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Let X1, X2, . . . be independent random variables having the same contin-
uous distribution function F . For any n, define a family An of subsets
of

In = {1, 2, . . . , n} (1)

by the following recipe: a subset A of In belongs to An if and only if,
whenever i < j and i, j ∈ A,

Xi < Xj . (2)

The randomness of the Xi means that An is a random family of subsets of
In, and it is clear that the distribution of An does not depend on F .

Hammersley (1972) studied the problem, proposed by Ulam, of finding
at least the asymptotic distribution of the size of the largest set in An, the
random variable

Ln = max{|A|; A ∈ An}. (3)

He showed that there is a constant c such that, with probability one,

Ln ∼ c
√

n (4)

as n → ∞.
Hammersley conjectured that c = 2, but he was only able to prove

that
1
2π ≤ c ≤ e. (5)

These bounds are improved in Kingman (1973) to

(8/π)1/2 ≤ c ≤ ǫ, (6)

where ǫ = 2.49 . . . can be expressed as

ǫ = ξ−1/2(1 − ξ)−1/2, (7)

where ξ is the positive root of

1 − ξ = e−2ξ. (8)
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Much later Hammersley’s conjecture was proved by Vers̆ik and Kerov
(1977), but by complex arguments very specific to the Ulam problem. By
contrast, the arguments of Hammersley (1972) and Kingman (1973) are
relatively crude, and for this reason apply to other problems. For instance,
the upper bound in (5) follows from the obvious fact that, if A ⊂ In has
|A| = r, then

P (A ∈ An) =
1

r!
. (9)

This implies that the expected number of sets of size r in An is

(

n

r

)

1

r!
,

and this is an upper bound for the probability that there is at least one
such set. Thus

P (Ln ≥ r) ≤
(

n

r

)

1

r!
, (10)

and Stirling’s formula easily shows that this tends to zero as n, r → ∞ in
such a way that

lim inf rn−1/2 > e.

The sharpening in (6) is only a little more difficult, and makes use (in
a way which will be described below) of the fact that An is hereditary: if
A ∈ An and A′ ⊂ A, then A′ ∈ An.

My interest in these arguments was revived when I encountered, in
the context of a genetical problem, another random family with similar
properties. Let Yij (i, j = 1, 2, . . . ) be random variables with a common
continuous distribution function F . The Yij for i ≤ j are mutually inde-
pendent, but the symmetry condition

Yji = Yij (11)

is imposed. The family An is now defined by the requirement that A ⊂ In

belongs to An if and only if, for all i, j ∈ A,

Yij ≥ 1
2 (Yii + Yjj). (12)

Clearly An is hereditary.
It is shown in Kingman (1988) that, if F corresponds to a uniform

distribution, then

P (A ∈ An) ≤ 1

r!
(13)

for any A of size r. This allows the arguments of the earlier papers to be
carried through, to show that the size of the largest set in An is at most
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ǫ
√

n for large n. Although crude, this result is of considerable significance
in the genetical context. It is however specific to the particular uniform
distribution, and the probability

Pr(F ) = P (A ∈ An) (14)

depends on the choice of F (but not of course on the value of n). For
some distributions the bound (13) can be improved; if F corresponds to a
negative exponential distribution it is easy to compute that

Pr(F ) =

(

2

r + 1

)r

∼ (2πr)1/2e−1

r!
. (15)

This ought to make it possible to improve on the coefficient ǫ in the upper
bound. On the other hand, there are distributions for which Pr(F ) is of
larger order than for the uniform distribution, and one may ask whether
some cruder upper bound may then be established. Both of these questions
are answered by the following theorem.

Theorem 1. For each n, let An be a random subset of In = {1, 2, . . . , n}
having the hereditary property

A ∈ An, A′ ⊂ A ⇒ A ∈ An. (16)

Suppose that, for some constant α, and for sufficiently large n, r,

P (A ∈ An) ≤ αr/r! (17)

for every A ⊂ In of size |A| = r. Then the size of the largest set in An,

Ln = max{|A|; A ∈ An}, (18)

satisfies

lim sup
n→∞

Lnn−1/2 ≤ α1/2ǫ (19)

with probability one.

This formulation assumes that the An are all defined on the same
probability space. If not, the same argument shows that (19) holds in
probability.

Proof: If s ≤ r ≤ n, the inequality Ln ≥ r implies that there is at least
one set of size r in An. The hereditary property shows that all subsets of
this set are in An, so that An contains at least

(

r
s

)

sets of size s. But, by
(17), the number of sets of size s in An has expectation at most

(

n

s

)

αs

s!
,
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so that
(

r

s

)

P (Ln ≥ r) ≤
(

n

s

)

αs

s!
.

Hence

log P (Ln ≥ r) ≤ log n! − log s! − log(n − s)! + s log α − log r! + log(r − s)!.

In this inequality let r, s, n → ∞ in such a way that r ∼ ρn1/2, s ∼ σn1/2

for constants 0 < σ < ρ. Then Stirling’s formula yields, after simplification,
the inequality

log P (Ln ≥ r) ≤ −{ρ logρ + σ log σ − (ρ − σ) log(ρ − σ)

− σ log α − 2σ + o(1)}n1/2.

Hence, by the Borel-Cantelli lemma, Ln ≥ ρn
1

2 for only finitely many n,
so long as

ρ log ρ + σ log σ − (ρ − σ) log(ρ − σ) − σ log α − 2σ > 0. (20)

It follows that, with probability one,

lim sup Lnn−1/2 ≤ ρ, (21)

so long as σ < ρ can be chosen to satisfy (20). Putting σ = λρ for 0 < λ < 1,
(20) becomes

log λ − (λ−1 − 1) log(1 − λ) > 2 + log α − 2 log ρ. (22)

The best choice of λ is that which maximises the left hand side; dif-
ferentiation gives the equation

2λ + log(1 − λ) = 0,

and comparison with (8) shows that λ = ξ. With this value of λ, (22)
becomes

2 + log ξ + log(1 − ξ) > 2 + log α − 2 log ρ,

or
ρ > {α/ξ(1 − ξ)}1/2 = α1/2ǫ.

Thus (21) holds for all ρ > α1/2ǫ, and (19) is proved. �

For example, if An is defined by (12), and if (for some constant α
depending on F )

Pr(F ) ≤ αr

r!
(23)
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for large r, then the size of the largest set in An is at most

(αn)1/2ǫ (24)

for large n. For the uniform distribution α = 1, but (15) shows that, for
the exponential distribution, (17) holds for any α > 2e−1, so that ǫ can be
replaced by the smaller constant

(2e−1)1/2ǫ = 2.14 . . . .

It is an attractive conjecture that, for every continuous distribution
F , there is a constant β = β(F ) such that

lim
r→∞

{Pr(F )r!}1/r = β(F ). (25)

For any F for which this is true, Theorem 1 shows that, with probability
one,

lim sup
n→∞

Lnn−1/2 ≤ β(F )1/2ǫ. (26)

Some insight into the way Pr(F ) (and thus β(F ) if it exists) depends
on F can be gained by noting that, if the Yi have distribution function
F , the random variables φ(Yi), if φ is a strictly increasing function, have
distribution function

G(y) = F{φ−1(y)}. (27)

If φ is convex, then (12) is implied by

φ(Yij) > 1
2{φ(Yii) + φ(Yjj)},

so that

Pr(F ) > Pr(G).

The opposite inequality obtains if φ is concave.

This shows in particular that, if F has decreasing density on an inter-
val (as does the exponential distribution), then Pr(F ) is less than for the
uniform distribution, and so (13) remains valid.

It is natural to ask whether there are non-trivial bounds for Pr(F )
which hold for all F . The answer is given by the following theorem.

Theorem 2. For any continuous distribution function F , and any r ≥ 2,

2rr!

(2r)!
< Pr(F ) <

2r

(r + 1)!
, (28)
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and these bounds are best possible.

The right hand inequality shows that (17) holds, for any F , with α = 2.
Hence (19) holds universally, if the right hand side is set at

21/2ǫ = 3.52 . . . .

The inequalities (28) also show that, if β(F ) exists, it satisfies

1
2 ≤ β(F ) ≤ 2. (29)

Proof: Because F is continuous and non-decreasing,

Pr(F ) = P

{

Yij > 1
2 (Yii + Yjj) (i, j = 1, 2, . . . , r)

}

≤ P

{

Yij > min(Yii, Yjj) (i, j = 1, 2, . . . , r)

}

= E

{

∏

i<j

[1 − F (min(Yii, Yjj))]

}

= E

{

∏

i<j

max(Ui, Uj)

}

where the random variables Ui = 1 − F (Yii) (i = 1, 2, . . . , r) are inde-
pendent and uniformly distributed on (0, 1). It is easy to check by direct
integration that this last expectation is 2r/(r + 1)!, so that

Pr(F ) ≤ 2r/(r + 1)!. (30)

There is equality in (30) only if F is such that

Yij > min(Yii, Yjj)

for all i < j ≤ r implies
Yij > 1

2 (Yii + Yjj)

a.s. for all i < j ≤ r. This can only happen if, whenever Y(1) < Y(2) < Y(3)

are the order statistics of a sample of size 3 from F , then

P
{

Y(2) > 1
2 (Y(1) + Y(3))

}

= 1, (31)

and this contradicts the continuity of F .
On the other hand, that (30) is best possible may be seen by consid-

ering
F (y) = 1 − (1 − y)1/m (0 ≤ y ≤ 1), (32)
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where m is a large integer. For this choice of F ,

Pr(F ) = E

{

∏

i<j

[

1 − F
(

1
2 (Yii + Yjj)

)]

}

= E

{

∏

i<j

[

1 − 1
2 (Yii + Yjj)

]1/m
}

= E

{

∏

i<j

[

1
2 (Um

i + Um
j )

]1/m
}

→ E

{

∏

i<j

max(Ui, Uj)

}

=
2r

(r + 1)!

as m → ∞.
The argument for the lower bound in (28) is exactly similar, starting

from
Pr(F ) ≥ P{Yij > max(Yii, Yjj) (i, j = 1, 2, . . . , r)}.

The sharpness is established by taking

F (y) = y1/m (0 ≤ y ≤ 1), (33)

and again letting m → ∞. �
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