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1. Introduction

This paper is a preliminary report on the results of an investigation into the
diffusion of Euclidean shape, using computer algebra to reduce complicated
intermediate calculations to an informative final form. The computer alge-
bra takes the form of an extension to the symbolic Itô calculus described in
W.S. Kendall (1988). A substantially more detailed treatment (including
details of how to obtain the results below and a description and discussion
of the necessary extensions to symbolic Itô calculus) will be provided in
a later paper. The results are new and will be of interest to workers in
the field of statistics of shape, and perhaps also to mathematical physi-
cists. They provide a reinforcement of the view expressed in W.S. Kendall
(1988), and further argued in my contribution to the discussion of D.G.
Kendall (1989), that computer algebra and the associated equipment now
form a powerful tool for probabilists and statisticians, as indeed for the
mathematical scientist in general.

Suppose k particles X1, . . . , Xk diffuse in Euclidean n-space R
n ac-

cording to independent copies of an Ornstein-Uhlenbeck process. Thus
X1, . . . , Xk obey the system (1.1) of stochastic differential equations

dIXi = dIBi −
κ

2
Xi dt for i = 1, . . . , k (1.1)

in which B1, . . . , Bk are independent Brownian motions in R
n and κ is

a non-negative constant, the Ornstein-Uhlenbeck parameter. Here and in
the following we use the stochastic calculus, so dIXi is the Itô stochastic
differential of the random process Xi. See Rogers and Williams (1987) for
an exposition, and also W.S. Kendall (1987, Section 1), for an introduction
to the notation used below and some relevant geometric considerations.

Following D.G. Kendall (1977) one may consider the (Euclidean) shape
formed by the configuration of the k diffusing particles. That is to say,
one considers the stochastic evolution of those aspects of the configuration
which have nothing to do with its location, orientation, or size. The result-
ing diffusion of shape has a fascinating and beautiful structure, despite the
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simplicity of the underlying stochastic differential system (1.1). (Strictly
speaking the shape performs a diffusion only up to a random time-change;
see the comment before equations (2.2), (2.3), and (2.4).) We shall de-
scribe this structure by analyzing stochastic differential systems for the
stochastic evolution of collections of shape statistics — configuration func-
tions depending only on the shape of the configuration in question. These
collections of shape statistics will form coordinate systems for the shape
diffusion.

Here is a brief summary of some statistical and probabilistic aspects of
shape relevant to this paper, and a summary of previous results on shape
diffusion. Recall that two configurations each of k points are said to have
the same shape if one configuration can be transformed into the other by
application of a sequence of translations, rotations, and dilatations. (To
avoid degeneracy we stipulate that k > 2 and that neither configuration
is composed of totally coincident points.) This conception of shape arose
from a statistical problem in archaeology (Broadbent 1980; D.G. Kendall
and W.S. Kendall 1980) and has been considerably developed over the last
decade (see D.G. Kendall 1984, 1986, the reviews of Small 1988, and D.G.
Kendall 1989, and the introductory treatment in Chapter 8 of Stoyan et
al. 1987). In particular it has been established that the space Σk

n of k
points in n-space carries a metric which is natural from statistical and
probabilistic points of view. The shape spaces Σk

1 are metrically spheres
while Σk

2 are metrically complex projective spaces. For n ≥ 3 the shape
space Σ3

n is metrically a hemisphere. The general shape space does not
have such simple geometry and indeed if k > n + 1 and n ≥ 3 then Σk

n is
not a smooth manifold (D.G. Kendall 1989).

In the case k = 3 and n = 2 the shape space is a complex projective
space of one complex dimension and is therefore isometric to a 2-sphere.
The shape of the diffusing triad X1X2X3 is actually Brownian motion on
this 2-sphere, up to a random time change. This beautiful result (linked
to properties of the Hopf fibration) is due to D.G. Kendall (1977) in the
case when the Ornstein-Uhlenbeck parameter κ is zero. He also identified
the shape diffusion in the cases of Σ4

1 and Σ3
3. In W.S. Kendall (1988) an

implementation of stochastic calculus in the REDUCE computer algebra
language (the symbolic Itô calculus mentioned above) and a description of
shape in terms of homogeneous shape coordinates were used to identify the
shape diffusion of Σ3

n for n ≥ 3 and non-negative κ. Carrying the computer
algebra approach further had to await a way of handling vectors of general
symbolic dimension n in REDUCE . This has now been developed, and the
results described below are the first fruits of this extension.

It should be noted that Carne (1988) has also made a successful study
of the shape diffusion, as part of a wider study of the geometry of shape.
The explicit calculations given here complement his more algebro-geometric
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approach. Indeed a direct connection between diffusion theory and Rie-
mannian geometry (as described in Chapter 5 of Ikeda and Watanabe 1981)
means one can deduce the shape geometry from knowledge of the shape
diffusion. The paper promised above will consider connections both with
Carne’s results and with unpublished work of D.G. Kendall (manuscript).
Carne (1988) and also Le (1988) have obtained the form of a generalized
shape diffusion for points on the sphere; in this case it is no longer possible
to separate shape from size so the generalization is actually a shape-and-
size diffusion.

The contents of the rest of the paper are as follows. Section 2 summa-
rizes the results describing the general shape diffusion in terms of stochastic
differential systems. Expressions corresponding to three different coordi-
nate systems are provided: the so-called homogeneous shape coordinates
of normalized square side lengths, the coordinates of standardized inner
products, and the coordinates corresponding to a singular values decom-
position. Section 3 discusses some of the more basic questions concerning
the last of these coordinate systems, which provides the most insight of the
three into the behaviour of the shape diffusion. The paper concludes with
Section 4, which comprises a brief discussion of topics for further work.

I am grateful to T.K. Carne, S.D. Jacka, D.G. Kendall, and Le H.L. for
their helpful comments on preliminary and draft versions of this work.

2. Stochastic Differential Systems for Shape

Suppose k particles X1, . . . , Xk diffuse in Euclidean n-space R
n as specified

by the stochastic differential system (1.1). As noted above, we stipulate
k > 2. Consider the (modified) shape σ ∈ Σ̃k

n of the k-tuple {X1, . . . , Xk}.
The modified shape is defined using the enlarged symmetry group of ro-
tations, translations, dilatations, and reflections (hence the notation Σ̃k

n

rather than Σk
n). (Section 3 explains how to carry results over to the full

shape space Σk
n.) Adapting W.S. Kendall (1988), the (modified) shape σ

is usefully parametrized by the homogeneous shape coordinates given by
the

(

k
2

)

normalized squared side lengths of the k-tuple {X1, . . . , Xk}. The
normalization is obtained by dividing by the size Σ given in (2.1):

Σ =
1

2k

∑

i

∑

j

‖Xi − Xj‖2. (2.1)

Thus the homogeneous shape coordinates are given by σij = ‖Xi−Xj‖2/Σ
(so σii = 0 and σij = σji). They determine the modified shape of the mul-
tiplet {X1, . . . , Xk}. Consider the stochastic differential system governing
the evolution of Σ and σ. Using a time-change dτ = dt/Σ the system
can be summarized by the stochastic differential equations at (2.2), (2.3),
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and (2.4) below. Note from (2.3) that Σ and σ are infinitesimally uncor-
related; indeed the evolution of σ in the τ time-scale is independent of
Σ and the trajectory of Σ forms a sufficient (functional) statistic for the
Ornstein-Uhlenbeck parameter κ. A consequence of these observations is
that shape σ and size Σ form a skew-product decomposition of the process
of ‘shape-and-size’ of the multiplet {X1, . . . , Xk}. In particular the time-
change based on size Σ turns the shape σ into a genuine diffusion governed
by (2.4) below.

Drift
(

dIΣ
)

=
{

(k − 1)n − κ Σ
}

dt (2.2a)

(dIΣ)2 = 4 Σ dt (2.2b)

(

dIσij

)(

dIΣ
)

= 0 (2.3)

Drift
(

dIσij

)

=
{

2 − (k − 1)σij

}

n dτ (2.4a)

(dIσij)(dIσuv) = 2
(

δiu − δiv + δjv − δju

)(

σiv − σiu + σju − σjv

)

dτ

− 4σijσuv dτ. (2.4b)

Here δij is the Kronecker symbol, equal to unity if i = j but otherwise zero.
Notation such as Drift (dIΣ) refers to the mean forward infinitesimal incre-
ment at a fixed time of Σ, where the mean is the conditional expectation
given the σ-field of events determined at the fixed time. The system (2.4) is
the stochastic differential system for shape diffusion in homogeneous shape
coordinates.

Computer algebra proved convenient in finding the above formulae,
although their derivation by hand is a straightforward exercise. Indeed all
the formulae for stochastic differential systems in this section can be (and
have been) checked manually using Itô’s lemma and (somewhat laborious)
formula manipulation. Finding such formulae for the first time is of course
rather harder work. It is in the exploratory phase that the benefits of the
computer algebra of symbolic Itô calculus really pay off.

As in the derivation of the other stochastic differential systems de-
scribed below, the computer algebra procedure for deriving (2.2), (2.3),
(2.4) followed closely the method expounded in W.S. Kendall (1988). RE-
DUCE was used in its interactive mode to define expressions for Σ and σ in
terms of the Ornstein-Uhlenbeck processes X1, . . . , Xk. The procedure d of
symbolic Itô calculus was then applied to derive expressions for dIΣ, dIσ in
terms of X1, . . . , Xk and dIX1, . . . , dIXk. The known second-order struc-
ture of dIX1, . . . , dIXk then allowed the determination of expressions for

Drift
(

dIΣ
)

,
(

dIΣ
)2

,
(

dIΣ
)(

dIσij

)

, Drift
(

dIσij

)

, and
(

dIσij

)(

dIσuv

)

, in
terms of X1, . . . , Xk. Finally the REDUCE package was used to determine
equivalent expressions in terms of Σ, σij as above.
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The advance in technique over W.S. Kendall (1988) lies in the use
of REDUCE operators representing the action of summing over dummy
variables. This allows the treatment of symbolic dimension. These opera-
tors and their associated simplification rules will be described in the future
paper promised above.

The results of (2.2), (2.3), (2.4) (summarizing the second-order struc-
ture of Σ, σ) formed an intermediary stage in the derivation of results
concerning the standardized inner product system below, and these in turn
provided a second-order structure by which was derived the system for sin-
gular values decomposition. This approach (similar to that employed in the
precursor paper of Kendall, 1988) typifies a step-by-step strategy which is
important in computer algebra as a means of reducing the (often extreme)
length of intermediate expressions. The occurrence of machine-overflow is
thereby minimized and (of equal importance) the user finds it easier to see
the direction in which the interactive calculations are pointing.

From henceforth we work in the τ -timescale and consider the shape
diffusion σ.

The shape-diffusion formulae at (2.4) can be re-expressed in another
coordinate system determined by the inner-products of a normalized system
of particles representing the shape of the multiplet. These inner-products
{Cij : i, j = 1, . . . , k} are defined by the following (in which X = 1

k

∑

j Xj):

Cij = 〈Xi − X, Xj − X〉/Σ. (2.5)

The inner-products satisfy some important relationships:

σij = Cii − 2Cij + Cjj , (2.6a)
∑

j

Cij = 0 for all i, (2.6b)

Cij =
1

k

{

1

2

∑

k

(σik + σjk − σij) − 1

}

. (2.6c)

It may be deduced from the definition of Σ that
∑

i

Cii = 1. (2.7)

In this new coordinate system the stochastic differential system of (2.4)
transforms to the following, the stochastic differential system for shape
diffusion in standardized inner product coordinates:

Drift
(

dICij

)

=
{

δij − (k − 1)Cij − 1/k
}

n dτ (2.8a)

(dICij)(dICuv) =
(

δiu − 1/k
)

Cjv dτ +
(

δiv − 1/k
)

Cju dτ

+
(

δju − 1/k
)

Civ dτ +
(

δjv − 1/k
)

Ciu dτ

− 4 CijCuv dτ. (2.8b)
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Formulae (2.8) were derived from (2.4) using computer algebra and then
verified (once!) by hand.

Systems (2.4) and (2.8) are not particularly informative about shape
diffusion (though it is worth noting that the spatial dimension n enters
into the systems only through the drifts). The stochastic matrix C =
{Cij : i, j = 1, . . . , k} is a symmetric non-negative definite matrix and so
it is natural to consider its spectral decomposition as providing a further
system of coordinates. Consider

C = RΛRT (2.9)

where R = {Rij : i, j = 1, . . . , k} is a stochastic rotation matrix formed
from the eigenvectors of C and Λ = {λiδij : i, j = 1, . . . , k} is a stochastic
diagonal matrix formed from the eigenvalues of C. (The matrices R and Λ
are related to a singular values decomposition of a standardized represen-
tation of the multiplet {X1, . . . , Xk}.) Suppose that R is defined by the
Stratonovich stochastic differential equation

dSR = R dS η (2.10)

where η = {ηij : i, j = 1, . . . , k} is the rotational noise for the stochastic
rotation process R. The stochastic differential system for shape diffusion
in singular values decomposition coordinates is a stochastic differential sys-
tem for Λ and η such that (2.9) yields a set of standardized inner product
coordinates with the correct statistics (that is to say, satisfying the stan-
dardized inner product stochastic differential system (2.8)). In fact the
singular values decomposition system is not uniquely determined by this
requirement if rank considerations require more than one eigenvalue to be
held fixed at zero, and it transpires that the system exhibits divergence
(thus failing to define completely the evolution of R and Λ) on collision
of a pair of eigenvalues neither one being held fixed at zero. Divergence
problems will also arise for R if a moving eigenvalue hits a couple of eigen-
values held fixed at zero. Section 3 shows that these problems do not arise
in practice.

A combination of computer algebra and manual calculation (reinforced
at certain points by general arguments, and verified by manual calculation)
shows that apart from the above considerations the required stochastic
differential system must be as follows. Note that because we centralized
the configuration (thus allowing the relation (2.6b)) one of the eigenvalues
is always zero. We stipulate this to be the first eigenvalue, so λ1 = 0 for all
time. Indeed considerations of the rank of C make it clear that a total of
at least r eigenvalues must be zero at all times, where r = max{k − n, 1}.
For convenience we order the eigenvalues in ascending order and stipulate
that the first r eigenvalues are to be fixed at zero, so 0 = λ1 = · · · = λr ≤
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λr+1 ≤ · · · ≤ λk. In the sequel we refer to λr+1, . . . , λk as the ‘moving
eigenvalues’. Note finally from (2.7) that

∑

i λi = 1.

Drift
(

dIηij

)

= 0, (2.11a)

(dIηij)
2 = −(dIηij)(dIηji) =

λi + λj

(λi − λj)2
dτ (2.11b)

when λi 6= λj and neither i nor j equals unity,

(dIηij)(dIηuv) = 0 (2.11c)

when the conditions for equation (2.11b) do not apply.

(dIηij)(dIλu) = 0. (2.12)

Drift
(

dIλi

)

= −
[{

2
(

∑

j:j 6=i

1

λj − λi

)

+ (k − 1)n
}

λi + k − n
]

dτ
(2.13a)

when i > r (this drift is zero otherwise),

(dIλi)
2 = 4λi(1 − λi) dτ, (2.13b)

(dIλi)(dIλj) = −4λiλj dτ when i does not equal j. (2.13c)

REDUCE was used to create expressions for the Cij in terms of λa and
ηuv. Symbolic Itô calculus was then employed to find equations for the
second order statistics of Λ, η in the particular case r = 1. Hence were
derived the equations (2.11), (2.12), (2.13). The case of general r could then
have been derived from a limiting argument or by modifying the computer
algebra manipulations used for r = 1. In actual fact the correctness of the
stochastic differential system for all r was then checked manually. Thus
interactive computer algebra found the form of the solution, which was
then verified manually to hold in all cases.

Equations (2.11), (2.12), and (2.13) reveal the structure of the shape
diffusion to be that of a skew-product in the terminology of Pauvels and
Rogers (1988), although it does not quite fall within the scope of the theory
described there (since the shape diffusion will not in general be a Riemann-
ian Brownian motion). The skew-product property follows by noting that
the stochastic differential system (2.13) for Λ is autonomous and (by (2.12))
infinitesimally uncorrelated with the evolution of R. If on the other hand
Λ is conditioned to be held fixed then the stochastic differential system for
R is that of a fixed diffusion with parameters depending on Λ. For (2.6b)
and the fact that λ1 is fixed at zero imply that U = R(0)−1R leaves fixed
the unit vector (1, 0, . . . , 0)T and so under the Λ-conditioning U is a left-
invariant diffusion on the corresponding subgroup SO(k − 1) ≤ SO(k). In
the full-rank case r = 1 this conditioned diffusion is actually a Brownian
motion with respect to a left-invariant Riemannian metric depending in
general on the conditioned value of Λ.
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If Λ is not conditioned but left free to diffuse according to (2.12) and
(2.13) then in general U is only a Γ-martingale with respect to a left-
invariant connection (see W.S. Kendall 1987 for an explanation of this
term). For the left-invariant metric on SO(k − 1) is not in general unique
(except in the special case of k = 3 already covered by W.S. Kendall 1988,
and the trivial case of k = 2 which was excluded at the outset of this
paper). Consequently except in these special cases R cannot be expressed
as a diffusion on SO(k) subject to a random time change controlled by Λ.
Thus the decomposition is not a skew-product decomposition in this special
sense (which is perhaps what is more generally understood by the term
‘skew-product’). In geometrical terms the singular values decomposition
does not in general decompose the Riemannian metric induced by R and
Λ into a warped product.

3. Answers to Some Basic Questions

In this section two fundamental features of the system (2.11), (2.12), (2.13)
are discussed. Only the general lines of proofs are indicated.

3.1. Whether Eigenvalues Collide

The first feature concerns whether the system for the singular values de-
composition defines the shape diffusion for all time. As noted above, the
stochastic differential system (2.11), (2.12), (2.13) determines the stochas-
tic evolution of shape only up to the first time a pair of the last k − r
eigenvalues collide, or (only in the case r > 1) if λr+1 hits zero. Moreover
if r > 1 then the system is not uniquely determined by the requirement
that C = RΛRT should satisfy (2.8), as one can introduce extra rotational
diffusion on axes corresponding to some pairs of {λ2, . . . , λr}.

The lack of uniqueness presents no problem, since we need only to
synthesize C = RΛRT with the correct statistics. We do not therefore
require uniqueness. The system (2.11), (2.12), (2.13) must be minimal in
some sense, but we will not pursue this further here.

The question of collision might present a problem. However it can be
shown that if initially the ‘moving eigenvalues’ λr+1, . . . , λk are distinct
then with probability one at no future time will any pair collide. This is
established by considering the positive real-valued process

Φ = −
∑ ∑

r+1≤i<j≤k

log(λj − λi). (3.1)

The process Φ diverges to infinity precisely when a pair of ‘moving eigen-
values’ collide. Combination of Itô’s lemma, the system (2.13), and a per-
mutation argument for a triple sum produces an argument showing the
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following:

Drift
(

dIΦ
)

=

(

k − r

2

)

{

n(k − 1) − 2
}

dτ. (3.2)

(A similar but more tedious argument can be applied to evaluate
(

dΦ
)2

.)
This implies that the process

Ψ(τ) = Φ(τ) −
(

k − r

2

)

{

n(k − 1) − 2
}

τ (3.4)

defines a continuous local martingale. As such it may be expressed as a
random time-change of real-valued Brownian motion. On any compact
time-interval [0, T ] the trajectory of Ψ is bounded below by −

(

k−r
2

){

n(k−
1) − 2

}

T (by virtue of the positivity of Φ). Consequently it follows that
in any given compact time-interval with probability one Ψ and hence Φ
must be bounded above by random but finite bounds. (One appeals to the
properties of real-valued Brownian motion.)

The above shows that Φ remains finite for all time, and so no pair of
‘moving eigenvalues’ may collide. We see in Subsection 3.2 that λr+1 will
not hit zero if r > 1. These arguments show that the system (2.11), (2.12),
(2.13) defines the shape diffusion for all time, so long as the initial values
of the last k − r eigenvalues are distinct. In effect the shape diffusion is
thereby defined in coordinates of the singular values decomposition over all
of Σ̃k

n except on a polar subset

P = {λi = λj for some pair i 6= j with r < i < j ≤ k}.

(A polar subset is one which the shape diffusion never visits after time
zero.) This is in close analogy to the way in which the classical expression
of Euclidean Brownian motion in polar coordinates (using a Bessel process)
breaks down at the origin.

Of course systems (2.8) or (2.4) provide definitions of the shape dif-
fusion holding over all of Σ̃k

n without exception. Further investigation of
the polar subset P would involve exploitation of the connection between
Riemannian geometry and diffusion theory, alluded to in the introduction.
This will be discussed in the follow-up paper promised above.

3.2. The Full Shape Diffusion

The second feature concerns the fulfilment of the promise in Section 2
to show how to derive formulae for the full shape diffusion on Σk

n. The
answer hangs on determining precisely when λr+1, the ‘smallest moving
eigenvalue’, can ever hit zero.

First note that Σ̃k
n = Σk

n in the case k ≤ n (since the symmetry group
SO(n) can always carry multiplets of n or fewer points into their mirror
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images). Thus for k ≤ n the full shape diffusion is already identified. It
remains to discuss the case k > n, which will split into the ‘critical case’
k = n + 1 and the case k > n + 1.

It is convenient to digress at this point to establish the behaviour of
λr+1 in the general case. The ‘smallest moving eigenvalue’ λr+1 can hit
zero if and only if the critical case r = k − n = 1 holds (which completes
the argument of Subsection 3.1 to show the good behaviour of the system
at (2.11), (2.12), (2.13)). This result is proved by comparing λr+1 to a
Bessel process of appropriate dimension.

First note that if n = 1 then there is nothing to prove, as r = k − 1,
∑

i λi = 1, and so λr+1 = λk = 1 is constant.
Suppose n > 1. Let T (ǫ) be the first time at which λr+2 − λr+1 is

no larger than ǫ. Assuming the ‘moving eigenvalues’ are initially distinct,
T (ǫ) is positive for sufficiently small ǫ. By the no-collision result above,
T (ǫ) → ∞ as ǫ tends to zero.

Consider λr+1 in a new time-scale suggested by (2.13b) and defined

by dτ̃ = (1 − λr+1) dτ . Working up to the random time T̃ (ǫ) =
∫ T (ǫ)

0 (1 −
λr+1) dτ the evolution of λr+1 in the new time-scale is governed by

Drift
(

dIλr+1

)

= − 2Hλr+1 dτ̃ + ν dτ̃ (3.5a)

(dIλr+1)
2 = 4λr+1 dτ̃ (3.5b)

where ν = 2r − (k − n) and

H =

{(

∑

b>r+1

1

λb − λr+1

)

+
(k − 1)n − ν

2

}

(1 − λr+1)
−1. (3.6)

Note that H is bounded over the time interval 0 < τ̃ ≤ T̃ (ǫ) since over this
interval 1 − λr+1 > λb − λr+1 > λr+2 − λr+1 ≥ ǫ.

From (3.5) it follows that the process X =
√

λr+1 is a Bessel process
of dimension ν with superimposed drift −HX dτ̃ . But H is bounded up to
T̃ (ǫ) and so the Girsanov change-of-measure theorem implies that X can hit
zero if and only if a Bessel process of dimension ν (without superimposed
drift) can hit zero. Now it is classical (recalling the expression of Bessel
processes as the radial parts of Euclidean Brownian motions) that such
hitting of zero is possible if and only if ν = 1. This means the ‘smallest
moving eigenvalue’ λr+1 can hit zero if and only if the critical case r =
k − n = 1 holds.

Suppose k > n + 1, so that λr+1 does not hit zero. Geometrical
arguments show that the obvious projection of full shape onto modified
shape

π : Σk
n − {λr+1 ◦ π = 0} → Σ̃k

n − {λr+1 = 0} (3.7)
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is then a two-to-one map and indeed a covering map. The modified shape
diffusion stays away from {λr+1 = 0} in this case, so it is possible to lift the
path of the modified shape diffusion via π to the full shape space Σk

n. Thus
if the initial point of the full shape diffusion is specified then its evolution
can be deduced from that of the modified shape diffusion. So the system
(2.11), (2.12), (2.13) does in fact specify the full shape diffusion in the case
k > n + 1 as well as in the case k ≤ n.

If k = n + 1 then the operation of taking the signed volume (via a
determinant) shows that Σk=n+1

n − {λ2 ◦ π = 0} can be split into two

components Σ(+)n+1

n and Σ(−)n+1

n (recall that r + 1 = 2 in this critical
case). Moreover the reflection symmetry provides an isomorphism of the
full shape diffusion on one component to the full shape diffusion on the
other, and the component shape diffusions are isomorphic to the (modified)
shape diffusion on Σ̃n+1

n −{λ2 = 0}. A proper description of the full shape
diffusion must explain how the sign of the volume alters when the random
process λ2 visits zero.

In this case the Bessel process argument above shows that λ2 behaves
as a random time change of the square of a real-valued Brownian motion,
modified by a locally bounded drift. Define Y = ±

√
λ2, where the sign is

chosen according to the sign of the signed volume of the full shape. Itô
calculus and excursion theory can be applied to show

Drift
(

dIY
)

= −
{(

∑

j:j>2

1

λj − Y 2

)

+
n2 − 1

2

}

Y dτ,
(3.8a)

(

dIY
)2

= (1 − Y 2) dτ, (3.8b)
(

dIλi

)(

dIY
)

= −2λiY dτ when i 6= 2, (3.8c)

(dIηij)(dIY ) = 0. (3.8d)

If (3.8) is used to replace the corresponding parts of (2.13), (2.12) then
we obtain an expression for the full shape diffusion in the case k = n + 1,
using a variation on the coordinates of the singular values decomposition
based on η, 0 = λ1, Y = ±

√
λ2, and λ3, . . . , λk.

4. Conclusion

The work above raises a number of questions.

4.1. Relationship to Geometry

As has already been noted, Carne (1988) and D.G. Kendall (manuscript)
have considered the Riemannian geometry natural to the Euclidean shape
space Σk

n. The stochastic differential systems for shape diffusion carry
within themselves information about this Riemannian geometry. The shape
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diffusion can be expressed as Brownian motion on the corresponding man-
ifold modified by a drift. On the other hand the Riemannian metric tensor
can be identified from the information summarized in the second-order
part of the stochastic differential system for the shape diffusion. For ex-
ample the level sets in Σ̃k

n obtained by fixing a value for R are incomplete
but otherwise totally geodesic (k− r−1)-dimensional submanifolds of con-
stant positive sectional curvatures +1. Indeed the ‘eigenvalue map’ sending
σ ∈ Σ̃k

n −P to (λr+1, . . . , λk) is a Riemannian submersion of the non-polar
part of the modified shape space onto an open fragment of a (k − r − 1)-
sphere of constant positive sectional curvatures +1.

An obvious objective is to construct a set of computer algebra pro-
cedures to identify various features of the Riemannian geometry from the
diffusion characteristics (D.G. Kendall and Le have carried out a similar
task, using computer algebra to derive formulae for curvature for various
coordinatizations of shape spaces). Account will have to be taken of the
need to complete the Riemannian geometry to extend over the polar set P
where pairs of moving eigenvalues coincide.

The case of Σ3
n for n ≥ 3 is informative. In this case Σ̃3

n = Σ3
n,

r = max{3 − n, 1} = 1, λ1 = 0 and λ2 + λ3 = 1. The eigenvalues provide
one degree of freedom in a coordinate space looking like [0, 1

2 ]. In the
rotational component the only variation is provided by η23 = −η32 and
so the rotational coordinate space looks like a circle SO(1). Thus the
singular values decomposition is based on a cylinder [0, 1

2 ] × SO(1). The
singularity set is the circle P = {λ2 = 1

2}×SO(1) and in fact the associated
Riemannian geometry collapses this circle to a point, and gives Σ3

n the
geometry of a hemisphere (this corresponds to the route followed in W.S.
Kendall, 1988). The identification of P to a point arises from the divergence
as λ3 − λ2 converges to zero of

(

dIη32

)2
=

λ3 + λ2
(

λ3 − λ2

)2 dτ

=
dτ

(

λ3 − λ2

)2 . (4.1)

This example is a useful prototype for the way in which the diffusion es-
tablishes the geometry; near the polar locus P the divergent diffusion co-
efficients of the rotational noise lead to identifications in the system of
coordinates of singular values decomposition. Note however in general it is
necessary to take account of singularities in the Riemannian geometry.

Thus the task which should be undertaken next is to provide means,
using computer algebra, of passing from the diffusion to the geometry and
(if possible) taking account of identifications such as above.
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4.2. Wishart Matrices

If the multiplet {X1, . . . , Xk} is composed of independent random points
possessing the same multivariate spherically symmetric Gaussian distri-
bution then the resulting distribution of shape corresponds to a certain
Wishart distribution normalized to have unit trace. This distribution is the
invariant distribution of the shape diffusion if the points of the multiplet
diffuse according to (1.1). Corresponding to this, the results above could
be obtained as consequences of a stochastic calculus version of Wishart
distribution theory. See the work of Bru (1989).

This ‘stochastic calculus of multivariate statistical analysis’ will pro-
vide the next testing ground for symbolic Itô calculus. As a further prospect
there is the challenging task of generalizing to the non-spherically-symm-
etric extension of (1.1). The work of Mardia and Dryden (1989) suggests
other exercises connected to non-central Wishart distributions.

4.3. Relevance of the λi Coordinates to Shape Theory

The coordinates of singular values decomposition make explicit a natural
SO(k − 1) (indeed, O(k − 1)) symmetry for Σk

n, allowing for certain ques-
tions a reduction of dimensionality by considering only the k − r ‘moving
eigenvalues’. For example the locus of collinear multiplets is invariant un-
der this symmetry, and so natural measures of distance from collinearity
will be given by expressions involving only λr+1, . . . , λk. For this reason
the relative simplicity of the system (2.13) is particularly satisfying, and
the Riemannian submersion referred to in Subsection 4.1 is of practical
importance.

4.4. Matrix Factorization in Stochastic Calculus

We have already noted similarities to the work of Pauvels and Rogers
(1988). See also Norris, Rogers, and Williams (1986) and references therein
to work of Dynkin, Dyson, McKean, and Orihara on random matrices. Tay-
lor (1988) expounds work of Malliavin and Malliavin which forms a more
geometric approach to similar problems for Brownian motion on symmetric
spaces. However shape diffusions appear to lack too much symmetry for
any of this previous work to apply directly.

4.5. Automatic Reduction of Stochastic Differential Equations

One way to view the work of this paper is as an exploitation of a not entirely
evident O(k − 1) symmetry to reduce a stochastic differential system (2.4)
or (2.8) to a form (2.11), (2.12), (2.13) involving a reduction in dimension-
ality. In effect, a stochastic differential system has been partially ‘solved’.
This raises the enticing prospect of building sets of procedures in REDUCE
or another computer algebra package which would search for possible sym-
metries in a stochastic differential system. Having found a symmetry, this
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would be exploited to produce a new representation of the system in the
manner given above. Sets of REDUCE procedures already exist to per-
form similar tasks for partial differential equations, so this prospect must
be eminently achievable! From this point of view the work of this paper,
originally undertaken primarily to further elicit the structure of shape diffu-
sion, becomes a test case suggesting geometric perspectives and algorithms
for complex stochastic systems.
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