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1. The Metropolis Method in Classical Statistical Mechanics

Many years ago, John Hammersley induced and encouraged me to work
on this application of Monte Carlo as my doctoral research topic; as it
seems that some physicists have recently become interested in the idea
after its spending a long period in oblivion, it may be worth dusting off
and explaining again.

The idea stems from a technique originally developed in 1953 (Metro-
polis et al. 1953; see also Hammersley and Handscomb 1964, Chapter 9) by
Metropolis et al. (here referred to as MR2T2) for the study of the equation
of state of a hard-sphere gas model. Suppose that one has a physical system
that can occupy any of a [large] number of possible configurations C, each
having an energy given by the Hamiltonian function H(C). According to
the laws of classical statistical mechanics, when at temperature T the sys-
tem occupies each possible configuration C with a probability proportional
to

P (C) := e−βH(C), (1.1)

where β := (kT )−1, k being Boltzmann’s constant; the expected value of
any observable φ(C) (including H(C) itself) is thus given by the expression

Eφ(C) =

∑

C φ(C)P (C)
∑

C P (C)
. (1.2)

To evaluate (1.2) directly is prohibitively expensive, and needlessly
extravagant since all but a few terms in each summation are negligible
unless T is very large. The form of (1.2) suggests, however, that one should
be able to evaluate it approximately by a sampling (‘Monte Carlo’) method
— if one could somehow easily generate a sample (with replacement) of
configurations from a probability distribution in which configuration C
occurred with probability proportional to P (C), the sample average of φ(C)
would then be an unbiassed estimator of (1.2). The ingenious technique
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put forward in MR2T2 generates such a sample by performing a ‘random
walk’ through configuration space: starting from an arbitrary configuration
C0, one generates a sequence of configurations C1, C2, . . . , each one move
away from its predecessor, according to the following rules:

Let A(C) denote the set of all configurations accessible from C in one
move; assume that a ‘move’ is defined so that:
• if C′ ∈ A(C) then C ∈ A(C′);
• the size of A(C) is independent of C;
• there is no proper subset Σ of configurations such that

⋃

C∈Σ

A(C) ⊆
⋃

C∈Σ

C.

Having arrived after j moves at Cj , select a new configuration C′

j at
random from a uniform distribution on A(Cj).
If P (C′

j) ≥ P (Cj), then take Cj+1 = C′

j .
If P (C′

j) < P (Cj), so that the chosen move would take one to a higher-
energy configuration, then draw a random number ξj from a uniform
distribution on [0, 1]; if ξj < P (C′

j)/P (Cj), then again take Cj+1 =
C′

j ; otherwise take Cj+1 = Cj , so that the previous configuration is
repeated.
These rules can easily be shown to give rise to an irreducible acyclic

Markov chain in which the one-step transition probabilities Pr(C → C′)
satisfy the equation

P (C)Pr(C → C′) = P (C′)Pr(C′ → C) ∀C, C′ : C′ ∈ A(C), (1.3)

so that
P (C) =

∑

C′

P (C′)Pr(C′ → C) ∀C, (1.4)

and the chain has an equilibrium distribution proportional to P (C).
Notice that in carrying out this procedure it is never necessary to

evaluate P (C) or the Hamiltonian function completely, since

P (C′)

P (C)
= e−β(H(C′)−H(C)), (1.5)

so that all that one needs to compute is the change in energy H(C′

j)−H(Cj)
produced by each proposed move. In the original hard-sphere gas model
of MR2T2, for instance, each move consists of shifting just one sphere to a
new position — the change in energy and the probability of accepting the
move depend only on this sphere and those with which it comes in contact.

This procedure is thus very easy to implement. It is very effective in
generating a suitable sample of configurations. There are only two real
difficulties:
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• starting from a low-probability configuration, it may take many moves
to reach a high-probability one, so that there is some problem in decid-
ing how many initial steps of the chain should be discarded as transient
and unrepresentative before one begins sampling;

• since the sample is by its very nature highly correlated, it is not easy to
make a statistical assessment of the error in using the sample average
of φ(Cj) as an estimator of Eφ(C).
The principle of MR2T2 has been applied to the study of order-disorder

phenomena in binary alloys (cf. Fosdick 1959) and in the Ising model of a
ferromagnet or antiferromagnet (cf. Ehrman et al. 1960).

The Ising model, for instance, models the ferromagnet by a fairly large
array of n sites on a crystal lattice, the 2n configurations C then being all
possible assignments of a positive or negative spin to each site. On the
assumption that each spin interacts only with its nearest neighbours and
with an external (uniform) magnetic field, the Hamiltonian takes the form1

H(C) = −J(n++ + n−− − n+−) − µH(n+ − n−), (1.6)

(omitting an arbitrary constant term) where n+ and n− are respectively
the numbers of positive and negative spins in the configuration C, and
n++, n−− and n+− the numbers of nearest-neighbour pairs whose spins
are respectively both positive, both negative, and one of each; equivalently

H(C) = −J
∑

nn

SiSj − µH
∑

Si, (1.7)

where
∑

nn denotes summation over all pairs of nearest neighbours and
Si = ±1, depending on the sign of the spin at the ith site. A possible move
of the MR2T2 procedure consists of reversing the sign of any one spin; the
set A(C) thus consists of those configurations C′ differing from C in the
sign of a single spin, and H(C′)−H(C) is found simply by looking at that
spin and its immediate neighbours.

A possible measure of long-range order is the value of

φL(C) :=
(

∑

Si

)2
/

n2. (1.8)

In a completely-ordered configuration, such as occurs when T = 0, φL(C) =
1, while in a random configuration (T = ∞), EφL(C) = 1/n. As the
dimensions of the lattice tend to infinity, the latter expectation tends to
zero, and there is a critical temperature Tc such that EφL(C) → 0 whenever

1The coefficient J represents the internal interaction, J > 0 for a ferromagnet or J < 0

for an antiferromagnet; µ is the Bohr magneton; H represents the external field.
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T > Tc. On finite lattices the transition is more blurred, nevertheless, a
transition between ordered and disordered behaviour is discernable even
on fairly small lattices (see Figs. 1, 2), and can be picked up by the Monte
Carlo method (Ehrman et al. 1960).
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Fig. 1. A high-temperature Fig. 2. A low-temperature

Ising configuration. Ising configuration.

2. Extension to a Quantum-Mechanical System

The Ising model is based on nearly-classical mechanics and does not prop-
erly represent the quantum mechanics of magnetic interactions; better mod-
els to adopt are the XY model and the Heisenberg model, in which quan-
tum theory is applied without compromise.

In quantum statistics, the Hamiltonian H represents not a function,
but a linear operator on distributions over configuration space (for classical
systems H would be a diagonal operator); suppose it to take the form

H = H0 +

N
∑

i=1

Hi, (2.1)

where H0 commutes with each Hi but otherwise Hi may or may not com-
mute with Hj . The expectation of any linear operator Φ is then given by
the expression

〈Φ〉 =
trace{Φ exp(−βH)}

trace{exp(−βH)}

=

∑

∞

r=0(−β)r/r!
∑

Zr

trace{ΦHi1 . . . Hir
exp(−βH0)}

∑

∞

r=0(−β)r/r!
∑

Zr

trace{Hi1 . . . Hir
exp(−βH0)}

,
(2.2)
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where Zr denotes any sequence {i1, . . . , ir} of r indices in the range 1 ≤
i ≤ N . [Z0 is the empty sequence { }.]

The scheme I proposed in the early 1960s (Handscomb 1962, 1964) ex-
ploits the resemblance of (2.2) to (1.2). The key idea is no longer to require
a ‘configuration’ to correspond directly to a physical state of the system,
provided only that it is possible to assign to each such ‘configuration’ a
weight P (C) and a parameter φ(C) such that (1.2) has a meaningful value.

Take as ‘configurations’ C all the (infinitely many) possible sequences
Zr, 0 ≤ r < ∞. If then we define

φ(Zr) :=
trace{ΦHi1 . . . Hir

exp(−βH0)}

trace{Hi1 . . . Hir
exp(−βH0)}

, (2.3)

and

P (Zr) :=
(−β)r

r!
trace{Hi1 . . . Hir

exp(−βH0)}, (2.4)

we have

〈Φ〉 = Eφ(Zr) =

∑

∞

r=0

∑

Zr

φ(Zr)P (Zr)
∑

∞

r=0

∑

Zr

P (Zr)
, (2.5)

so that if one can use something like the MR2T2 procedure to generate
a sample of sequences with probabilities proportional to P (Zr) then the
sample average of φ(Zr) will be an unbiassed estimator of 〈Φ〉.

In particular, it is easy to see that

〈H〉 = 〈H0〉 − 〈r/β〉. (2.6)

For this to work, one of course needs P (Zr) to yield a proper proba-
bility distribution, so that we must have

P (Zr) ≥ 0 ∀Zr, (2.7)
∞
∑

r=0

∑

Zr

P (Zr) < ∞. (2.8)

We must also have
φ(Zr) ≤ ∞ ∀Zr (2.9)

(which is liable to be violated when P (Zr) = 0). Conditions (2.7), (2.8)
and (2.9) impose restrictions on the form of H . In order to be able to apply
the MR2T2 process, we must further define our possible moves so that (at
the very least)

∃Z ′ ∈ A(Zr) : P (Z ′) > 0 ∀Zr : P (Zr) > 0; (2.10)
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otherwise there is no escape from Zr.
If all P (Zr) 6= 0, then obvious possible moves are to add a single index

to the beginning, to the end, or somewhere in the middle of the current
sequence or else to delete the first, the last, or another index from the
current sequence. The process is less likely to become ‘bogged down’ in a
set of a few sequences if additions and deletions are at random points of
the sequence. (See Lyklema 1982.) The rule for deciding whether to accept
a move has to be a little more complicated than the original MR2T2 rule,
since there are obviously more ways of extending a sequence than there
are of shortening it, but it not difficult to formulate rules so that (1.3) is
satisfied (Handscomb 1962).

In the case of the Heisenberg ferromagnet, with a single particle of
spin 1

2 on each site, the Ising Hamiltonian function (1.7) is replaced by the
Hamiltonian operator

H = − 1
2J

∑

nn

(σi, σj) − µH
∑

σz
i , (2.11)

where σi is the Pauli spin-operator on the ith site and σz
i its component

in the direction of the external field. Now if Eij denotes the operator
that interchanges the spins on the ith and jth sites, we may make the
substitution

Eij = 1
2{1 + (σi, σj)} (2.12)

to rewrite (2.11) as

H = −J
∑

nn

Eij − µH
∑

σz
i . (2.13)

Take H0 := −µH
∑

σz
i and Hij := −JEij ; then H = H0 +

∑

nn Hij , where
each Hij commutes with H0.

If we define Zr to consist of a sequence {(i1j1), . . . , (irjr)} of nearest-
neighbour pairs, and the corresponding interchanges together result in a
permutation of the lattice that decomposes into the product of K = K(Zr)
cycles, of lengths a1, . . . , aK (ak ≥ 1,

∑

ak = n), then a state of the lattice
is invariant under this sequence of interchanges if and only if all lattice-sites
in the same cycle of this permutation have the same spin, so that

P (Zr) =
(−β)r

r!
trace{Hi1j1 . . . Hirjr

exp(−βH0)}

=
(βJ)r

r!

K(Zr)
∏

k=1

{2 cosh(akL)} 6= 0, (2.14)

where L = βµH. The effect of adding or subtracting an interchange at the
end of the sequence is clearly either to merge two cycles or to split one cycle
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into two; inserting or deleting an interchange elsewhere in the sequence can
be shown to have a like effect. Consequently the acceptance probabilities
can be made to depend only on the lengths of the cycles actually involved.

A measure of long-range order is given by 〈ΦL〉, where

ΦL := 2
(

∑

σi,
∑

σi

)

/

3n(n + 1)

= 2

(

4
∑

i>j

Eij − n(n − 4)

)/

3n(n + 1). (2.15)

This transforms into EφL(Zr), where

φL(Zr) =

2

3

∑

a2
k + 2 cothL

∑

ak tanhakL + {
∑

ak tanh akL}
2
−

∑

a2
k tanh2 akL

n(n + 1)

(2.16)

or, if H = 0,

φL(Zr) = 2
∑

a2
k

/

n(n + 1). (2.17)

When T = ∞, β = 0, we have 〈Φ〉 = trace{Φ}/ trace{}, so that
〈ΦL〉 = 2

n+1 . When T = 0 and H = 0, then the product of the interchanges
tends towards a random permutation, so that 〈ΦL〉 = 1. Again we expect
to get a critical temperature as n → ∞.

3. More Recent Work

A drawback of the scheme just presented is that it does not work for anti-
ferromagnets, where J < 0 so that P (Zr) is not always positive, but has
the sign of (−)r. Also it is restricted to the Heisenberg model, and does
not apply to the XY model, in which (σi, σj) is replaced by σx

i σx
j + σy

i σy
j .

These models may be treated by defining the new operator

hij = σ+
i σ−

j + σ−

i σ+
j , (3.1)

when we can show that

I − Eij = h2
ij − hij (3.2)

and
σx

i σx
j + σy

i σy
j = (σi, σj) − σz

i σz
j = 2hij . (3.3)

Thus, instead of looking at traces of operators whose main components
are of the form

∏

Eij we can look at those of operators with components
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of the form
∏

hij . Now the effect of hij on a spin state is to give zero if
the spins on sites i and j are the same, and to interchange them if they
differ. Consequently (provided that the lattice is such that every closed
loop of nearest-neighbour bonds is of even length) trace

∏

hij 6= 0 only if
the product has an even number of interchanges with each suffix appearing
an even number of times, and not always even then. It follows that in
the case of the XY model we have P (Zr) 6= 0 only when r is even, when
P (Zr) ≥ 0 whatever the sign of J . Although

∏

hij is not now a simple
permutation operator, it is possible to work out its trace mechanically, and
thus implement a form of the MR2T2 algorithm — a move in this case
adding or deleting two interchanges, which must not always be adjacent in
the sequence Zr if the space of possible sequences is to be properly sampled
(Chakravarty and Stein 1982).

The Heisenberg antiferromagnet is nearly as easy (Lee et al. 1984).
Shifting the energy baseline, we use (3.2) to write

H = J
∑

nn

(I − Eij) + H0 = J
∑

nn

(h2
ij − hij) + H0, (3.4)

where now, we remember, J < 0. Therefore

P (Zr) =
(β |J |)r

r!
trace

{

∏

(h2
irjr

− hirjr
) exp(−βh0)

}

. (3.5)

Once again, under the same proviso, every non-zero P (Zr) will be positive.
If the lattice has closed loops of an odd number of bonds, there will be

some negative weights in each case, although positive weights will normally
predominate. In such a case one has to rewrite (1.2) in the form

Eφ(C) =

∑

C φ(C)P (C)
∑

C |P (C)|

/ ∑

C P (C)
∑

C |P (C)|
(3.6)

and estimate numerator and denominator separately — that is to say, one
constructs a sample with probabilities proportional to |P (C)| and uses the
ratio of the sample averages of φ(C) sgn P (C) and sgnP (C).

A completely different approach to the general problem (see Suzuki
1976, etc) is based on approximating the Trotter formula (Trotter 1959)

exp
∑

j

Aj = lim
n→∞

(

∏

j

exp
1

n
Aj

)n

(3.7)

by truncating the limiting process at some large n. The unanswered ques-
tion here, of course, is how large n ought to be in relation to accuracy
required and (possibly) the size of the lattice.
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More satisfactory is the ‘decoupled cell method’ (Homma et al. 1986,
1987; Matsuda et al. 1988). This is closer to the original MR2T2 method
in that one generates a sample of spin configurations form a Markov chain,
the basic move being the reversal of the spin at a lattice site. The difference
is that in quantum mechanics the expression (1.1), to which the probability
of configuration C is proportional, is now a diagonal element of the expo-
nential of the operator −βH , and no longer easily determined by inspection
of C. In the DCM, when one has selected the site on which the spin Si

is possibly to be reversed, one then ‘decouples’ the lattice into the set Lν
i

of spins which are at most ν nearest-neighbour steps from the selected site
and the complementary set L̄ν

i , and ignores all interactions between sites
in Lν

i and L̄ν
i . One can then calculate the ratio of the probabilities that

Si = ±1, given the state of Lν
i \ Si, and hence the acceptance probability

for reversing Si. In Matsuda et al. (1988) it is shown that the errors in the
transition probabilities due to this approximation are O(βν+1) for small β
(high temperature T ).
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