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Abstract

This article explores three developments that arise from the fundamental
theorem of Beardwood, Halton, and Hammersley on the asymptotic behav-
ior of the shortest path through n random points. The first development
concerns the role of martingales in the theory of shortest paths, especially
their role in large deviation inequalities. The second development con-
cerns the use of Lipschitz spacefilling curves to obtain analytical bounds
in the theory of the TSP, and it provides some bounds that refine those of
Bartholdi and Platzman on the worst case performance of the spacefilling
heuristic for the TSP. The final topic addresses the relationship between
Karp’s partitioning heuristic and the BHH theorem.

1. Introduction

In 1959 Beardwood, Halton, and Hammersley established the following
theorem:

If Xi, 1 ≤ i < ∞ are independent identically distributed random vari-

ables with bounded support in R
d, then the length Ln under the usual Eu-

clidean metric of the shortest path through the points {X1, X2, . . . , Xn}
satisfies

n−(d−1)/dLn → cd

∫

Rd

f(x)(d−1)/d dx almost surely. (1.1)

Here, f(x) is the density of the absolutely continuous part of the distribution

of the Xi.

This result has proved fruitful in most of the ways that are open to
a mathematical discovery. In particular, it has lead to interesting appli-
cations, provoked useful generalizations and inspired new techniques of
analysis. The intention of this article is to review and contribute to three
developments associated with the Beardwood, Halton, Hammersley theo-
rem.

The first development concerns the extent to which (1.1) can be com-
plemented by large deviation results. This exploration leads us to consider
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some basic results of large deviations for martingales, particularly Azuma’s
inequality, for which we give two proofs. While exploring the relationship
of the TSP martingale theory, we also examine the demands it places on
results like the square function inequality of Burkholder, bounds on Her-
mite moments, and related ideas. In the course of the review we give new
proofs of two inequalities of Rhee and Talagrand, and we examine essen-
tially all of the available information concerning the tail of the probability
distribution of Ln.

We next address the use of spacefilling curves in the analytical theory
of the TSP. Such techniques are relatively new, but their simplicity and
generality suggests that their use will grow. The fact that underlies this
development is the existence of measure preserving transformations from
[0, 1] onto [0, 1]d that are Lipschitz of order 1/d. A basic objective of Section
4 is to review the background of a problem of Platzman and Bartholdi on
the ratio of the length of the tour provided by the spacefilling heuristic and
the length of an optimal tour is bounded independently of n.

The third development concerns the role of (1.1) in Karp’s polynomial
time partitioning algorithm for the TSP. This topic is addressed briefly,
but two results are reviewed that will make clear how one can show the
effectiveness of Karp’s algorithm without resort to the full force of (1.1).

In the concluding section, we discuss some open problems and promis-
ing research directions. Finally there are two appendices that stand some-
what apart from our basic themes. The first of these gives S. Lalley’s previ-
ously unpublished proof of the Beardwood, Halton, Hammersley Theorem
in d = 2 for random variables with the uniform distribution on [0, 1]2. This
proof uses minimal machinery and illustrates a technique that is applicable
to many related problems. The second appendix develops an inequality for
martingales that R.E.A.C. Paley introduced for Walsh functions. Paley’s
old argument is examined for the suggestions it provides about how one
might pursue large deviation inequalities for Ln without paying the price
of bounds on L∞ norms as demanded by Azuma’s inequality.

2. Martingale Bounds for the TSP

For Xi, 1 ≤ i < ∞, independent and uniformly distributed in [0, 1]d, the
length Ln of the shortest path through {X1, X2, . . . , Xn} is a random vari-
able that we can show to be tightly concentrated about its mean. In d = 2,
for example, we know that Var Ln is bounded independently of n. This fact
is proved in Steele (1981b) by means of the jackknife inequality of Efron
and Stein (1981), but one can provide a proof that offers considerably more
potential for further development by following Rhee and Talagrand (1987)
and introducing martingale arguments.
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If Fk is the σ-field generated by {X1, X2, . . . , Xk} and

di = E(Ln | Fi) − E(Ln | Fi−1), (2.1)

then di, 1 ≤ i ≤ n, is a sequence of martingale differences that satisfy

Ln − ELn =

n
∑

i=1

di. (2.2)

This well-known representation is available for any integrable random vari-
able, but there are features that make it particularly effective for Ln. The
most central of these is that the di can be related to the change that takes
place in Ln as one of the Xi is changed. In this respect, the analysis of
Ln by means of martingale differences comes to rely on calculations that
are quite close to those that made the jackknife inequality effective. By
working out the details of the Lp theory associated with the martingale
representation, we are led to some of the basic themes of martingale the-
ory.

For each 1 ≤ i ≤ n, let L
(i)
n denote the length of the shortest path

through Si = {X1, X2, . . . , Xi−1, X̂i, Xi+1, . . . , Xn} where the random vari-
ables {X̂i : 1 ≤ i ≤ n} are independent, uniformly distributed and also
independent of the variables in the set S = {Xi : 1 ≤ i ≤ n}. Since

E(L
(i)
n | Fi) = E(Ln | Fi−1), we have the key observation that

di = E(Ln − L(i)
n | Fi). (2.3)

Since one can build a path through Si by following the minimal path
through S and making a detour from Xj to X̂i and back for some j 6= i,
we have

L(i)
n − Ln ≤ 2 min

j:j 6=i
|X̂i −Xj |. (2.4a)

By the same reasoning but starting from the optimal tour for Si we have

Ln − L(i)
n ≤ 2 min

j:j 6=i
|Xi −Xj |, (2.4b)

and, moreover, the right hand sides of (2.4a) and (2.4b) both have the same
distribution. Next we note that simple geometric considerations as applied
in Steele (1981b) give us a bound on the tail of these distributions:

P (min
j:j 6=i

|X̂i −Xj | ≥ t) ≤ Ae−Bntd

, t > 0, (2.5)

where A = Ad and B = Bd are constants that depend on d (but not on n
or t). From (2.3), (2.4a,b), (2.5), and Jensen’s inequality, we therefore find
for any p ≥ 1 that

E|di|p ≤ 4ppd−1A(nB)−p/dΓ(p/d). (2.6)
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Finally, in terms of Lp norms, we find from Stirling’s formula that

‖di‖p ≤ C1(p/n)1/d (2.7)

where C1 is a constant that depends only on d ≥ 2.
Inequality (2.7) is a basic one for the theory of the traveling salesman

problem. In particular, since the di are orthogonal random variables, we
find that if we restrict attention to p = 2 and d = 2, then (2.7) completes the
proof of the rather surprising uniform bound Var Ln ≤ 2A2B

−1
2 mentioned

earlier.
For large p inequality (2.7) is not as effective as one would hope since

from (2.4a,b) it is already immediate that the norms ‖di‖∞ are bounded
by 2d1/2. Still, by applying the argument used in (2.6) to the conditional
probabilities (2.3), we can get a sharper bound on the ‖di‖∞. In particular,
if we relax the bounds (2.4a,b) to

|L(i)
n − Ln| ≤ 2 min

j:j>i
|X̂i −Xj| + 2 min

j:j>i
|Xi −Xj |,

then from (2.3) we find

|di| ≤ 2E{min
j:j>i

|X̂i −Xj |} + 2E

{

min
j:j>i

|Xi −Xj|
∣

∣Xi

}

. (2.8)

Using ‖di‖∞ ≤ 2d1/2 to deal with i = n, we thus can find a constant C2

that depends only on d ≥ 2, so for all 1 ≤ i ≤ n we have

‖di‖∞ ≤ C2(n− i+ 1)−1/d. (2.9)

The beauty of (2.9) is that it permits us to use traditional martingale
techniques to obtain reasonably sharp large deviation inequalities on Ln −
ELn. To develop one such inequality we first note that for any y ≥ 0,

exy ≤ cosh y + x sinh y for all |x| ≤ 1, (2.10)

because (2.10) trivially holds for x ∈ {−1, 0, 1}, exy is convex, and the right
hand side is linear in x. If we now let x = di/‖di‖∞ and y = t‖di‖∞, we
find for 1 ≤ k ≤ n that

exp

(

t

k
∑

i=1

di

)

≤
k
∏

i=1

(

cosh t‖di‖∞ +
di(sinh t‖di‖∞)

‖di‖∞

)

.

Taking expectations and using the fact that the di are martingale differ-
ences gives us

E exp

(

t
k
∑

i=1

di

)

≤
k
∏

i=1

cosh(t‖di‖∞)

≤ exp

(

t2

2

k
∑

i=1

‖di‖2
∞

)

, (2.11)
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where in the last inequality we used the elementary bound coshx ≤ ex2/2.
From (2.11) and the fact that the right hand bound is an even function of
t, we find for all t ≥ 0 that

P

(
∣

∣

∣

∣

k
∑

i=1

di

∣

∣

∣

∣

≥ λ

)

≤ 2e−λt exp

(

t2

2

k
∑

i=1

‖di‖2
∞

)

, (2.12)

so letting t = λ

(

∑k
i=1 ‖di‖2

∞

)−1

we conclude

P

(∣

∣

∣

∣

k
∑

i=1

di

∣

∣

∣

∣

≥ λ

)

≤ 2 exp

(

−λ2

/(

2

k
∑

i=1

‖di‖2
∞

)

)

. (2.13)

This inequality is valid for any martingale difference sequence {di}, and
it is due to Azuma (1967). When we apply (2.13) to our particular {di}
satisfying (2.1) we find a theorem which was established in the case for
d = 2 in Rhee and Talagrand (1987).

Theorem 2.1. There is a constant C3 depending only on d such that for
all n ≥ 1 and λ > 0 we have

P (|Ln − ELn| ≥ λ) ≤
{

2 exp(−C3λ
2/ logn) if d = 2

2 exp(−C3λ
2n(2−d)/d) if d ≥ 3.

(2.14)

The technique used to obtain Azuma’s inequality (2.13) is apparently
quite crude, and one might hope to do better in several ways. One natural
idea is to try to generalize (2.10) to

exy ≤ xf(y) + g(y), |x| ≤ 1, y ≥ 0, (2.15)

for f and g that might be more effective than sinh and cosh. To see why this
idea does not succeed, we let x = ±1 in (2.15) and add the two resulting
inequalities. We find that (2.15) forces the bound cosh y ≤ g(y), and thus
no inequality like (2.15) serves us any better than that used in the argument
leading to (2.13).

A second seedling concerning Azuma’s technique and the TSP comes
from viewing (2.10) as a separation of variables for the bivariate function
exy. A classical approach to such separation might call on the generating
function for Hermite polynomials:

G(x, y) = e2xy−y2

=

∞
∑

n=0

Hn(x)yn

n!
. (2.16)
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This approach has not been developed very far, but it seems rich enough
to deserve a brief digression. Because of the basic orthogonality relation

∫ ∞

−∞

Hm(x)Hn(x)e−x2

dx =
√
π2nn! δmn,

it is not difficult to give a condition on the L2 norm of Hn(Ln −ELn) that
implies a large deviation inequality of Gaussian type. In fact it suffices to
assume that

EH2
n(Z) ≤ Ann!

for some constant A.
Before closing this digression on separation of variables in exy, we

should note that (2.16) is closely related to (2.10); in particular from (2.16)
we easily find expressions for sinh y and cosh y in terms of odd and even
Hermite polynomial (see e.g. Section 8.957 of Gradshteyn and Ryzhik
1963). Still, because of special properties of Hermite polynomials such as
their recursion relation, one might expect some progress through Lemma
2.1.

Returning to the direct exploration of large deviation inequalities, we
should note their easy application to moments. Thus, we multiply (2.13)
by pλp−1 and integrate over [0,∞) to find for p ≥ 1 that

E

∣

∣

∣

∣

k
∑

i=1

di

∣

∣

∣

∣

p

≤ 2pΓ(p/2)

{

2

k
∑

i=1

‖di‖2
∞

}p/2

,

or, in terms of norms,

∥

∥

∥

∥

k
∑

i=1

di

∥

∥

∥

∥

p

≤ C4p
1/2

( k
∑

i=1

‖di‖2
∞

)1/2

, (2.17)

where C4 is a universal constant which does not even depend on d. When
(2.17) is specialized to {di} satisfying (2.3), we find from (2.9) that for all
n ≥ 1

‖Ln − ELn‖p ≤
{

C5p
1/2(log n)1/2 if d = 2,

C5p
1/2n(d−2)/(2d) if d ≥ 3.

(2.18)

Inequality (2.8) can be obtained in another way that also provides
an interesting proof of Azuma’s inequality. The key idea comes from
work of Jakubowski and Kwapień (1979), and, in our context, the main
point is that if we let rk(s) be the kth Rademacher function (i.e. rk(s) =
sign(sin 2kπs), 0 ≤ s ≤ 1) then

f(ω, s) =
n
∏

k=1

(

1 +
rk(s)dk(ω)

‖dk‖∞

)

(2.19)
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is a density function with respect to the product measure ds dP . The
identities that make (2.19) effective are

n
∑

k=1

akdk(ω)

‖dk‖∞
=

∫ 1

0

n
∑

k=1

akrk(s)f(ω, s) ds (2.20a)

and

1 =

∫

f(ω, s) dP. (2.20b)

The proof of (2.20a) just requires expanding (2.19) and using the fact that
the Rademacher functions {rk(s)}1≤k≤n have mean zero and variance 1.
Similarly, (2.20b) follows from expanding (2.19) and using the martingale
property. Since F (ω, s) ≥ 0 we also see from (2.20b) that f(ω, s) must
indeed be a density with respect to ds dP .

To get our second proof of Azuma’s inequality we first apply Jensen’s
inequality in (2.20a), integrate with respect to P , and change order of
integration:

E exp

(

t
n
∑

k=1

akdk

/

‖dk‖∞
)

≤ E

(

∫ 1

0

exp

(

t
n
∑

k=1

akrk(s)

)

f(ω, s) ds

)

=

∫ ∞

0

exp

(

t

n
∑

k=1

akrk(s)

)

ds

=
n
∏

k=1

cosh(tak). (2.21)

In the second line of (2.21) we used (2.20b), and in the last we used the
fact that the rk are Bernoulli random variables. If we now let ak = ‖dk‖∞
in (2.21), we find that (2.21) reduces to the same bound as (2.11), so one
can complete the proof of Azuma’s inequality just as before.

The direct application of the Jakubowski-Kwapień representation
(2.20) also provides a route to Lp bounds on

∑n
i=1 di. Letting ak = ‖dk‖∞

in (2.20a) we have

n
∑

k=1

dk =

∫ 1

0

( n
∑

k=1

‖dk‖∞rk(s)

)

f(ω, s) ds, (2.22)

so if we raise both sides to the pth power, apply Jensen’s inequality on the
right and then use (2.20b), we have

E

∣

∣

∣

∣

n
∑

k=1

dk

∣

∣

∣

∣

p

≤
∫ 1

0

∣

∣

∣

∣

∑

‖dk‖∞rk(s)

∣

∣

∣

∣

p

ds. (2.23)
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Since the {rk} are independent Bernoulli random variables, we can ap-
ply Khintchine’s inequality (Chow and Teicher 1978 or Haagerup 1982) to
obtain

E

∣

∣

∣

∣

n
∑

k=1

dk

∣

∣

∣

∣

p

≤
(

p+ 1

2

)p/2( n
∑

k=1

‖dk‖2
∞

)p/2

. (2.24)

Comparison of (2.24) with (2.17) shows that (2.24) is not an essen-
tial improvement. Still, the approach via the representations seem to be
a bit better, at least it simplified tracking the constant. An intriguing
feature of both approaches is the appearance of the sum of squares of the
L∞ norms. Possibly this quantity is really rooted in the large deviation
problem, but more likely, it is a coincidental artifact of the approaches. In
the next section we systematically pursue the relationship of moments and
large deviations in the context of the TSP. By introducing a few additional
martingale tools, we can extract almost all of the information available on
the tails of behavior of Ln.

3. Large Deviations and Moment Inequalities

We begin with a lemma that must be classical. It reminds us that the hunt
for large deviation inequalities of Gaussian type can be conducted by pur-
suing appropriate Lp bounds. The interest in this observation comes from
the fact that for some variables closely connected with Ln those bounds
are easily proved.

Lemma 3.1. For any random variable Z, a necessary and sufficient condi-
tion that

P (|Z| ≥ t) ≤ Ae−Bt2 , t ≥ 0, (3.1)

for some constants A > 0 and B > 0 is that for all p ≥ 1

‖Z‖p ≤ Cp1/2 (3.2)

for some constant C.

Proof: If (3.1) holds, we multiply by ptp−1 and integrate as in (2.6) to ob-
tain (3.2). For the converse, we just note by (3.2) and Markov’s inequality
that

P (|Z| ≥ t) ≤ 1

tp
Cppp/2 = ep log C+(1/2)p log p−p log t,

so, choosing p such that log p = 2(log t− logC)−1, or p = t2C−2e−1, yields
(3.1) with A = 1 and B = (2C2e)−1. �



Seedlings in the Theory of Shortest Paths 285

A central theme in the theory of martingales is that for any martingale
difference sequence {Yi, 1 ≤ i ≤ n} the square function,

Sn =

( n
∑

i=1

Y 2
i

)1/2

, (3.3)

and the maximal function,

M∗
n = sup

1≤k≤n

∣

∣

∣

∣

k
∑

i=1

Yi

∣

∣

∣

∣

,

share many properties with the underlying martingale

Mk =
k
∑

i=1

Yi, 1 ≤ k ≤ n.

In particular, the inequalities of Doob and Burkholder tell us, among
other things, that if any one of Sn,M

∗
n, or Mn is in Lp for some 1 < p <∞

then all three are in Lp. The comparability of the moments Sn and Mn

is particularly interesting for the theory of the TSP in R
d because, as we

see in the next lemma, the Lp-norm of Sn can be bounded with enough
precision to yield powerful large deviation inequalities. In fact, for d = 2 the
resulting Lp bound is good enough to guarantee a large deviation inequality
of Gaussian type.

Lemma 3.2. For the TSP martingale summands di of (2.1), we have for
even integers p ≥ 2 and any set S ⊂ {1, 2, . . . , n} that

∥

∥

∥

∥

(

∑

i∈S

d2
i

)1/2∥
∥

∥

∥

p

≤ C1p
1/d|S|1/2n−1/d, (3.4)

where C1 is the same constant as given in (2.7) and |S| is the cardinality
of S.

Proof: We first expand and apply the generalized Hölder inequality:

E

(

∑

i∈S

d2
i

)p

=
∑

i1∈S

∑

i2∈S

· · ·
∑

ip∈S

Ed2
i1d

2
i2 . . . d

2
ip

≤
∑

i1∈S

∑

i2∈S

· · ·
∑

ip∈S

(Ed2p
i1

)1/p(Ed2p
i2

)1/p . . . (Ed2p
ip

)1/p.

Next, using the bound from (2.7), together with ‖di‖2p ≤ C1(2p/n)1/d or

Ed2p
i ≤ C2p

1 (2p/n)2p/d, we find

E

(

∑

i∈S

d2
i

)p

≤ |S|pC2p
1 (2p/n)2p/d,
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and hence for even integers p we conclude

∥

∥

∥

∥

( n
∑

i=1

d2
i

)1/2∥
∥

∥

∥

p

≤ C1p
1/d|S|1/2n−1/d. �

This bound is of particular interest for d = 2 and S = {1, 2, . . . , n},
since it is then of the form required in Lemma 3.1, i.e.

∥

∥

∥

∥

( n
∑

i=1

d2
i

)1/2∥
∥

∥

∥

p

≤ Cp1/2. (3.5)

Thus for d = 2 the square function associated with the TSP martingale
differences of (2.1) satisfies a large deviation inequality of Gaussian type
(3.1).

One hope raised by (3.4) and (3.5) is that of extracting a Gaussian
type large deviation inequality for Ln from that available for the square

function
(
∑

d2
i

)1/2
associated with Ln. To assess this possibility we first

recall the square function inequalities of Burkholder (1966, 1973):
For 1 < p < ∞ and any sequence of martingale differences Yi with

associated square function Sn defined by (3.3), we have

(18p1/2q)−1‖Sn‖p ≤
∥

∥

∥

∥

n
∑

i=1

Yi

∥

∥

∥

∥

p

≤ 18q1/2p‖Sn‖p (3.6)

where 1/p+ 1/q = 1.
To see how (3.6) relates to the inequalities considered earlier, we note

that we always have

|Sn|p ≤
( n
∑

i=1

‖di‖2
∞

)p/2

, (3.7)

so, in particular, the second inequality of (3.3) gives us a bound like (2.16)
which expresses the Lp version of Azuma’s inequality. In this instance there
is a critical difference in that the factor p1/2 is inflated to p. Since large
deviation results depend on the Lp inequalities for large p, this change in
the constant is a major concern.

Still, when d = 2 we can use Lemma 3.2 to get good bounds on the tail
probabilities of Ln −ELn. We will give two illustrations of this approach.
The first consists of showing that the moment generating function of Ln −
ELn can be bounded independently of n.

To begin we note that for |tdi| < 1, the Taylor expansion of log(1+tdi)
gives us

n
∏

i=1

(1 + tdi) = exp

( ∞
∑

k=1

(−1)k+1βkt
k/k

)

(3.8)



Seedlings in the Theory of Shortest Paths 287

where βk = dk
1 + dk

2 + · · · + dk
n. We next note for k ≥ 3 that

|βk| ≤
n
∑

j=1

‖dj‖k
∞ ≤

n
∑

j=1

Ck
1 (n− j + 1)k/2

≤ Ck
1

∞
∑

j=1

j−3/2 = Ck
1 ζ(3/2) (3.9)

where ζ(s) =
∑∞

j=1 j
−s, so from (3.8) and (3.9) we find

exp
(

β1t− 1
2β2t

2
)

≤
n
∏

i=1

(1 + tdi) exp

(

ζ(3/2)
∞
∑

k=3

Ck
1 t

k/k

)

.

After taking expectations, we see

E exp
(

β1t− 1
2β2t

2
)

≤ exp

(

ζ(3/2)
∞
∑

k=3

Ck
1 t

k/k

)

≡ φ(t), (3.10)

so writing exp(β1t) = exp(β1t − β2t
2) exp(β2t

2) and applying Schwarz’s
inequality gives

E exp(β1t) ≤ φ(2t)1/2
(

E exp(2β2t
2)
)1/2

. (3.11)

By (3.5) and Lemma 3.1 we know there is a constant A > 0 not depending

on n such that P (β
1/2
2 > t) ≤ Ae−t2/A; hence, we have for |t| < A−1 that

E exp(tβ2) ≤
1

1 −At
(3.12)

and the bound (3.11) does not depend upon n.
The uniform bound on the moment generating function given by (3.11)

and (3.12) naturally give a large deviation bound. For reference purposes
we record the following consequence of (3.11) and (3.12) that was first
obtained in Rhee and Talagrand (1988a) by different means.

Proposition 3.1. For d = 2, there is a constant C such that for all n ≥ 2
and t > 0

P (|Ln − ELn| ≥ t) ≤ Ce−Ct. (3.13)

A stronger result than (3.13) can be obtained by the use of Burkholders
inequality. In fact, the following theorem seems to be about as much as
one can obtain without going beyond the information on the TSP that is
incorporated in (2.7) and (2.9).
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Theorem 3.1. For d = 2, there is a constant C such that for all n ≥ 1
and p ≥ 1,

‖Ln − ELn‖p ≤ Cp1/2(log p)1/2. (3.14)

Proof: We rely on the martingale representation (2.3) and split the rep-
resenting sum into two terms,

‖Ln − ELn‖p =

∥

∥

∥

∥

n
∑

i=1

di

∥

∥

∥

∥

p

≤
∥

∥

∥

∥

∑

i≤αn

di

∥

∥

∥

∥

p

+

∥

∥

∥

∥

∑

i>αn

di

∥

∥

∥

∥

p

(3.15)

for any 0 < α < 1. To the first summand we apply (2.17), the Lp version
of Azuma’s inequality, and to the second we apply Burkholder’s second
inequality to find

‖Ln − ELn‖p ≤ C4p
1/2

(

∑

i≤αn

‖di‖2
∞

)1/2

+ 18pq1/2

∥

∥

∥

∥

(

∑

i>αn

d2
i

)1/2∥
∥

∥

∥

p

.

(3.16)
Now we apply (2.9) to the first sum and (3.4) to the second,

‖Ln−ELn‖p

≤ C1C4p
1/2

(

∑

i≤αn

(n− i+ 1)−1

)1/2

+ 18pq1/2C1p
1/2(1 − α)1/2

≤ C6p
1/2
(

log 1/(1 − α)
)1/2

+ C6p
3/2q1/2(1 − α)1/2. (3.17)

When we let (1 − α)1/2 = p−1, we find (3.14). �

Corollary. There is a constant B such that for d = 2 we have

P (|Ln − ELn| ≥ t) ≤ 2e−Bt2/ log(1+t) (3.18)

for all t ≥ 0.

The proof of (3.18) from (3.14) follows just as in Lemma 3.1. This
time the proper choice of p is t2/(C log t) where C is the constant of (3.8).

Inequality (3.18) was also first established in Rhee and Talagrand
(1988a). Their proof grew out of the idea of interpolating between the
d = 2 case of (2.14) where the tails have quadratic exponential behavior
that depends on n, and on (3.13), where the bound is independent of n
but is linear exponential. Rhee and Talagrand (1988a) bring these two
bounds together to prove (3.18) by use of interpolation results from Bergh
and Lofstrom (1976). The present proof via (3.8) is simpler than that of
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Rhee and Talagrand, at least so far it relies on methods that are familiar
to probabilists. Still, even now, the Burkholder inequalities might not be
regarded as completely commonplace tools, and the proof of (3.18) is not
yet elementary.

The quest that has been traced here, the derivation of a Gaussian
type large deviation bound for Ln−ELn, has very recently come to fruition
through Rhee and Talagrand (1988b). By combining their basic martingale
approach with a bare-handed investigation of the geometry of an n-sample
from [0, 1]2, they show that one can indeed remove the logarithmic factor
from (3.18). The resulting inequality for the TSP in d = 2 stands as both
the natural end to a line of investigation and as a hard challenge. What can
one say for d ≥ 2? What other functionals permit a comparable analysis?

4. Analytical Bounds from Spacefilling Curves

For many problems concerning combinatorial optimization in R
d one can

obtain useful bounds by appealing to the existence of a map φ from [0, 1]
onto [0, 1]d that is Lip α with α = 1/d, i.e. |φ(s) − φ(t)| ≤ c|s − t|1/d for
a constant c and all 0 ≤ s ≤ t ≤ 1. Moreover, Milne (1980) established
that one can further require φ to be measure preserving, and from our
perspective, the benefit of that fact is that it lets us use spacefilling curve
techniques to get probabilistic inequalities, at least in the case of uniformly
distributed random variables.

For our first example we again consider the traveling salesman problem
in R

d, but this time we take the cost of travel from x to y to be |x − y|p,
the pth power of the Euclidean distance. If S = {x1, x2, . . . , xn} is a set of
n points in [0, 1]d, how can we bound L̃(S), the length of the shortest tour
through the points of S under this metric, i.e. how can we bound

L̃(S) = min
σ

n−1
∑

i=1

|xσ(i) − xσ(i+1)|p (4.1)

where the minimum is over all cyclic permutations?
Since φ is a surjection, each xi ∈ S ⊂ [0, 1]d has a pre-image yi ∈ [0, 1].

If we choose a cyclic permutation σ so that yσ(1) ≤ yσ(2) ≤ · · · ≤ yσ(n),
then a heuristic tour of the {xi} can be formed by visiting them in the
order of the {yi}. For this heuristic we find

L̃(S) ≤
n−1
∑

i=1

∣

∣φ(yσ(i)) − φ(yσ(i+1))
∣

∣

p

≤ cp
n−1
∑

i=1

∣

∣yσ(i) − yσ(i+1)

∣

∣

p/d

≤ cpn(d−p)/d (4.2)
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where we applied Hölder’s inequality and the fact that
∑

|yσ(i)−yσ(i+1)| is
bounded by 1. The key idea of (4.2), i.e. building a path through {xn, 1 ≤
i ≤ n} by visiting the points in the linear ordering of the {yi, 1 ≤ i ≤ n},
is called the spacefilling heuristic. For application to the TSP, this idea
was first proposed by Bartholdi and Platzman (1982) and independently
by D.H. Fremlin (see e.g. Fremlin 1982). Both for heuristic algorithms
and analytic bounds, the idea of using a spacefilling map to exploit the
linear ordering, or simple geometry, of [0, 1] has many natural applications,
and the breadth of these variations can be seen by consulting the survey
by Bartholdi and Platzman (1988), the papers by Glass (1985) and Imai
(1986), or the recent thesis by Bertsimas (1988).

For p = 1, inequality (4.2) recaptures the familiar O(n(d−1)/d) bound,
but for p = d it provides new information by providing a O(1) bound. In
contrast, one only obtains the weaker inequality

L̃(S) ≤ c logn. (4.3)

by classical arguments that rest on the fact that any set of n points in
[0, 1]d contains a pair within cn−1/d of each other.

The argument used for sharper bound (4.2) was also applied in Steele
(1988) to show that the sum of the dth powers of the lengths of the edges of
a minimal spanning tree of n points in [0, 1]d can be bounded independent
of n. For d = 2 the uniform boundedness of the sum of squares of the
edge lengths had been established earlier by Gilbert and Pollak (1968), but
their delicate geometric argument has no natural analogue for d > 2. In
contrast, the bound provided by the spacefilling heuristic works pleasantly
in all d ≥ 2. For the spacefilling heuristic applied to the TSP the most
interesting problems concern the ratio of the length of the tour produced
by the spacefilling curve to the length of the optimal tour. In R

2 Platz-
man and Bartholdi (1988) provided a bound of order O(log n), and they
conjectured that there is a uniform bound on the ratio. Bertsimas and
Grigni (1989) settled the conjecture by giving an example that shows the
ratio can be as bad as c logn. The following special case of work in Steele
(1989) complements the results of Platzman and Bartholdi (1988) in a way
that may be useful in algorithmic applications. The proof does not require
any detailed properties of the spacefilling curve in order to provide ratio
bounds, except that the curve is measure preserving and is as smooth as
feasible.

Theorem 4.1. Let φ be a measure preserving transformation of [0, 1] onto
[0, 1]2 that is Lipschitz of order α = 1/2, i.e.

|φ(x) − φ(y)| ≤ c|x− y|1/2 (4.4)

for some c and all x, y ∈ [0, 1]. If Hn is the length of the path through the
points {x1, x2, . . . , xn} ⊂ [0, 1]2 that is constructed using the spacefilling
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heuristic based on φ, then for n ≥ 2

Hn ≤ Ln

{

1 + 2c2 log(m/ē)
}

+ πc2m, (4.5a)

where Ln is the length of the optimal path through {x1, x2, . . . , xn}, m is
the length of the longest edge in the heuristic path, and ē is the average
length of the edges in the optimal path.

Corollary.

Hn ≤
(

1 + πc2 + 2c2 logn
)

Ln. (4.5b)

Proof: We suppose the heuristic tour visits the points in the order x1, x2,
. . . , xn, i.e. we suppose there are ti ∈ [0, 1] such that t1 ≤ t2 ≤ · · · ≤ tn with
xi = φ(ti). For λ > 0 we introduce two basic subsets of {1, 2, . . . , n− 1} by

U(λ) =
{

i : |ti+1 − ti| > λ, 1 ≤ i < n}

and
V (λ) =

{

i : |φ(ti+1) − φ(ti)| > λ, 1 ≤ i < n}.
For i ∈ V (λ) inequality (4.4) implies

c|ti − ti+1|1/2 ≥ |φ(ti+1) − φ(ti)| ≥ λ

so i ∈ V (λ) implies i ∈ U(λ2/c2), i.e.

V (λ) ⊂ U(c−2λ2). (4.6)

If g(λ) is the cardinality of V (λ), we also have

Hn =

∫ m

0

g(λ) dλ, (4.7)

where m = max1≤i<n |φ(ti+1) − φ(ti)|, so our goal is now to use (4.6) to
bound g(λ).

For i ∈ U(λ) the intervals [ti, ti + λ] are non-intersecting, so if we set

Ai = φ([ti, ti + λ])

then since φ preserves measure, each Ai has Lebesgue measure λ = µ(Ai)
and Ai ∩Aj has measure zero for any pair i 6= j, i, j ∈ U(λ).

We let D(x,C) ⊂ [0, 1]2 denote the set of all points within distance
x of the curve C, and let Tn be an optimal tour of {x1, x2, . . . , xn} with
length Ln. By (4.4) and the fact that each xi is somewhere on the path,
we have for each i ∈ S that

Ai ⊂ D(cλ1/2, Tn). (4.8)
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Naiman’s inequality on the volume of tubes (e.g. Naiman 1986, or the
easier version of the basic result given in Johnstone and Siegmund 1989)
tells us that for any rectifiable curve C of length L one has

µ
(

D(x,C)
)

≤ 2xL+ πx2, (4.9)

for all x ≥ 0. If f(λ) denotes the cardinality U(λ) we then have by (4.8)
and (4.9) that

λf(λ) = µ

(

⋃

i∈U(λ)

Ai

)

≤ µ
(

D(cλ1/2, Tn)
)

≤ 2cλ1/2Ln + πc2λ,

so
f(λ) ≤ 2cλ−1/2Ln + πc2. (4.10)

By (4.6) and (4.10) we find our basic bound

g(λ) ≤ 2c2Lnλ
−1 + πc2. (4.11)

For any 0 < α < m, we can apply the trivial bound g(λ) ≤ n − 1 for
λ ∈ [0, α] and apply (4.11) for λ ∈ [α,m]; so, when we integrate in (4.7),
we find

Hn ≤ α(n− 1) + 2c2Ln log(m/α) + πc2(m− α). (4.12)

Finally, since Ln ≤ Hn ≤ (n − 1)m we have for α = Ln/(n − 1) = ē
that α ∈ [0,m], so we can let α = ē in (4.12) to find (4.5a). To see that
(4.5b) follows from (4.5a) we just invoke the very crude bound m ≤ Ln

and ē = Ln/(n− 1). �

The argument used in the proof of Theorem 4.1 uses several ideas
from Bartholdi and Platzman (1988), and it makes progress mainly by
being systematic in the exploitation of the bound (4.9).

The next section deals more directly with the geometry and topology
of spacefilling curves.

5. Schoenberg’s Map and Smoother Maps

Section 4 made use of smooth spacefilling curves, but it did not provide
concrete examples. This section engages the problem of constructing space-
filling curves, especially curves that are as smooth as possible and that
preserve Lebesgue measure. It also points out a topological barrier to the
sharpening of Theorem 4.1.

We begin by considering a method of Schoenberg (1938) that gives
perhaps the shortest classical example of a continuous map from [0, 1] onto
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[0, 1]2. Schoenberg’s map is not as smooth as we need, but it points the
way to a map that is both simpler and smoother. We first define a real
valued even function f of period 2 by taking f(t) = 0 in (0, 1/3), f(t) = 1 in
(1/3, 1), and making f(t) linear in (1/3, 2/3). We then define Schoenberg’s
spacefilling curve by the explicit formulas

x(t) =
1

2
f(t) +

1

22
f(32t) +

1

23
f(34t) + · · · (5.1a)

and

y(t) =
1

2
f(3t) +

1

22
f(33t) +

1

23
f(35t) + · · · . (5.1b)

To prove the map t → (x(t), y(t)) is surjective, we first note that if {ak} is
any infinite sequence of 0’s and 1’s, then a typical point in the Cantor set
C ⊂ [0, 1] can be written uniquely as

t0 =
2a0

3
+

2a1

32
+

2a2

33
+ . . . . (5.2)

By straightforward, but tedious, bounds one can also show that f can be
used to extract the kth term in the ternary expansion of t0, specifically

f(3kt0) = ak. (5.3)

Now, given any (x0, y0) ∈ [0, 1]2, we can use the binary expansion of x0

and y0 together with the explicit formulas (5.1) and (5.2) to write down a
point in C that φ maps to (x0, y0), so φ is a surjection of [0, 1] onto [0, 1]2.

One important aspect of the explicit formulas (5.1) and (5.2) is their
computational feasibility. Not only do we know that for every point (x0, y0)
of [0, 1]2 that there exists a point of [0, 1] that maps onto (x0, y0), but we
can also quickly compute a point t ∈ C such that φ(t) = (x0, y0).

Now we need to assess the smoothness of Schoenberg’s map φ(t) =
(x(t), y(t)). By uniform convergence, we see φ is continuous on [0, 1]. In
fact, it is easy to show there is an α so that φ is in Lip α, and we can even
determine the best value of α. First, just consider x(t) and note that f
satisfies the two naive bounds |f(s)− f(t)| ≤ 3|s− t| and |f(t)| ≤ 1. Thus
we have for any n ≥ 1 that

|x(s) − x(t)| ≤ 3

n
∑

k=1

2−k|32k−2s− 32k−2t| + 2

∞
∑

k=n+1

2−k, (5.4)

so for all integers n we have

|x(s) − x(t)| = O
(

|s− t|(9/2)n + 2−n
)

. (5.5)
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Finally, by choosing n to be the integer nearest −(log2 |s − t|)/ log2 9, we
find |x(s) − x(t)| = O(|s− t|α) where α = (2 log2 3)−1.

Having achieved an α for which f ∈ Lip α, we will show that f /∈
Lip α′ for any α′ > α by using some elementary facts about Hausdorff
dimension. In fact, we use the result of Hausdorff (1919) that the dimension
of the Cantor ternary set equals log 2/ log 3. If we let N(ǫ) be the least
number of intervals {Ii} of length 2ǫ, 0 < ǫ < 1, that cover the Cantor
set C, then in terms of N(ǫ), the fact that C has Hausdorff dimension
1/ log2 3 tells us that for any δ > 0 there are constants A and B such that
Aǫ−β−δ > N(ǫ) > Bǫ−β+δ, where β = 1/ log2 3.

Now suppose ψ is any map of C onto [0, 1]2, and suppose that ψ is
also Lip α′. If λ denotes Lebesgue measure in R

2, then since the compact
set ψ(C) covers [0, 1]2, and since we have a collection of N(ǫ) intervals {Ii}
of length 2ǫ that cover C, we have

1 ≤ λ(ψ(C)) ≤
N(ǫ)
∑

i=1

λ(ψ(Ii)) ≤ N(ǫ)π(cǫα
′

)2 = O(N(ǫ)ǫ2α′

). (5.6)

From (5.6) and the arbitrariness of δ > 0, we conclude that β ≥ 2α′, i.e.
α ≤ 1/(2 log2 3) for any Lip α map of the Cantor set onto [0, 1]2. We
have thus established that Schoenberg’s spacefilling curve is precisely of
smoothness type Lip α with α = 1/(2 log2 3).

Although Schoenberg’s mapping is a rich source of insight, one has
to put in considerable modification in order to attain the maximal level
of smoothness that one can have. Still the Lip 1/2 measure preserving
property is shared by several of the classical spacefilling curves, particu-
larly those due to Hilbert and Lebesgue. For a proof of these features of
the classical curves as well as some remarkable analytical applications of
spacefilling curves, one can consult Milne (1980). Also, to show one cannot
find a map smoother than Lip 1/2 from [0, 1] onto [0, 1]2, we just use the
fact that the Hausdorff dimension of [0, 1] is 1 and repeat the argument
given for the lower bound of smoothness for Schoenberg’s map.

There is nothing more we need to say about the construction of smooth
spacefilling curves, but there are some final issues concerning the spacefill-
ing heuristic and the topology of [0, 1]2. The bound on the ratio Hn/Ln

that was given in Section 4 really relied on bounding the ratioH∗
n/Ln where

H∗
n =

n−1
∑

i=1

|ti+1 − ti|1/2 (5.7)

and φ(ti) = xi, 1 ≤ i ≤ n. To see a subtlety in this process, we first recall
that the dimension theorem of general topology tells us that there is no
continuous bijection between [0, 1] and [0, 1]2 (see e.g. Dugundji 1970, p.
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359). Thus, every continuous surjection must have a double point. The
investigation of multiple points was pursued further by Pólya (1913) who
gave a spacefilling curve with multiple points with multiplicity bounded
by three. This explicit line of investigation was completed by Hurewicz
(1933) who showed that any surjection of [0, 1] onto [0, 1]2 must have a
triple point. These facts can be used to show that bounding of H∗

n can be
slippery.

For example, suppose (x, y) is the triple point guaranteed by Hurewicz
and therefore suppose we have t1 < t2 < t3 with φ(ti) = (x, y). Now, if
s1,j < s2,j < s3,j and si,j → ti as j → ∞ for each i ∈ {1, 2, 3} we have that
L3 = L

(

φ(s1,j), φ(s2,j), φ(s3,j)
)

→ 0 as j → ∞. On the other hand,

H∗
3 =

∑

1≤i≤3

|si,j − si+1,j |1/2 ≥ 1
2 |t3 − t1| (5.8)

for all sufficiently large j. We thus have thatH∗
3/L3 can be made arbitrarily

large, and, at first blush, this fact might seem to cast doubt on (4.5a) or
(4.5b). There is no contradiction between (5.8) and the earlier bounds, but
(5.8) nicely shows that one cannot rely too heavily on H∗

n for a detailed
understanding of Hn.

6. Karp’s Partitioning Algorithm

The Euclidean traveling salesman problem is the task of computing the
shortest path through a set of points in R

d. As a computational challenge,
the TSP has become an essential test problem for combinatorial optimiza-
tion, and, as one can see by considering the range of techniques in The

Traveling Salesman Problem: A Guided Tour of Combinatorial Optimiza-

tion (Lawler, et al. 1985), the TSP has provided the inspiration for some
of the most fundamental developments in the field.

One such development took place when Karp (1976, 1977) used the
Beardwood, Halton, Hammersley theorem to show how a simple parti-
tioning algorithm yields a solution to the TSP that is (1) computable in
polynomial time and (2) asymptotically optimal in an appropriate proba-
bilistic sense. In this section, we will review Karp’s basic idea and make
a point that deserves to be more widely known. The asymptotic optimal-
ity of Karp’s algorithm can be obtained independently of the Beardwood,
Halton, Hammersley theorem. In fact, we will see that one can justify
Karp’s algorithm with results that are considerably less refined than the
BHH theorem.

The simplest version of Karp’s algorithm addresses the case of the
uniform distribution, and, for ease of exposition, we will keep to that case.
Let Xi, 1 ≤ i < ∞, be independent random variables with the uniform
distribution in [0, 1]d, and suppose kn is a sequence of integers that grows
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more slowly than n1/d. Karp’s method for obtaining a path through the
points of S = {X1, X2, . . . , Xn} is as follows:
(1) Partition [0, 1]d into kd

n congruent subcubes {Qj}.
(2) For each j, 1 ≤ j ≤ kd

n, calculate an optimal path Pj through the
points S ∩Qj .

(3) Join the endpoints of the Pj to form a heuristic path H through all
the points of S.
This description is incomplete until we specify kn, provide a method

for finding the paths Pj , and spell out how the Pj are joined to form H .
As it happens, virtually any reasonable choices will suffice. For example,
we can calculate the Pj by complete enumeration of the possible orders of
visiting the points of Qj ∩ S, or we can use dynamic programming. Either
of these methods will be fast enough to yield a polynomial time algorithm
if kn is chosen appropriately. Thus, for the moment, our concern is just
with the effectiveness of the algorithm.

Still, we need to pick a specific rule concerning the connection of the
partial paths. Thus, for each 1 ≤ i ≤ kd

n, we label the two end points of the
partial path of S ∩ Qi by ai and bi, and we connect bi to ai+1 where the
Qi have been ordered lexicographically according to the vertex within each
square that is lexicographically minimal. With these procedures assumed,
one can show the following:

Theorem 6.1. If LK
n denotes the length of the path produced by Karp’s

method and if kn is any unbounded increasing sequence such that n/kd
n →

∞, then for any ǫ > 0 we have

∞
∑

n=1

P

{

LK
n

Ln
≥ 1 + ǫ

}

<∞. (6.1)

The proof of (6.1) follows from the next two lemmas. The first guarantees
that under the hypotheses on {Xi} that Ln cannot be too short.

Lemma 6.1. There exist constants A > 0 and 0 < ρ < 1 such that for all
n ≥ 1, we have

P
{

Ln < An(d−1)/d
}

≤ ρn. (6.2)

The proof of (6.2) is easily achieved by dividing [0, 1]d into n subcubes of
volume 1/n, applying standard occupancy results, and a little geometry.
The second lemma is more challenging.

Lemma 6.2. There is an rn depending only on n and kn such that for all
n,

Ln ≤ LK
n ≤ Ln + rn (6.3)
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and

rn ≤ c
{

n(d−2)/(d−1)k1/(d−1)
n + kd−1

n

}

(6.4)

where the constant c depends on d and the sequence {kn}.

Remark. When kn = o(n1/d) then (6.4) says that rn = o(n(d−1)/d). Since
this result holds everywhere, (6.4) and (6.2) yield (6.1).

It is relatively easy to sketch a proof of (6.4). Let {Fi} be the set of
faces of the kd

n subcubes {Qj}. We will use the optimal path P and some
additional edges in order to bound LK

n . If e is an edge of the optimal path,
P , we associate with e a set of points that we will call pierce points. If e
is interior to some Qj, then the set of pierce points created by e is just the
null set. On the other hand, if e = (a, b) where a ∈ Q and b ∈ Q′ and Q
and Q′ are distinct subcubes, then e will create a set of two pierce points.
In particular, if F and F ′ are the faces of Q and Q′ that intersect the line
from a to b, then p = e ∩ F and p′ = e ∩ F ′ are called the pierce points
associated with a and b, respectively.

We will now build a set of points that may have rather large cardinality,
but that can be proved to lie on a relatively short path. First, note the set
of pierce points has cardinality bounded by n since each Xi is associated
with at most one pierce point. Next, to each face F of each cube Q, we
associate a set SF consisting of (1) its 2d−1 subfaces of dimension zero
(i.e. its vertices) and (2) its set of pierce points. For each F the set SF is
contained in a d − 1 dimensional cube of edge length k−1

n , so, by classical
bounds (e.g. Few 1955), there is a tour through the points of SF of length
bounded by ck−1

n |SF |(d−2)/(d−1), where |SF | denotes the cardinality of SF .
Now consider the union of all of the tours through SF for all F together
with the optimal path P . This set of edges has the property that for each
j it contains a path that is contained in Qj and goes through all the points
of S that are contained in Qj .

We finally see that LK
n can be bounded by three terms: (1) the length

of the edges in the optimal tour, (2) the sum of the edges needed to tour
SF for all F , and (3) the cost of the edges required in Step 3 of Karp’s
heuristic. We thus see that

LK
n ≤ Ln + c

∑

F

k−1
n |SF |(d−2)/(d−1) + ckd−1

n . (6.5)

The bound on rn given in (6.4) now follows from (6.5) by Hölder’s inequal-
ity, the fact that the sum of the |SF | is O(n), and the fact that there are
O(kd

n) faces of the cubes {Qi}.
To some extent, the preceding sketch follows the lines of Halton and

Terada (1982) which one can consult for additional details. From the
present perspective, the main point of interest is that one requires so little
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probability theory. All one needs is the elementary occupancy theory in
Lemma 6.1.

7. Concluding Remarks

In 1959 the work of Beardwood, Halton and Hammersley was a singular
event in the sense that prior to that date and for many years subsequent
one finds no comparable work relating probability theory and combinatorial
optimization. The power and beauty of the Beardwood, Halton, Hammer-
sley theorem were immediately present, but considerable time needed to
elapse before wide appreciation was possible. The key step in the process
toward that appreciation is the work of Karp (1976). By connecting the
asymptotic result of Beardwood, Halton, and Hammersley with the pos-
sibility of effective algorithms, Karp created an eager audience for both
the original work and for results that complement it. In Karp and Steele
(1985) and the recent thesis of Bertsimas (1988), one can find a review of
that development. This article also provides a review, but here the focus
is narrowed to the developing roles of martingale theory and of spacefilling
curves.

The field of martingale inequalities is so rich that the applications
in Sections 2 and 3 only offer a hint of future possibilities. Connections
between martingale theory and problems like the TSP can be counted on
to develop vigorously in the next few years.

Among the concrete problems that may, or may not, be attacked via
martingales, the one that stands out most concerns the completion of our
understanding of the tails of Ln−ELn in d = 2. More broadly we would like
to understand the ways in which Ln−ELn behaves like a Gaussian random
variable. In particular, we would like to know if Ln − ELn converges in
distribution to a Gaussian limit.

The force behind applications of the spacefilling heuristic is not as great
as that behind martingale theory, but one can still expect vigorous activity.
The strong interest in the geometry of fractals provides one motivation,
but the fact that the heuristic is easily coded also helps. Even though the
conjecture of Bartholdi and Platzman is formally settled by the example
of Bertsimas and Grigni (1989), many questions remain. As suggested in
Section 5, one can expect some more negative results. Nevertheless, one
may be able to provide further positive results like Theorem 4.1 that are
of use in practical problems.

John Hammersley coined the inviting phrase ‘seedlings of research’,
and throughout his work one finds a generous willingness to reveal inter-
esting ideas that still have room to grow. The intention of this article has
been to try to live up to that tradition while engaging the shortest path
through many points.
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Hausdorff, F. (1919). Dimension und äußeres Maß. Mathematische Annalen 79,
157–179.
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Appendix I. Lalley’s Proof of BHH

S. Lalley (1984) provided a remarkable proof of the most interesting case
of the Beardwood, Halton, Hammersley theorem. Lalley’s previously un-
published proof wins the prize for using minimal machinery. Moreover, his
proof serves as a model of the power of similarity arguments and provides
a line of attack that is applicable to many other functionals.

Let U1, U2, . . . be independent random variables each having the uni-
form distribution on [0, 1]2, and let Ln be the length of the shortest path
through U1, U2, . . . , Un. Observe that Ln is nondecreasing in n. We are
to prove that n−1/2Ln → C a.s. for a constant C ∈ (0,∞). For this it
suffices to prove that if N(t), t ≥ 0, is a Poisson process with rate 1, then
as t→ ∞ we have

t−1/2LN(t) → C almost surely. (AI.1)

Partition the square [0, 1]2 into squares Q1, Q2, . . . , Qm2 of side m−1,
and define λm

t (Qi) to be the length of the shortest path through {U1, U2,
. . . , UN(t)}∩Qi. It is easy to see that for each t > 0 and each m = 1, 2, . . . ,
the random variables λm

t (Q1), λ
m
t (Q2), . . . , λ

m
t (Qm2) are independent and

identically distributed. Moreover, mλm
m2t(Qi) has the same distribution as

LN(t). Finally, we note Var(LN(t)) <∞ for each t ≥ 0 as one can see from

the trivial bound LN(t) ≤ 21/2N(t).
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Lemma 1. For each t > 0 and each m = 1, 2, . . . , we have

−6m+

m2

∑

i=1

λm
t (Qi) ≤ LN(t) ≤ m

√
5 +

m2

∑

i=1

λm
t (Qi). (AI.2)

Proof: To prove the right inequality we only need to obtain a path
through U1, U2, . . . , UN(t). For 1 ≤ i ≤ m2 we first find the shortest path
through {U1, U2, . . . , UN(t)} ∩ Qi then knit these m2 paths together by
joining endpoints in adjacent squares ordered in snake raster order. Since
points in adjacent squares are not separated by a distance greater than√

5m−1, the resulting path has length no greater thanm
√

5+
∑m2

i=1 λ
m
t (Qi),

establishing the right hand inequality. One should note that it does not
hurt this bound if some of the sets {U1, U2, . . . , Un} ∩Qi are empty.

To prove the left hand inequality consider the shortest path γ through
U1, U2, . . . , UN(t). If the two endpoints of γ do not lie in

⋃

i ∂Qi, extend
the path γ so that the endpoints of the extended path γ̄ lie in

⋃

i ∂Qi; this
can be done in such a way that the length of γ̄ is bounded by |γ| + 2/m,
where |γ| denotes the length of γ. Fix a square Qi. The intersection Qi ∩ γ̄
consists of a finite number of paths γ1, γ2, . . . , γk in Qi each having its end-
points on ∂Qi. Clearly, each point in {U1, U2, . . . , UN(t)}∩Qi lies in

⋃

j γj .
The paths γ1, γ2, . . . , γk may be joined together by cutting and pasting and
adding arcs β1, . . . , βk−1 on ∂Qi in such a way that no point in ∂Qi lies
on more than one of β1, . . . , βk−1. Consequently, λm

t (Qi) ≤ |γj | + 4/m.
Summing over i = 1, . . . ,m2 yields the left hand inequality. �

Lemma 2. For each t > 0,

lim
m→∞

m−1
m2

∑

i=1

λm
m2t(Qi) = ELN(t) almost surely.

Proof: This does not quite follow from the strong law of large numbers.
But, since for each m the random variables mλm

m2t(Q1), . . . ,mλ
m
m2t(Qm2)

are i.i.d. with the same distribution as LN(t), we have by Chebyshev’s
inequality that

P

{∣

∣

∣

∣

m2

∑

i=1

λm
m2t(Qi)

m
− ELN(t)

∣

∣

∣

∣

> ǫ

}

≤ Var(LN(t))

m2ǫ2
.

The assertion therefore follows from the Borel-Cantelli lemma. �
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Lemma 3. There exists C ∈ (0,∞) such that

lim
t→∞

ELN(t)

t1/2
= C.

Proof: Take expectations in (AI.2) and use the fact that E(mλm
m2t(Qi)) =

ELN(t) to obtain

−6 + ELN(t) ≤
ELN(m2t)

m
≤

√
5 + ELN(t).

It follows that for any ǫ > 0 there exists t sufficiently large that

∣

∣

∣

∣

ELN(m2t)

mt1/2
− ELN(t)

t1/2

∣

∣

∣

∣

< ǫ

for all m = 1, 2, . . . . Since Ln is nondecreasing in n, this implies that

E

(

LN(t)

t1/2

)

− ǫ ≤ lim inf
s→∞

ELN(s)

s1/2

≤ lim sup
s→∞

ELN(s)

s1/2

≤ ELN(t)

t1/2
+ ǫ.

Since ǫ > 0 is arbitrary, it follows that ELN(s)/s
1/2 → C as s → ∞ for

some 0 ≤ C <∞. To prove that C > 0, note that ELN(t) → ∞ as t→ ∞,
by an elementary argument. Choose t sufficiently large that ELN(t) > 4;
then (AI.4) implies that

lim inf
m→∞

ELN(m2t)

m
> 0. �

The proof of (AI.1) may now be completed. By (AI.2), for each t > 0 and
m = 1, 2, . . . ,

−6 +m−1
m2

∑

i=1

λm
m2t(Qi) ≤

LN(m2t)

m

≤
√

5 +m−1
m2

∑

i=1

λm
m2t(Qi),
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so Lemma 2 implies that almost surely

−6t−1/2 +
ELN(t)

t1/2
≤ lim inf

m→∞

LN(m2t)

mt1/2

≤ lim sup
m→∞

LN(m2t)

mt1/2

≤
√

5 t−1/2 +
ELN(t)

t1/2
.

Now Lemma 3 implies that if t is sufficiently large then almost surely

C − ǫ ≤ lim inf
m→∞

LN(m2t)

mt1/2

≤ lim sup
m→∞

LN(m2t)

mt1/2

≤ C + ǫ.

Since Ln is nondecreasing in n it follows that

C − ǫ ≤ lim inf
s→∞

LN(s)

s1/2

≤ lim sup
s→∞

LN(s)

s1/2

≤ C + ǫ

almost surely. Now (AI.1) follows by letting ǫ→ 0. �

Appendix II. Paley’s Square Function Argument

This Appendix develops an argument for martingales that was introduced
in Paley (1932) for Walsh functions. The only real changes made here to
Paley’s method are those required to provide explicit bounds on the basic
constant. As one should expect, the constant is not as sharp as that given
in Burkholder (1973), but the reason for reviewing Paley’s argument is
rather to show how the maximal function can be used to bound Lp norms
of martingales. Other features of the proof are discussed at the end of the
appendix.

Consider a martingale difference sequence {yi : 0 ≤ i ≤ n} with y0 ≡ 0
and its associated martingale Mk = y1 + y2 + · · · + yk, 1 ≤ k ≤ n. To
keep to the essentials, we will stick to the case of even integers p. We first
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compute the difference sequence of pth moments:

E{Mp
k+1 −Mp

k} = E{(Mk + yk+1)
p −Mp

k}

= E

{

pyk+1M
p−1
k +

(

p

2

)

y2
k+1M

p−2
k + · · · + yp

k+1

}

= E

{(

p

2

)

y2
k+1M

p−2
k +

(

p

3

)

y3
k+1M

p−3
k + · · · + yp

k+1

}

(AII.1)

where only in the last inequality is the martingale property invoked. We
then use Hölder’s inequality on the right hand side to bring the powers of
Mk up to the same level. Specifically, for 3 ≤ j ≤ p− 1 we use

Eyj
k+1M

p−j
k ≤ (Ey2

k+1M
p−2
k )θ(Eyp

k+1)
1−θ (AII.2)

where θ = (p − j)/(p − 2). Since 0 < θ ≤ 1, inequality (AII.2) can be
relaxed to

Eyj
k+1M

p−j
k ≤ Ey2

k+1M
p−2
k + Eyp

k+1, (AII.3)

so we can crudely bound the sum of the binomial coefficients to find

∣

∣E{Mp
k+1 −Mp

k}
∣

∣ ≤ 2p
{

Ey2
k+1M

p−2
k + Eyp

k+1

}

. (AII.4)

Finally, we sum over 0 ≤ k < n to find

EMp
n ≤ 2pE

{

( n
∑

k=1

y2
k

)

max
1≤k≤n

Mp−2
k

}

+ 2pE

n−1
∑

k=0

yp
k+1

≤ 2p

{

E

( n
∑

k=1

y2
k

)p/2
}2/p

(

E max
1≤k≤n

Mp
k

)(p−2)/p

+ 2pE

( n
∑

k=1

y2
k

)p/2

(AII.5)

where in the first summand we used Hölder’s inequality, and in the second
summand we used the elementary real variable inequality for p ≥ 2

ap
1 + ap

2 + · · · + ap
n ≤ (a2

1 + a2
2 + · · · + a2

n)p/2.

Our motivation for moving from (AII.4) to (AII.5) is to use Doob’s
maximal inequality, or rather its consequence for 1 < p <∞ that

{

E

(

max
1≤k≤n

|Mk|p
)}1/p

≤ q(EMp
n)1/p, (AII.6)
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where q is the conjugate index to p (i.e. q = p/(p− 1)). From (AII.6) we
thus find

‖Mn‖p
p ≤ q2p

∥

∥

∥

∥

( n
∑

k=1

y2
k

)1/2∥
∥

∥

∥

2

p

‖Mn‖p−2
p + 2p

∥

∥

∥

∥

( n
∑

k=1

y2
k

)1/2∥
∥

∥

∥

p

p

. (AII.7)

Finally, we note inequality (AII.7) is of the form xp ≤ ay2xp−2 + byp

which implies x ≤ {(2a)1/2 + (2b)1/p}y, so we find our modest version of
Burkholder’s inequality for even integers p:

‖Mn‖p ≤ αp

∥

∥

∥

∥

( n
∑

k=1

y2
k

)1/2∥
∥

∥

∥

p

(AII.8)

where αp ≤ q1/22(p+1)/2 + 2(p+1)/2 ≤ q1/22(p+3)/2. �

The constant αp is larger than the 18q1/2p we know to be sufficient, so
some comment seems needed to justify our enthusiasm for this more-than-
fifty year old argument. First, it uses very little about martingales; e.g. in
(AII.1) we use a weak consequence of the definition, and the only other fact
we need is a maximal inequality of Doob’s type as given in (AII.6). Second,
the differencing applied to pth powers in (AII.1) can be applied to other
functions f of Mk, provided that f(Mk + yk) − f(Mk) can be bounded by
a useful expression. Finally, since the argument is free of stopping times,
its parts are amenable to more individual attention. In particular, the use
of bounds on ‖yi‖p, 1 ≤ p ≤ ∞, can be tried out in AII.5, AII.6, or AII.7.

Added in Proof: The idea of using a spacefilling curve to sequence visits
to points in the square is evidently much older than recent references seem
to indicate. From the comments of R. Adler in the Collected Works of S.
Kakutani (Kakutani 1986, V.II, p. 445), Kakutani had presented the idea
as early as the spring of 1966.
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