolation

The percolation probability P (G; p) is given by

P (G; p) = q|E|−|V |+1p|V |−1T (G; 1, q−1)

for any connected graph G and where q = 1 − p.

The Ising and Potts Models

In the absence of an external magnetic field the Ising model is the special
case of the Potts model defined with q = 2. It is straightforward to use
the recursion formula (4.5) to verify that the general partition function Z
is given by an evaluation of the Tutte polynomial T along the hyperbola
(x − 1)(y − 1) = 2. It is perhaps easier to see this if Z is reparameterised
in the following form. Let A(σ) denote the sets of edges of G which have
both endpoints the same sign under σ. Let B(σ) be the complementary
set of edges, then the generalised partition function

Z(G; θ, φ) = θ|E|−|V |+1(θ − φ)|V |−1T

(

G;
θ + φ

θ − φ
,
θ

φ

)

(4.7)

where
θ = eβ, φ = e−β, β = J/kT

where J is the interaction strength, T is temperature and k is Boltzmann’s
constant.

Again using the recursion formula (4.5) it is straightforward to check
that for the q-state Potts model, the partition function is given by

Z(G; q, v) = qnT

(

G;
q + v

v
, v + 1

)

(4.8)

where n is the number of vertices, and v is the parameter defined by v+1 =
exp(−1/kT ).

In other words the partition function of the Potts model is, up to an
easily determined constant, the Tutte polynomial of G evaluated along the
hyperbola Hq ≡ (x − 1)(y − 1) = q.

The relation between the above models and the Tutte polynomial
seems to have been first noticed by Fortuin and Kasteleyn (1972), though
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their proofs are different from the method indicated above and they were
using an equivalent (up to a change of variable) polynomial due to H.
Whitney (1932).

The Ice Model

Lenard (see Lieb 1967) showed that determining the partition function
Zice(G) for any planar 4-valent graph G was equivalent to counting the 3
colourings of the faces of G in such a way that no two faces with a common
edge are given the same colour. But then by a standard result linking
colourings and evaluations of the Tutte polynomial we have

Zice(G) = T (G; 0,−2) (4.9)

and in fact it is easy to prove directly from the recursion formula (4.3) that
(4.9) holds for all (not necessarily planar) 4-valent graphs.

It follows from the above observations that whenever the evaluation
of the Tutte polynomial is ‘easy’ then so are each of the above problems.
However, for general graphs determination of the Tutte polynomial or even
evaluation at a particular point has been proved to be #P-hard except in
very special cases

This follows from results of Jaeger, Vertigan, and Welsh (1989), a
special case of which is the following theorem.

Theorem 2. Evaluating the Tutte polynomial of a graph at a particular
point of the complex plane is #P-hard except when either

(a) the point lies on the hyperbola (x − 1)(y − 1) = 1, or

(b) the point is one of the special points (1, 1), (−1, 0), (0,−1), (−1,−1),
(i,−i), (−i, i), (j, j2), (j2, j) where j = e2πi/3.

In the special cases the evaluation can be carried out in polynomial time.

As far as the physical problems are concerned the special points and
special hyperbola seem to have no significance. There are combinatorial
interpretations of T (G; x, y) at each of the points, the most interesting
being at (1, 1) where T counts the number of spanning trees of the graph
for which there is the well known Kirchhoff determinantal formula.

5. Approximations, Monte Carlo Methods and Randomised

Algorithms

One result of the evidence of intractability of most of these problems as pro-
pounded in the last section is that good approximation techniques assume
even greater importance. Monte Carlo methods have long been a favoured
approach to many of these; see for example Hammersley and Handscomb
(1964). However, until very recently there has been very little known about
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the rate, or accuracy of convergence of what can loosely be described as
probabilistic methods of approximation.

Very recently, however, there has been a notable breakthrough by Jer-
rum and Sinclair (1988) on one specific problem, and the methods used
have the capability of extension to other #P-hard problems.

We now describe what we mean by a randomised approximation sch-
eme. First, for any real numbers a, â and r ≥ 1 we say that â approximates

a within ratio r if

â/r ≤ a ≤ âr.

A fully polynomial randomised approximation scheme, abbreviated to
fpras for a function f : Σ∗ → N is a randomised algorithm which when
presented with a string x ∈ Σ∗ and a real number ǫ > 0 runs in time which
is polynomial in |x| and ǫ−1 and with probability at least 1

2 + δ (δ > 0) its
output approximates f(x) within ratio 1 + ǫ. (By |x| we mean the number
of elements in or length of the string x, and as usual Σ∗ is the set of strings
of symbols from the finite alphabet Σ.)

It is not difficult to see that the existence of a fpras means the existence
(in a precise mathematical sense) of a fast, good approximation algorithm,
and what Jerrum and Sinclair have done is to show the existence of such
an algorithm for determining the partition function of the monomer-dimer
problem. We now sketch the ideas of their method.

Let (Xt : 0 ≤ t < ∞) be a finite state, ergodic, time homogeneous
Markov chain M with transition matrix P = (pij) and having stationary
distribution π = (πi).

The relative pointwise distance ∆(t) is defined by

∆(t) = maxi,j
|pij(t) − πj |

πj

where as usual pij(t) represents the t–step transition probability. Thus
∆(t) is a measure of the rate of convergence of the Markov chain to its
stationary distribution and the ideal is a situation where ∆(t) converges to
zero exponentially fast as a function of time.

Now suppose that the ergodic chain M is time reversible so that it
satisfies the balance condition pijπi = pjiπj , ∀i, j. We associate with M
an undirected weighted graph G(M) in which the vertices are the states of
M , the edges join all pairs of states with pij > 0 and the weight wij of the
edge (i, j) is given by

wij = pijπi = pjiπj .

A measure of the rate at which the Markov chain can move around its state
space is the conductance Φ defined as follows. For any set A of vertices
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of G(M) let ∂A denote the set of edges having exactly one endpoint in A
and then let ω(∂A) be the sum of the weights of these edges. Then

Φ = min

(

ω(∂A)
/

∑

i∈A

πi

)

where the minimum is taken over all sets A of states for which

0 <
∑

i∈A

πi ≤
1
2 .

The main result of Sinclair and Jerrum (1988) is the following.

Theorem 3. If M is a time reversible ergodic chain with pii ≥
1
2 for each

i, then the relative pointwise distance ∆(t) satisfies

∆(t) ≤ (1 − Φ2/2)t/πmin

where πmin is the minimum of the stationary state probabilities.

There are a few points to note about Theorem 3. First, the condition
pii ≥

1
2 though strange, is technical, and can be introduced into any chain

by replacing P by (I + P )/2, this leaves the stationary distribution un-
changed and reduces the conductance by a factor of 1

2 . This is immaterial
in the sort of situations in which it is used, namely to prove:

Theorem 4. There exists a fully polynomial randomised approximation
scheme for counting the number of weighted matchings in a graph.

In other words the partition function of the monomer dimer problem
can be approximated accurately, quickly.

The basic idea underlying the proof of Theorem 4 is to set up an
appropriate Markov chain which can be proved to be rapidly mixing. For
the monomer dimer (or counting matchings) problem on a graph G the
Markov chain M will have as its states the matchings of G and transitions
between states are carried out according to the following rules:

Let I be a particular matching or state of M and let e be any edge of
G. The pair (I, e) determines a new state J by the formulae:
(a) e ∈ I, J = I\e,
(b) if e /∈ I and I ∪ e is a matching then J = I ∪ e,
(c) if e /∈ I but exactly one endpoint of e is covered by an edge e′ of I

then J = (I\e′) ∪ e.
The Markov chain M is of the Metropolis type with transition probabilities
determined by choosing edges of G at random and then adopting the change
from I to J with probability 1

2 . When modified to make the self loop
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probabilities no smaller than 1
2 as indicated, Jerrum and Sinclair show

that its conductance Φ satisfies

Φ ≥
1

8|E(G)|

and hence using Theorem 1 the chain M is rapidly mixing.
The broad idea of the counting algorithm is given by the steps A1–3.

A1: Let the Markov chain M run for time long enough to generate a ran-
dom sample of ‘approximately random’ members of the stationary dis-
tribution of matchings.

A2: Use the fact that for a specific edge e the partition function Z(G) can
be written as

Z(G) = Z(G+) + Z(G−)

where G−, is the graph obtained from G by deleting e = (u, v) and
G+ is the graph obtained from G by removing e, u, v and all edges
incident with u, v.

A3: Let z+, z− be the number of members of the sample which contain the
specific edge e and use these to estimate Z(G+), Z(G−). From these
we can recursively estimate Z(G).
The important point is that because the chain is rapidly mixing the

method works in the sense that to obtain a final estimate which approxi-
mates Z(G) within a ratio 1 + ǫ with probability at least 3

4 the sample size
required is only O(|E|3ǫ−2) where E = E(G).

6. Conclusion

As far as I am aware all the exact results which have been proved for any
of the physical problems have been for some of the 2-dimensional planar
lattices. Accordingly one might suspect that it is planarity which makes
things easier. However, from the viewpoint of complexity this cannot be the
case, and further work extending Theorem 2 by Vertigan (1989) shows that
except at a few very special points the Tutte polynomial of planar graphs
is #P-hard to compute. Hence if one believes the thesis that exact results
about #P-hard problems are in general almost impossible to obtain one is
led to ask what additional properties of the 2-dimensional square lattices
makes possible the exact results obtained for the Ising, ice, dimer and
percolation problems on this particular lattice. It is doubtful if there is an
easy answer to this problem. In this context it should be emphasized that
calculating the asymptotic limit of a particular sequence of graph functions
may be a much easier problem than the exact evaluation problem.

We close with the following:
Problem: Is there any way of extending the Jerrum-Sinclair randomised
approximation approach to any of the other physical problems?
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As far as I am aware the only other problems to which the method
has so far been applied successfully is to estimating the volume of convex
bodies (Dyer, Frieze, and Kannan 1988) and generating random graphs
(Jerrum and Sinclair 1988b). Ideally we would like to be able to prove
that the Metropolis type Monte Carlo methods developed in Hammersley
and Handscomb (1964) for example are based on rapidly mixing Markov
chains. This may be the case but proving it could be very difficult.
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Lickorish, W.B.R. (1988). Polynomials for links. Bulletin of the London Mathe-

matical Society 20, 558–588.
Lieb, E.H. (1967). Residual entropy of square ice. Physical Review 162, 162–171.
Oxley, J.G. and Welsh, D.J.A. (1979). The Tutte polynomial and percolation.

In Graph Theory and Related Topics, ed. J.A. Bondy and U.S.R. Murty,
Academic Press, London, 329–339.

Percus, J.K. (1971). Combinatorial Methods. Springer-Verlag, New York.
Provan, J.S. and Ball, M.O. (1983). The complexity of counting cuts and of

computing the probability that a graph is connected. SIAM Journal of

Computing 12, 777–788.
Sinclair, A.J. and Jerrum, M.R. (1987). Approximate counting, uniform genera-

tion and rapidly mixing Markov chains. Information and Computation, to
appear.

Temperley, H.N.V. and Fisher, M.E. (1961). Dimer problem in statistical me-
chanics — an exact result. Philosophical Magazine 6, 1061–1063.

Tutte, W.T. (1947). A ring in graph theory. Proceedings of the Cambridge

Philosophical Society 43, 26–40.
Valiant, L.G. (1979a). The complexity of computing the permanent. Theoretical

Computing Science 8, 189–201.
(1979b). The complexity of enumeration and reliability problems. SIAM

Journal of Computing 8, 410–421.
Vertigan, D.L. (1989). The Tutte polynomial at special points. To appear.
Welsh, D.J.A. (1976). Matroid Theory. London Mathematical Society Mono-

graph no. 8, Academic Press, London.
Whitney, H. (1932). A logical expansion in mathematics. Bulletin of the Ameri-

can Mathematical Society 38, 572–579.

Merton College
Oxford OX1 4JD.


