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1. Introduction

The statistical mechanics of the real three-dimensional world is generally
too difficult to allow us to obtain analytic results for the structural and
other properties of matter. A few problems, most of them variants of the
Ising model, can be solved for two-dimensional systems, but it is only for
one-dimensional systems that analytic results can be obtained in profusion
(Lieb and Mattis 1966). There is a heavy price to pay for this simplifi-
cation since many features of the real world, such as transitions between
the different phases of matter, are absent in one-dimensional systems with
intermolecular forces of realistic range. If, however, we are interested in the
behaviour of fluids near planar solid walls or in slits between parallel walls
(e.g. Kjellander and Sarman 1988) then we wish to know only how the
properties change with distance in the one direction perpendicular to the
wall(s), since the system will generally be translationally invariant in the
two directions parallel to the wall(s). The behaviour of one-dimensional sys-
tems mimics these three-dimensional systems reasonably realistically. Here
we consider several such systems, in different thermodynamic ensembles,
in order to obtain explicit expressions for the probability densities for the
number of molecules in a system of fixed length or for the length in a sys-
tem of fixed number of molecules. Most previous work on one-dimensional
systems has considered only the so-called thermodynamic limit, that is the
limit of infinite size but finite non-zero density. Here the emphasis is on
finite systems although comparisons are made with infinite systems. The
analogy of such systems with the counting rates of Geiger counters is also
explored. Such devices have for a long time aroused the interest of those
working on probability theory (Kosten 1943; Malmquist 1947; Feller 1948;
Hammersley 1953; Albert and Nelson 1953).
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2. Thermodynamic Ensembles

The most primitive thermodynamic ensemble is a totally closed system of
fixed number of molecules of each species, Nα, of fixed volume, V , and of
fixed energy, U . Its characteristic function is the entropy S(N, V, U). Here
N denotes the set of Nα. More useful are the two canonical ensembles
of fixed temperature, T , one of constant volume and the other of constant
pressure, for which the characteristic functions are the Helmholtz and Gibbs
free energies, A(N, V, T ) and G(N, p, T ). The pressure fluctuates about its
mean value in the constant volume ensemble, and vice versa. In the grand
canonical ensemble the activity ζα (or its logarithm, the ratio of chemical
potential to temperature, µα/kT = ln ζα) is specified for each species but
the numbers of molecules fluctuate; the characteristic function is the grand
potential, Ω(ζ, V, T ). In the thermodynamic limit this is equal to −pV in
a homogeneous system, but in a finite inhomogeneous system it can also
contain terms proportional to area, length etc. (see below). The reduced
variance of the number of molecules in a one-component grand ensemble,

(N2 − N
2
)/N

2
, is proportional to N−1, but is nevertheless of physical

interest. Thus if k is Boltzmann’s constant we have in the thermodynamic
limit

N2 − N
2

N
2 = −

kT

V 2

(

∂V

∂p

)

T,N

, (2.1)

and so the variance is proportional to the compressibility.
The grand ensemble of fixed pressure is not properly specified since

all its variables, ζ, p and T , are intensive and so its size is undetermined.
Moreover its characteristic function would be zero by virtue of the Gibbs-
Duhem equation which requires that

∑

α

Nαd(ln ζα) − V dp + SdT = 0. (2.2)

Each characteristic function is related to the energy U(rN ) of N mole-
cules at positions rN through the appropriate partition function, Z. Thus

A = −kT ln Z(N, V, T ),

G = −kT ln Z(N, p, T ), (2.3)

Ω = −kT ln Z(ζ, V, T );

Z(N, V, T ) = nN
0

(

∏

α

Nα!
)−1

∫

V

drNe−U(rN )/kT ,

Z(N, p, T ) = n0

∫ ∞

0

dV Z(N, V, T )e−pV/kT , (2.4)

Z(ζ, V, T ) =
∑

N=0

Z(N, V, T )
∏

α

ζNα
α .
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The density n0 is introduced to ensure that all the partition functions
are dimensionless. We shall see that its size does not affect the value of
observable thermodynamic properties. The sum in Z(ζ, V, T ) is over all
values of Nα, Nβ etc. The Laplace transform that defines Z(N, V, T ) was
used in the treatment of one-dimensional systems by Takahashi (1942) and,
more recently, by Percus (1982), Bishop and Boonstra (1983) and Finn and
Monson (1988).

Since Ω = −pV for a homogeneous system, it follows that Z(ζ, V, T )
diverges exponentially with volume, that is, as exp(pV/kT ). So we can
introduce a function Z(ζ, P, T ) by the equation

Z(ζ, P, T ) = n0

∫

∞

0

dV Z(ζ, V, T )e−PV/kT , (2.5)

which becomes infinite as P approaches p. From the nature of this ap-
proach one can deduce the behaviour of a one-dimensional system in the
thermodynamic limit (Rushbrooke and Ursell 1948; Longuet-Higgins 1958).
The important result, for a system of pair-wise additive intermolecular po-
tentials is

∆(ζ, p, T ) ≡

∣

∣

∣

∣

∣

∣

∣

ζaηaa − 1 ζaηab . . .
ζbηba ζbηbb − 1 . . .

...
...

. . .

∣

∣

∣

∣

∣

∣

∣

= 0, (2.6)

where

ηαβ = n0

∫ ∞

0

dr e−uαβ(r)/kT e−pr/kT , (2.7)

where uαβ(r) is the energy of a pair of molecules on a line with α to the
left of β, and separated by a distance r. If the line forms a circle then we
speak of clockwise and anti-clockwise interactions. The canonical partition
function for the line is a (N + 1)-fold convolution, and for the circle a
N -fold convolution of the Boltzmann factors exp[−uαβ(r)/kT ]. The extra
factor in the first case arises from the interaction of the molecules with the
fixed boundaries. Hence Z(N, p, T ) is the (N + 1)- or N -fold product of
the appropriate factors ηαβ , and, from the relation of Z to the Gibbs free
energy, it follows that for a pure substance η−1 is the activity ζ. For a
binary system with ηab = ηba, we have

∆ = 1 − ζaηaa − ζbηbb + ζaζb(ηaaηbb − η2
ab) = 0. (2.8)

There is an important class of systems for which the last term vanishes.
For example, if we have a mixture of hard rods of lengths ρa and ρb then

uaa(r) = ∞ if r < ρa, ubb = ∞ if r < ρb, (2.9)
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and
uab(r) = ∞ if r < 1

2 (ρa + ρb),

and all are zero otherwise. For such a system

ηab = π−1 exp
[

− 1
2πn0(ρa + ρb)

]

= (ηaaηbb)
1/2, π = p/n0kT. (2.10)

If there are c components then

∆ = 1 − π−1
c

∑

α=1

ζαe−πρα = 0. (2.11)

This equation and that for the densities, nα,

nα = −(∂∆/∂ ln ζα)/(∂∆/∂π), (2.12)

have the solutions

n0π =
∑

α

nα

/(

1 −
∑

α

ραnα

)

,

ζα = πnαeπρα

/

∑

α

nα.

(2.13)

Another system of interest is the penetrable sphere model (Widom
and Rowlinson 1970; Hammersley, Lewis and Rowlinson 1975; Rowlinson
1980) the primitive form of which is a binary mixture with

uaa(r) = ubb(r) = 0 for all r,

uab(r) = ∞ if r < ρ/2 and zero otherwise.
(2.14)

It is now convenient to choose n0 = ρ−1, so that n is a dimensionless
density. The equation ∆ = 0 takes the form

(π − ζa)(π − ζb) = ζaζbe
−π, (2.15)

and

π =
naζa − nbζb

na − nb
, (2.16)

n−1
a = π−1 +

(1 + π − ζb)

(π − ζb)(1 + eπ(π − ζb)/ζb)
, (2.17)

together with a corresponding equation for n−1
b in terms of ζa.
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These results are for the primitive or two-component version of the
penetrable sphere model. The name itself belongs to the transcribed or
one-component version which is obtained by integrating over all positions
of the molecules of one species (say b) in the grand partition function. We
have then a system with an intermolecular energy that is now negative (or
attractive) for all configurations. It is given by

U(rN ) = W(rN ) − N, (2.18)

where W(rN ) is the total volume covered by N freely penetrating spheres
of unit volume (or rods of unit length, etc.) at positions denoted by rN .
If the molecules are well separated then U is zero, but if they are close it
is negative, and it has a minimum value of (1−N) when all the molecules
are at the same position.

3. Finite Systems

The results above are either already known or are simple extensions of what
is known. Of more current interest are finite systems for which the proper-
ties calculated from the several thermodynamic ensembles are significantly
different. It is now difficult to handle a multi-component system of hard
rods with any generality since the maximum number of molecules that can
be accommodated on a line of finite length is a discontinuous function of
composition. A case for which there is a simple explicit solution is a binary
mixture of rods of unit length (species a) and points of zero length (species
b), the centres of the former of which are confined to a line of length La,
and the latter to the same line, but to a length Lb of it, symmetrically cho-
sen with respect to La. If the boundaries are formed from fixed molecules,
of either species, then Lb = La + 1, but we can equally well consider the
slightly more general case Lb ≥ La + 1. We have now

Z(Na, Nb, La, Lb) = (La − Na + 1)Na(Lb − Na)Nb/Na! Nb!,

La ≥ Na − 1. (3.1)

The partition function is not a function of temperature, because of the
nature of the potential energy of a system of hard rods, and so this variable
is omitted. The grand partition function is

Z(ζa, ζb, La, Lb) =

[La+1]
∑

Na=0

∞
∑

Nb=0

[ζa(La − Na + 1)]Na[ζb(Lb − Na)]Nb

Na! Nb!
(3.2)

where [La + 1] is the integral part of La + 1. The summation over Nb can
be made at once to give

Z(ζa, ζb, La, Lb) = eζbLb

[La+1]
∑

Na=0

[ζae−ζb(La − Na + 1)]Na

Na!
. (3.3)



266 Rowlinson

The sum is now the partition function for a one-component system of rods
of unit length, on a line of length La, at an activity of ζae−ζb . This we
know already (Robledo and Rowlinson 1986).

Z(ζa, ζb, La, Lb) = eζbLbZ(ζae−ζb , La)

= n∗

a

(

1 − na

na

)

exp

[

ζbLb +
na(La + 1)

1 − na

]

,
(3.4)

where na is the density of this pure substance in an infinite system at an
activity ζae−ζb , and n∗

a is the density of the same substance at the same
activity in a semi-infinite system at a distance La+1 from the one boundary.
If La is greater than about 4 then n∗

a is almost indistinguishable from na,
but it is very different in smaller systems.

It follows from equation (3.4) that in the thermodynamic limit we have

ζae−ζb =

(

na

1 − na

)

exp

(

na

1 − na

)

, ζb =
nb

1 − na
, (3.5)

or

ζa =

(

na

1 − na

)

exp

(

na + nb

1 − na

)

. (3.6)

It follows from equation (2.13), that ζa is therefore also the activity of com-
ponent a in the original mixture (in the thermodynamic limit) at densities
na and nb. Thus na is both the density of a in the original system at
an activity ζa, and that of substance a in the hypothetical one-component
system at an activity ζae−ζb .

In the finite system

Z(ζa, ζb, La, Lb) =
n∗

a(1 − na)

na
exp

[

na(La + 1) + nbLb

1 − na

]

, (3.7)

and

π =
na + nb

1 − na
= ζae−π + ζb, (3.8)

where π, na, and nb are the pressure-to-temperature ratio and the densities
of the infinite system at the same activities, ζa and ζb, as the finite system.
The negative of the grand potential, −Ω, is equal to pL, where L ∼ La, Lb,
together with two ‘end-effects’ that are the one-dimensional analogues of
the surface tension, γ, of a fluid against a wall. We can re-write equation
(3.7) as

−Ω(ζa, ζb, La, Lb)/kT = πL − 2γ/kT + O(L)−1, (3.9)

where π is given by equation (3.8) and

2γ/kT =
na(La − L + 1) + nb(Lb − L)

(1 − na)
+ ln(1 − na), (3.10)
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and where the difference between n∗
a and na has been lost in the term of

O(L)−1. Clearly if γ is defined as an ‘excess’ or surface contribution to
the grand potential then it is not determined precisely, since L is arbitrary,
a conclusion that has been drawn also for more general cases (McQuarrie
and Rowlinson 1987). If ζb = 0 then the natural choice is L = La, when

2γ/kT =
na

1 − na
+ ln(1 − na) < 0, (3.11)

a result that has been obtained also by Henderson (1983) by a different
route. If ζa = 0 then we choose L = Lb to give γ = 0. There is no
obviously natural choice for a mixture.

4. Probability Densities

We now obtain the probability densities for grand and constant-pressure
ensembles, which may be written PV (N) and PN(V ) respectively since the
first is the probability of finding N molecules in a system of fixed V (at
specified ζ and T ), and the second is the probability density of finding V to
lie between V and V +dV in a system of fixed N (at specified π and T ). In
the thermodynamic limit we can show that these functions have the same
algebraic form. (We cannot say that they are the same function, since the
first is a discrete function of N and the second a continuous function of V .)

The general expressions are, for a system of one component,

PV,T,ζ(N) =
Z(N, V, T )ζN

∑∞

N=0 Z(N, V, T )ζN
=

Z(N, V, T )ζN

Z(ζ, V, T )
, (4.1)

PN,T,π(V ) =
Z(N, V, T )e−pV/kT

∫

∞

0
dV Z(n, V, T )e−pV/kT

=
n0Z(N, V, T )e−pV/kT

Z(N, π, T )
,(4.2)

where n0 is the density introduced in the definition of the partition func-
tions in equation (2.4). In the thermodynamic limit the partition functions
are related to the thermodynamic functions by equation (2.3), so, with an
abbreviation of the subscripts,

PN(V )

PV (N)
= n0 exp[−(pV + Nµ)/kT ] exp[(G − Ω)/kT ] = n0. (4.3)

Here ζ = exp(µ/kT ) has been written out in full to show its relation to the
function G = Nµ in the thermodynamic limit. Thus PN (V ) and PV (N)
are the same thing, their ratio being a fixed density (see below). We shall
see that this simple relation between the two probability densities is only
slightly modified in the finite one-dimensional system.
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The probability, in the binary system discussed above, of there being
Na molecules (rods) and Nb molecules (points) on a line of lengths La, Lb

is proportional to the appropriate term in the grand partition function, as
in equation (4.1).

Pζa,ζb,La,Lb
(Na, Nb) =

[ζa(La − Na + 1)]Na [ζb(Lb − Na)]Nb

Na! Nb! Z(ζa, ζb, La, Lb)
,

Na ≤ [La + 1]. (4.4)

It follows that the conditional probability of there being Nb molecules, if
the number of species a is fixed at Na, is a Poisson distribution,

P(Nb | Na) =
[ζb(Lb − Na)]Nb

Nb!
e−ζb(Lb−Na). (4.5)

Since
P(Na, Nb) = P(Nb | Na) · P(Na), (4.6)

it follows that the absolute probability of there being Na molecules in the
system is

P(Na) =
eζbLb [ζae−ζb(La − Na + 1)]Na

Na! Z(ζa, ζb, La, Lb)

=
(π − ζb)

Na+1(La − Na + 1)Na

n∗
aNa!

exp[−(π − ζb)(La − Na + 1)],

Na ≤ [La + 1], (4.7)

where π is given by equation (3.8). This probability is independent of Lb

since it has been assumed that Lb ≥ La + 1.
If ζb is zero this reduces to the probability of finding N rods of unit

length on a line of length L when the activity is ζ and where the pressure
in an infinite system of the same activity is given by π;

PL(N) =
πN+1(L − N + 1)N

n∗N !
exp[−π(L − N + 1)], N ≤ [L + 1], (4.8)

where
π =

n

(1 − n)
and ζ = πeπ. (4.9)

I cannot obtain the absolute probability P(Nb) in closed form but its
lower cumulants can be found. We have, for fixed ζa, ζb, La, Lb,

Nb = ζb(Lb − Na) (4.10)

N2
b − Nb

2
= ζb(Lb − Na) + ζ2

b (N2
a − Na

2
). (4.11)
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Thus the variance of Nb comprises two terms, the first of which is the vari-
ance of a Poisson distribution of Nb for a fixed value of Na, and the second
of which is the additional fluctuation in Nb caused by the fluctuations in
Na. The higher cumulants separate similarly into an intrinsic term and a
contribution from the fluctuations in Na. The covariance is negative;

NaNb − Na Nb = −ζb(N2
a − Na

2
). (4.12)

The more rods there are in the system, the fewer points, and vice versa.
To obtain the distribution of the length of the system in the constant

pressure ensemble we choose Lb = La + 1 so that La = −1 corresponds
formally to Na = Nb = 0. We have then

Z(Na, Nb, π) =

∫ ∞

Na−1

dLa
(La − Na + 1)Na+Nb

Na! Nb!
e−πLa ,

=
(Na + Nb)!

Na! Nb!
π−(Na+Nb+1) exp[−π(Na − 1)].

(4.13)

(Since our rods have ‘unit’ length we take n0 = 1.) Hence

PNa,Nb
(La) =

πNa+Nb+1

(Na + Nb)!
(La − Na + 1)Na+Nb exp[−π(La − Na + 1)],

La ≥ Na − 1, (4.14)

which is a gamma distribution. If Na = 0 then this is the probability
distribution for a line of length Lb = La +1 with Nb molecules of a perfect
gas;

PNb
(Lb) =

πNb+1

Nb!
LNb

b eπLb . (4.15)

If Nb = 0, and if we abbreviate Na and La to N and L, then

PN (L) =
πN+1

N !
(L − N + 1)Ne−π(L−N+1), L ≥ N + 1. (4.16)

So we have a simple relation between PL(N), the discrete distribution in
the grand ensemble, and PN (L), the continuous distribution function in
the constant pressure ensemble, namely

n∗PL(N) = PN(L). (4.17)

We recall, however, that the density n∗, which first appeared in equation
(3.4), is the local density at a distance L + 1 from the wall in a semi-
infinite grand ensemble of the same activity or pressure, ζ = πeπ. This
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density is, therefore, a function of L and of ζ (or π), and equation (4.17)
does not have the simplicity of equation (4.3), where n0 is a constant. In
the thermodynamic limit n∗ in equation (4.17) does become constant and
is equal to the actual density at activity ζ. The normalisations of PN (L)
and PL(N) are

∫ ∞

N−1

dLPN(L) =

[L+1]
∑

N=0

PL(N) = 1. (4.18)

The local densities, n(l), at distance l from a wall are known for the
grand ensemble (Robledo and Rowlinson 1986) and for the constant pres-
sure ensemble (Finn and Monson 1988), in the latter case both analytically
and by Monte Carlo computer simulation. Figure 1 shows the Monte Carlo
results, the exact curve, the mean L, and the square root of the vari-

ance (L2 − L
2
)1/2 calculated from PN (L). It is seen that the local density

is highest in contact with the fixed wall, n(0), and then oscillates about
n = π/(1 + π), its thermodynamic limit. The density falls to zero for
lengths much beyond L; that is, the ‘floating’ piston or wall that exerts a
constant force on the finite system rarely makes excursions much beyond
L = L. For each instantaneous position of the piston we should expect
to see a symmetric distribution of the local density, n(l), about l = L/2,
and so sharp peaks against both walls. The right-hand peak is, however,
smoothed out by the fluctuations in the position of the piston, but the
underlying symmetry is revealed by a calculation of the mean position of
the centre of mass of the fluid. We have

nN (l) =
∑

q=0

(l − q)2

q!
πq+1e−π(l−q), (4.19)

where nN (l) is the local density at distance l from the left-hand (fixed)
wall, and where the upper limit of the sum is min(N −1, [l]). As π becomes
infinite the distribution becomes a sum of delta-functions

nN (l) =
∑

q=0

δ(l − q). (4.20)

In general,

l = N−1

∫ ∞

0

dl l nN (l) =
1

2

(

N − 1 +
N + 1

π

)

=
1

2
L; (4.21)

that is, the mean of l is half of the mean of the total length.
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Fig. 1. The density in a constant pressure ensemble with
N = 10 and π = 3. The points are the results of a Monte
Carlo simulation by Finn and Monson (1988) and the line
through them is the calculated density. The horizontal line,
n, is the density in the thermodynamic limit, and the ver-
tical line, L, the mean length of the assembly. The square
root of the variance is shown by the short line between the
arrowheads.

The difference between N at fixed L in the grand ensemble and L at
fixed N in the constant-pressure ensemble is seen by writing the equations
for these quantities in the form

N = L

(

π

1 + π

)

+

(

π

1 + π

)2

, N = L

(

π

1 + π

)

−

(

1 − π

1 + π

)

. (4.22)

The difference is of the order unity and so negligible in the thermodynamic
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limit.

Since L has a gamma distribution it exhibits the property of convolu-
tion, which can be given a physical interpretation. We have, from equation
(4.16),

PM+N+1(L) =

∫ L−N

M

dlPM (l − 1)PN(L − l − 1). (4.23)

Let us number the molecules from the left in a system of (M + N + 1)
molecules, and single out the (M + 1)th molecule. We can regard this as
an internal piston that divides the system into two parts, with M molecules
to the left of it and N to the right. The equation above then tells us that,
at a fixed external pressure, the probability that the total length is L the
convolution of the probability that the length of the left part of the system
is (l − 1) and the right part (L − l − 1). The internal piston can occupy
any position from l = M to l = L − N , and it excludes other molecules
from a length of two units, thus giving a total length to the system of
(l − 1) + (L − l − 1) + 2 = L.

The one-dimensional system of hard rods has an obvious analogy with
a Type I Geiger counter. In this instrument the emissions of a radioactive
source are counted, but after each successful count the instrument is dead
for a fixed time, and any emissions in that interval go unrecorded. If the
emission is a Poisson process of rate π (in units of reciprocal dead time)
then the rate at which counts are recorded is n = π/(1 + π). Thus in
the language of statistical physics, the rate of emission is the pressure π
and the rate of counting is the density in the thermodynamic limit, n. If
the dead-time is zero then these rates are the same — the counter ‘obeys
Boyle’s Law’.

The recorded counts do not have a Poisson distribution, as is shown
above. From these results we have for the variance of a finite system

N2 − N
2

= n(1 − n)2(L + 2n) = π(1 + π)−3

(

L +
2π

1 + π

)

. (4.24)

In the limit of L becoming infinite this is the expression for the variance of
a Type I counter given by Feller (1971).

5. Penetrable Sphere Model

There are no obviously simple boundary conditions for the transcribed
version of this model, so the finite system is best studied by placing the
molecules on the circumference of a ring. The reciprocal of the activity η
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is given by

η =

∫

∞

0

dr e−πreθ[1−min(1,r)] (5.1)

=
πeθ + θe−π

π(π + θ)
= ζ−1, (5.2)

where θ is a dimensionless measure of the reciprocal temperature, and
π is, as before, the dimensionless ratio of pressure to temperature. The
constant-pressure partition function is

Z(N, π, θ) = ηN . (5.3)

In principle we could obtain the constant-volume partition function by
inverting the Laplace transform Z(N, π, θ). Since η has a pole only at
π = 0, and since the contribution to Z(N, L, θ) of the first molecule is L,
we have

Z(N, L, θ) =
L

N !

(

∂N−1

∂πN−1

[

πNηNeπL
]

)

π=0

. (5.4)

This route is practicable for a system of hard rods for which it gives

Z(N, L) =
L(L − N)N

N !
, (5.5)

but not for the penetrable sphere model. We can, however, use the constant
pressure ensemble to obtain the moments of the length of the system. If
the length per molecule is denoted λ ≡ L/N , then

ηλn =

∫

∞

0

dλλn exp[−πλ + θ(1 − min(1, λ))]

=
n! eθ

(π + θ)n+1
+

n!

eπ

n
∑

i=0

1

i!

[

πi−n+1 − (π + θ)i−n+1
]

.
(5.6)

The cumulants of the length are obtained by differentiating the Gibbs free
energy,

Cn(λ) = (−)n

(

∂n ln η

∂πn

)

θ

. (5.7)

We have

λ =
L

N
=

1

π + θ
+

1 + π

π(1 + πeπ+θ/θ)
, (5.8)

λ2 − λ
2

=
L2 − L

2

N
=

1

(π + θ)2
+

θ + 2πeθ+2π(1 + π + π2/2)

π2(1 + πeπ+θ/θ)2
. (5.9)
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The limits of these expressions as θ → 0 give the mean-field results,

λ =
1

π

[

1 +
θ

π

(

e−π(1 + π) − 1
)

]

+ O(θ2), (5.10)

λ2 − λ
2

=
1

π2

[

1 +
2θ

π

(

e−π(1 + π + π2/2) − 1
)

]

+ O(θ2). (5.11)

The complexity of these results does not make it seem likely that there is
any simple expression for PN(λ) for this system.

A Type II Geiger counter has a dead time that runs for a fixed interval
after each emission, not after each count. There is, therefore, an analogy
with the one-dimensional penetrable sphere model in its mean-field or ran-
dom distribution limit. Each emission is a molecule and now the analogue
of the total dead time is the covered length W of equation (2.18). The
count rate of the instrument is the analogue of the number of blocks into
which W is divided, since each block, followed by a covered interval (dead
time) of variable length is one recorded count. The ratio of the number
of ends of blocks (and so twice the number of blocks) to the sum of total
lengths of the blocks is an analogue of the ratio of the covered area to the
covered volume in a three-dimensional system. So we can use Widom’s
(1971) result for the mean areas of systems of arbitrary dimensionality to
show that an emission rate of n gives a count rate of ne−n. This result
was obtained by other means by Levert and Scheen (1943) and by Kosten
(1943). More generally, from Widom’s result and the equations above, the
mean density of blocks, ν, in a one-dimensional system is

ν =
ζπ(π + θ)

π2eπ + ζθ(1 + π)
. (5.12)

The random or mean-field limit of ν = πe−π = ne−n, is attained at θ = 0.
However high the density or pressure, ν remains non-zero; that is, the
blocks never coalesce, or there is no percolation limit. A Type II counter
never records once and then stays dead for all time, however high the rate
of emission. Even when the penetrable sphere model has the additional in-
centive of an attractive intermolecular potential (θ > 0) an infinite number
of molecules never forms a single cluster in a one-dimensional system.

Thus the analogy of the hard-rod problem with a Type I counter re-
quires that the count rate is the number of molecules and the emission rate
is the pressure, while that between the penetrable sphere model and a Type
II counter requires that the emission rate is the number of molecules and
the count rate is the number of blocks into which the penetrating molecules
are grouped. If, to choose a neutral symbol, the emission rate is r, in units
of the reciprocal of the dead time caused by an isolated emission, then a
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Type I instrument has a count rate of r(1+ r)−1 and a Type II instrument
of re−r. The Type I instrument is the more efficient.

I thank Dr. P.A. Monson for sending me his results before publication.
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