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Abstract

Consider the family tree of an age-dependent branching process, where the
branches have costs corresponding to birth times. The first-birth problem
of Hammersley (1974) then concerns the cost of an optimal (cheapest) node
at depth n. Suppose that we must explore the tree so as to find an optimal
or nearly optimal node at depth n. We now have a suitable model for
analysing the behaviour of tree search algorithms, and we may extend the
investigations of Karp and Pearl (1983).

1. Introduction

Many algorithms considered in operations research, computer science and
artificial intelligence may be represented as a search or partial search thr-
ough a rooted tree. Such algorithms typically involve backtracking but try
to minimise the time spent doing so. This paper extends work of Karp and
Pearl (1983), and gives a probabilistic analysis of backtracking and non-
backtracking search algorithms in certain random trees. We thus cast some
light on the question of when to backtrack: it seems that backtracking is
valuable just for problems with ‘dead-ends’.

Let us review briefly the model and results of Karp and Pearl. They
consider an infinite rooted tree in which each node has exactly two sons.
The branches have independent 0, 1–valued random costs X , with p =
P (X = 0). (We have swapped p and 1 − p from the original paper.) The
problem is to find an optimal (cheapest) or nearly optimal path from the
root to a node at depth n.

The problem changes nature depending on whether the expected num-
ber m0 = 2p of zero-cost branches leaving a node is greater than 1, equal
to 1 or less than 1 (as was suggested in Hammersley 1974, Note 8). When
m0 > 1 a simple ‘uniform cost’ breadth-first search algorithm A1 finds an
optimal solution in expected time O(n); and when m0 = 1 this algorithm
takes expected time O(n2). When m0 < 1 any algorithm that is guaranteed
to find a solution within a constant factor of optimal must take exponen-
tial expected time. However, in this case a ‘bounded-lookahead plus partial
backtrack’ algorithm A2 usually finds a solution close to optimal in linear
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expected time. This successful performance of the backtracking algorithm
A2 for the difficult case when m0 < 1 was taken to suggest that similar
heuristics should be of general use for attacking NP-hard problems.

We shall see that with the above search model, a simple non-back-
tracking bounded-lookahead algorithm A3 performs as successfully as the
backtracking algorithm A2. Thus it seems hard to recommend the use of
heuristics like A2 on the basis of this search model. Similar comments hold
if we allow more general finite random costs on the branches.

However, there is a qualitative difference if we allow nodes to have no
sons (or allow branches to have infinite costs) so that there are ‘dead-ends’.
We extend Karp and Pearl’s work by considering search in random trees
generated by an age-dependent branching process, in which the mean num-
ber of children of an individual is greater than one. The investigation is
related to the first-birth (or death) problem, as introduced by J.M. Ham-
mersley (1974) (see also Joffre et al. 1973). This model is discussed further
below. Let p0 be the probability that a node has no sons, and let m0 be the
mean number of zero-cost branches leaving a node (instantaneous births).

Our results concerning algorithms A1 and A2 are natural extensions of
Karp and Pearl’s results. Thus the breadth-first search algorithm A1 finds
an optimal solution in linear expected time if m0 > 1 and in quadratic
expected time if m0 = 1. If m0 < 1 then any algorithm with a constant
performance guarantee must take exponential expected time, but the back-
tracking algorithm A2 finds a nearly optimal solution in linear expected
time.

However, the performance of the simple non-backtracking bounded
lookahead algorithm A3 depends critically on whether p0 = 0 or p0 > 0.
Suppose that m0 < 1, so that optimal search is hard. If p0 = 0, so that
as in the Karp and Pearl model there are no dead-ends, then algorithm
A3 usually finds a nearly optimal solution in linear expected time; that is,
it performs as successfully as the backtracking algorithm A2. However, if
p0 > 0 then algorithm A3 usually fails to finds a solution. Thus our model
suggests that backtracking becomes attractive when there is the possibility
of dead-ends.

In the next section we give details concerning the search model and
the algorithms A1, A2 and A3, then in Section 3 we present our results,
and finally Section 4 contains proofs.

2. Model and Algorithms

We suppose that the tree to be searched is the family tree F of an age-
dependent branching process of Crump-Mode type (see Crump and Mode
1968). In this model an initial ancestor is born at time t = 0 and then pro-
duces children at random throughout his lifetime. If Z1(t) denotes the num-
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ber of children born up to time t, then Z1(t) is an arbitrary counting pro-
cess, that is a non-negative integer-valued non-decreasing right-continuous
random process. We do not insist that Z1(0) = 0. The children of the an-
cestor form the first generation: from their several birth times they behave
like independent copies of their parent. Their children form the second
generation, and so on. We let Zn(t) be the number of individuals born in
the nth generation by time t, and let Zn(∞) = supt Zn(t).

We shall always assume that the mean number m = E[Z1(∞)] of
children of an individual satisfies m > 1, so that the extinction probability
q satisfies q < 1. Let pk = P [Z1(∞) = k]. Clearly q > 0 if and only if
p0 > 0, and these conditions correspond to the existence of ‘dead-ends’.

When searching the family tree F we take the cost of a branch to be
the difference between the birth times of the child and the parent, and so we
take the cost of a node to be the birth time of the corresponding individual.
Thus we seek a first born individual in generation n. We shall denote the
corresponding optimal cost by C⋆

n (rather than Bn): if Zn(∞) = 0 then we
set C⋆

n = ∞. Thus

P (C⋆
n = ∞) = P (Zn(∞) = 0) = qn → q as n → ∞.

The interesting case is when the tree to be searched is infinite: we shall
often condition on the event S of ultimate survival, and then C⋆

n is finite
for all n.
Assumptions. Recall that we assume that the mean family size m satis-
fies m > 1: this is essential. For convenience we shall also assume that
m is finite and that lifetimes (branch costs) are bounded. We are thus
able to show that certain events of interest fail with exponentially small
probabilities. (Truncation arguments as in Kingman (1975) may then be
used to obtain ‘almost sure’ results under weaker assumptions.) Further,
a simple translation allows us to assume that small costs can occur, that
is E[Z1(δ)] > 0 for δ > 0.

The distinction between zero and non-zero costs turns out to be im-
portant. Let m0 = E[Z1(0)] be the expected number of zero-cost branches
from a node (instantaneous births to an individual).

We shall discuss the performance of three algorithms, A1, A2 and
A3, the first two of which are taken from Karp and Pearl (1983). Each
algorithm maintains a subtree T of the family tree F containing the root;
and at each step explores some node of T . Here, exploring a node x mean
appending to x the next (leftmost) child y of x in F but not yet in T , and
observing the cost of the corresponding branch xy; or observing that node
x has no more children.

Algorithm A1 is a ‘uniform cost’ breadth-first search algorithm and
will be analysed for the cases m0 > 1 and m0 = 1, when there are many
zero-cost branches and search is easy. Algorithm A2 is a hybrid of local
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and global depth-first search strategies and will be analysed for m0 <
1. Algorithm A3 consists of repeated local optimal searches, and will be
analysed also for m0 < 1. Note that A1 is an exact algorithm, whereas A2
and A3 are approximation algorithms or heuristics.

For each algorithm Aj, we let the random cost of the solution found
be CAj

n (= ∞ if no solution is found), and the random time taken be T Aj
n .

We measure time by the number of nodes of the search tree encountered.
The three algorithms are as follows.

Algorithm A1: At each step, explore the leftmost node among those
active nodes of minimum cost. Here, a node is active if it is in T and may
perhaps have further children. The algorithm halts when it would next
explore a node at depth n. That node then corresponds to an optimal
solution.

Algorithm A2: This algorithm conducts a staged search with backtrack-
ing if a local test is failed. It has three parameters: d, L, and α. By
an (α, L)-regular path we mean a path which consists of segments each of
length L and cost at most αL (except that the last segment may have
length less than L). The algorithm A2 conducts a depth-first search to
find an (α, L)-regular path from a depth d node to a depth n node. If it
succeeds in reaching depth n, the algorithm returns the corresponding path
as a solution: if it fails, the search is repeated from another depth d node.
If all the nodes at depth d fail to root an (α, L)-regular path to a depth n
node, the algorithm terminates with failure.

Algorithm A3: This simple bounded-lookahead or ‘horizon’ heuristic is a
staged-search algorithm which avoids backtracking. It has one parameter
L. Starting at the root it finds an optimal path to a node at depth L,
makes that node the new starting point and repeats.

3. Results

We summarise our results in six theorems. Theorem 3.1 concerns the region
where the mean number m0 of zero-cost branches leaving a node satisfies
m0 > 1, Theorem 3.2 concerns m0 = 1 and Theorems 3.3–3.6 concern
m0 < 1. When m0 ≥ 1 the main distinction is between zero and non-zero
costs. Recall that S denotes the event of ultimate survival.

Theorem 3.1. Let m0 > 1.

(a) The random variable C⋆ = limC⋆
n is finite almost surely on S, and

indeed there exists δ < 1 such that

P (C⋆ ≥ k | S) = O(δk) as k → ∞.

(b) The time T A1
n taken by algorithm A1 satisfies E[T A1

n ] = O(n).
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Thus, if the family tree is infinite, the optimal cost C⋆
n remains bound-

ed as n → ∞, and algorithm A1 finds an optimal path in linear expected
time.

Next we consider the critical case m0 = 1. It is convenient here to
restrict attention to a Bellman-Harris age-dependent branching process (see
for example Harris 1963). Now children are produced according to a simple
Galton-Watson branching process, and branch costs are independent and
each distributed like some non-negative random variable X .

Theorem 3.2. Consider a Bellman-Harris process with m0 = mP (X =
0) = 1 and E[Z1(∞)2] < ∞.
(a) If further E[Z1(∞)2+δ] < ∞ for some δ > 0, P (0 < X < 1) = 0 and

P (X = 1) > 0, then

C⋆
n/ log log n → 1 almost surely on S as n → ∞.

(b) The time T A1
n taken by algorithm A1 satisfies E[T A1

n ] = O(n2).

Part (a) shows roughly that if the optimal cost is finite then it is
usually close to log log n: it is a special case of a result of Bramson (1978).
Part (b) states that the algorithm A1 finds an optimal path in quadratic
expected time.

Our main interest is in the case m0 < 1. The first result for this case
shows that we cannot quickly find guaranteed optimal or near optimal so-
lutions, and so it is of interest to analyse heuristic approximation methods.
The next result concerns the optimal cost C⋆

n and then we consider the
algorithms A2 and A3.

Theorem 3.3. Assume that m0 < 1. Let Tn be the least number of nodes
explored in any proof that guarantees a certain path of length n to be
within a constant factor β of optimal. Then there exists η > 1 and δ < 1
such that

P (Tn < ηn | S) = O(δn) as n → ∞.

Theorem 3.4. There is a constant γ ≥ 0, defined by equation (4.1) below
and satisfying γ > 0 if and only if m0 < 1, such that for any ǫ > 0 there
exists δ < 1 with

P

(
∣

∣

∣

∣

1

n
C⋆

n − γ

∣

∣

∣

∣

> ǫ
∣

∣

∣
S

)

= O(δn) as n → ∞.

This result shows roughly that if the optimal cost C⋆
n is finite then

it is usually close to γn. It is essentially due to Hammersley (1974) and
Kingman (1975), see also Kesten (1973), Kingman (1976). We shall find
that it follows quite easily from our analysis of the search algorithm A2;
see also Biggins (1979).
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Theorem 3.5. Let m0 < 1, and consider the backtracking algorithm A2.
For any ǫ > 0, with appropriate parameters the algorithm runs in linear
expected time, and there exists δ < 1 such that

P
(

CA2
n ≤ (1 + ǫ)C⋆

n

)

= 1 − O(δn) as n → ∞.

Theorem 3.6. Let m0 < 1, and consider the non-backtracking algorithm
A3.
(a) If p0 = 0 then for any ǫ > 0, with appropriate constant lookahead the

algorithm runs in linear expected time, and there exists δ < 1 such
that

P
(

CA3
n ≤ (1 + ǫ)C⋆

n

)

= 1 − O(δn) as n → ∞.

(b) If p0 > 0, then for any constant lookahead there exists δ < 1 such that

P (CA3
n < ∞) = O(δn) as n → ∞.

We thus see that the backtracking algorithm A2 is a good heuristic,
and so is the non-backtracking algorithm A3 as long as p0 = 0.

Hammersley (1974, Note 8) asked about the concentration of the ran-
dom variable C⋆

n, in particular in the special case considered by Karp and
Pearl (1983) when each individual has exactly two children, both born at
time 0 or 1. For this case the bounded differences inequality of Hoeffd-
ing (1963), Azuma (1967) in the form given in McDiarmid (1989) shows
immediately that for any t ≥ 0,

P (|C⋆
n − E(C⋆

n)| ≥ t) ≤ 2e−2t2/n.

4. Proofs

The first lemma below immediately gives part (a) of Theorem 3.1.

Lemma 4.1. Suppose that m0 > 1. Let T be the least depth at which an
infinite path of zero-cost branches is rooted, where we let T = ∞ if there
is no such path. Then there exists δ < 1 such that P (T > n | S) = O(δn)
as n → ∞.

Proof: The zero-cost branches yield a branching process Z̃ with mean
m0 > 1 and thus with extinction probability q̃ < 1. Suppose that p0 +p1 >
0. Then α = f ′(q) satisfies 0 < α < 1. So, by a minor extension of
Theorem 8.4 in Chapter I of Harris (1963), fn(q̃) = q + O(αn). Here fn is
the generating function for Zn(∞). But

P (T > n) =
∑

k

P
(

Zn(∞) = k
)

q̃k = fn(q̃).
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Hence
q + O(αn) = P (T > n) = (1 − q)P (T > n | S) + q,

and so P (T > n | S) = O(αn), as required. The case not considered so far
is when p0 + p1 = 0, but then clearly

P (T > n | S) = P (T > n) ≤ q̃2n

. �

Now consider a Galton-Watson branching process Z̃. Let Dn be the
number of nodes encountered in a depth-first search of the family tree which
terminates on reaching a node at depth n or on searching the complete tree,
and let dn = E[Dn].

Lemma 4.2. For each n, dn ≤ n + 1.

Proof: Let qn = P (Z̃n = 0). Of course d0 = 1. Suppose that dn is finite.
Then by conditioning on Z̃1 we see that

dn+1 = 1 +
∑

k≥1

pk

(

1 + qn + · · · + qk−1
n

)

dn

= 1 +
dn

1 − qn

∑

k≥0

pk(1 − qk
n)

= 1 +
dn

1 − qn
(1 − f(qn))

≤ 1 + dn

since f(qn) = qn+1 ≥ qn. �

We may now prove part (b) of Theorem 3.1. Consider the branching
process Z̃ corresponding to the zero cost branches. It has mean m0 > 1
and so it has extinction probability q̃ < 1. It now follows from Lemma 4.2
(by Wald’s equation) that

E[T A1
n ] ≤

n + 1

1 − q̃
.

This completes our proof of Theorem 3.1. �

Proof of Theorem 3.2: Part (a) has already been discussed, so consider
part (b). Consider again the process Z̃ corresponding to the zero-cost
branches. This has mean E[Z̃1] = m0 = 1 and variance σ̃2 = σ2p2 +
mp(1 − p) < ∞, where p = P (X = 0). Hence

P (Z̃n > 0) =
2 + o(1)

σ̃2n
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(see for example Athreya and Ney 1972, p. 19). So, arguing as before,

E[T A1
n ] ≤

n + 1

P (Z̃n > 0)
= O(n2). �

To consider the case m0 < 1 we must investigate the Crump-Mode
model in more detail. The key to the analysis is the function φ(θ) intro-
duced by Kingman (1975). For θ ≥ 0, let

φ(θ) = E

[

∑

r

e−θB1r

]

,

where the sum is over the birth times B1r of the children r of the initial
ancestor. Note that φ(0) = E[Z1(∞)] = m < ∞, and so φ(θ) < ∞ for all
θ ≥ 0. Next, for a ≥ 0 let

µ(a) = inf
{

eθaφ(θ) : θ ≥ 0
}

,

and define the ‘time constant’ γ by

γ = inf{a ≥ 0 : µ(a) ≥ 1}. (4.1)

The next two lemmas may be found (essentially) in Kingman (1975).

Lemma 4.3. The function µ on [0,∞) is continuous; µ(0) = m0; and for
some b ≥ 0, µ is strictly increasing on [0, b] and µ(a) = m for each a ≥ b.

Lemma 4.4. For any a ≥ 0,

E[Zn(an)] =
(

µ(a) + o(1)
)n

as n → ∞.

Proof of Theorem 3.5: Let 0 < ǫ < γ and let α = γ + ǫ. By Lemmas
4.3 and 4.4 we may choose a constant L such that E[ZL(αL)] > 1. By
considering the (α, L)-sons of a depth d node and their (α, L)-sons and so
on we obtain a branching process Ẑ say. This process has mean m̂ > 1 and
thus has extinction probability q̂ < 1.

We can bound the expected running time of algorithm A2 as follows.
By Lemma 4.2 (and Wald’s equation) for each node at depth d, the expected
cost of a search to depth n from that node is at most

mL+1
(

⌈(n − d)/L⌉ + 1
)

≤ mL+1(n + 1).

Hence (by Wald’s equation again)

E[T A2
n ] ≤

d + mL+1(n + 1)

1 − q̂
= O(n).
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Next consider costs. Let λ be a bound on lifetimes or branch costs,
and set d = d(n) = ⌊(ǫ/λ)n⌋. If the algorithm A2 succeeds then

CA2
n ≤ dλ + ⌈(n − d)/L⌉(αL) ≤ (α + ǫ)n once d ≥ L.

But
P (CA2

n = ∞) ≤
∑

k

P (Zd(∞) = k)q̂k = fd(q̂).

Also, by Lemmas 4.3, 4.4,

P
(

CA2
n ≤ (γ − ǫ)n

)

≤ E
[

Zn((γ − ǫ)n)
]

= O(δn
1 )

for some suitable δ1 < 1. Hence

P

(

CA2
n >

γ + 2ǫ

γ − ǫ
C⋆

n

)

≤ P
(

C⋆
n ≤ (γ − ǫ)n

)

+ P
(

{CA2
n = ∞} \ {C⋆

n = ∞}
)

≤ O(δn
1 ) + fd(q̂) − fn(0)

= O(δn
2 ) for suitable δ2 < 1. �

We do not need to prove Theorem 3.4 here, since it is implicit in
Kingman (1975), but note that we have actually done so above. We may
adapt the proof idea above to yield a variant of the ‘Chernoff theorem’ of
Biggins (1979), which we shall use to prove Theorem 3.3.

Lemma 4.5. If 1 < µ(a) then for any 1 < η < µ(a) there exists δ < 1 such
that

P
(

Zn(an) < ηn | S
)

= O(δn) as n → ∞.

Proof: By Lemma 4.3 we may choose b < a such that µ(b) > η. Then by
Lemma 4.4 we may choose ǫ > 0 sufficiently small and L sufficiently large
that ǫλ + b < a and (m̂ − ǫ)(1−2ǫ)/L > η, where m̂ = E[ZL(bL)].

Consider the branching process Ẑ, with mean m̂, formed by taking
(b, L)-sons and their sons and so on. By a theorem of Seneta and Hyde
(see for example Athreya and Ney 1972, Theorem 3, p. 30)

P
(

Ẑk < (m̂ − ǫ)k
)

→ q̂ as k → ∞.

By considering these processes rooted at the nodes at depth d + i where
d = ⌊ǫn⌋ and 0 ≤ i < L, we see that

P
(

Zd+i+kL

(

(d + L)λ + kbL
)

< (m̂ − ǫ)k
)

≤ fd+i(q̂ + o(1))

= q + O(δk
1 )
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for suitable δ1 < 1. But, if n = d + i + kL where 0 ≤ i < L, then
an ≥ (d + L)λ + kbL and (m̂ − ǫ)k ≥ ηn for n sufficiently large. Hence

P (Zn(an) < ηn) ≤ q + O(δn
2 ).

Thus
P

(

Zn(an) < ηn | S
)

(1 − q) + qn ≤ q + O(δn
2 ),

and the result follows, since qn = q + O(δn
3 ) for some suitable δ3 (< 1). �

Proof of Theorem 3.3: Let 0 < ǫ < γ, let β′ = β(γ + ǫ)/(γ − ǫ) and
let k = k(n) = ⌊n/β′⌋. The key observation is that if C⋆

n > (γ − ǫ)n then

Tn ≥ Zk

(

(γ − ǫ)n/β
)

≥ Zk

(

(γ + ǫ)k
)

;

for each node counted by Zk

(

(γ − ǫ)n/β
)

has cost less than C⋆
n/β and so

must be explored. Now let 1 < η < µ(γ + ǫ). Then

P (Tn < ηk | S) ≤ P (C⋆
n ≤ (γ − ǫ)n | S) + P

(

Zk

(

(γ + ǫ)k
)

< ηk | S
)

= O(δk)

for suitable δ < 1, by Lemmas 4.4 and 4.5. �

Proof of Theorem 3.6:

(a) Let p0 = 0. By Theorem 3.4 we may choose L so that E[C⋆
L/L] <

(1 + ǫ)γ. Now CA3
n is bounded above by ⌈n/L⌉ independent copies of

C⋆
L/L, and we are done.

(b) Observe that

P (CA3
n = ∞) ≥ 1 − (1 − p0)

n/L. �
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