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ABSTRACT. Let M be a closed oriented surface and let €2 be a non-exact 2-form.
Suppose that the magnetic flow ¢ of the pair (g,2) is Anosov. We show that the
longitudinal KAM-cocycle of ¢ is a coboundary if and only if the Gaussian curvature
is constant and 2 is a constant multiple of the area form thus extending the results
n [12]. We also show infinitesimal rigidity of the action spectrum of ¢ with respect
to variations of 2. Both results are obtained by showing that if G : M — R is
any smooth function and w is any smooth 1-form on M such that G(z) 4+ w,(v)
integrates to zero along any closed orbit of ¢, then G must be identically zero and
w must be exact.

1. INTRODUCTION

Let M be a closed oriented surface endowed with a Riemannian metric g and let
Q be a 2-form. The magnetic flow of the pair (g,{2) is the flow ¢ on the unit sphere
bundle SM determined by the equation

Dy
1 — = A7)}
(1) o =),

where ¢ indicates rotation by 7/2 according to the orientation of the surface and A
is the smooth function on M uniquely determined by € = AQ,, where €, is the
area form of M. When () vanishes we recover the usual geodesic flow of the surface.
A curve 7 : R — M that solves (1) will be called a magnetic geodesic.

In the present paper we shall study rigidity properties of Anosov magnetic flows.
The Anosov property means that T(SM) splits as T(SM) = E° ® E* @ E* in such
a way that there are constants C' > 0 and 0 < p < 1 < n such that E° is spanned by
the generating vector field of the flow, and for all ¢ > 0 we have

ldp—dleal| < Cn" and [[déile]| < C o

The subbundles are then invariant and Holder continuous and have smooth integral
manifolds, the stable and unstable manifolds, which define a continuous foliation with
smooth leaves.

To any C* volume preserving Anosov flow ¢ on a closed 3-manifold N, P. Foulon
and B. Hasselblatt [4] associated its longitudinal KAM-cocycle. This is a cocycle that
measures the regularity of the subbundle E* @& E* The main theorem in [4] asserts
that B @ E* is always Zygmund-regular and that the following are equivalent:

(1) E* & E* is “little Zygmund”;
(2) the longitudinal KAM-cocycle is a coboundary;
1
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(3) E* & E* is Lipschitz;
(4) E* @ E* is CF 1,
(5) ¢ is a suspension or contact flow.

(A continuous function f : U — R on an open set U C R is said to be Zygmund-
regular if | f(x +h) + f(x —h) —2f(x)] = O(h) for all z in U. The function is said to
be “ittle Zygmund” if |f(x + h) + f(x — h) — 2f(x)| = o(h).)

It is well known that for flows, a “choice of time” or equivalently, a choice of speed at
which orbits travel gets reflected on the regularity of the corresponding strong stable
and strong unstable distributions. The situation is different if we look at the weak
unstable and stable bundles E° @ E* and E° @ E*. S. Hurder and A. Katok proved
[7] that the weak bundles are always differentiable with Zygmund-regular derivative
and there is a cocycle obstruction to higher regularity given by the first nonlinear
term in the Moser normal form (this explains why Foulon and Hasselblatt used the
terminology “longitudinal KAM-cocycle”).

In [12], the second author showed that if € is non-exact, g has negative Gaussian
curvature K and ) is small enough in the C° norm, then the longitudinal KAM-cocycle
of ¢ is a coboundary if and only if K and A are constant. In the present paper we
would like to extend this result to all Anosov magnetic flows, without restrictions
on curvature or the size of A. As shown in [1] the set of Anosov magnetic flows can
certainly go well beyond small perturbations of Anosov geodesic flows.

Theorem A. Let M be a closed oriented surface endowed with a Riemannian metric
g and let Q be an arbitrary 2-form. Suppose that the magnetic flow ¢ of the pair
(9,9) is Anosov. We have:

(1) If Q is exact, then the longitudinal KAM-cocycle of ¢ is a coboundary if and
only if Q) vanishes identically, i.e. ¢ is a geodesic flow;

(2) If Q is non-exact, then the longitudinal KAM-cocycle of ¢ is a coboundary if
and only if the Gaussian curvature is constant and ) is a constant multiple
of the area form.

Item (1) was proved in [11] using Aubry-Mather theory, but it was stated in a dif-
ferent form. The main result in [11] asserts that if € is exact and the Anosov splitting
is of class C'', then 2 must be zero (and this holds in any dimension). The main re-
sult of Foulon and Hasselblatt tells us that, for surfaces, the conditions of C'! Anosov
splitting and longitudinal KAM-cocycle being a coboundary are equivalent.

The proof of item (2) in [12] for negative K and small Q was based on Fourier
analysis using the set up of V. Guillemin and D. Kazhdan in [5]. Our approach here
is based on establishing a Pestov identity for magnetic flows similar to the ones in
2, 3] for geodesic flows. Using this identity we will prove the following result which
has independent interest:

Theorem B. Let M be a closed oriented surface and 2 an arbitrary smooth 2-form.
Suppose the magnetic flow ¢ of the pair (g,2) is Anosov and let X4 be the vector field
generating ¢. If G : M — R is any smooth function and w is any smooth 1-form on
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M such that there is a smooth function ¢ : SM — R for which G(x)+w,(v) = X4(p),
then G is identically zero and w is exact.

Note that by the smooth Livsic theorem [8] saying that G(z) + w,(v) = Xy(¢p) is
equivalent to saying that G(x) + w,(v) has zero integral over every closed magnetic
geodesic. Theorem A follows from Theorem B using the same methods as in [12], so
we will not repeat the proof here. Instead we will consider a second application of
Theorem B.

Given any closed 2-form €, fix a constant ¢ # 0 such that the cohomology class
of ¢Q is an integral class, i.e. [cQ] € H*(M,Z) = Z. Then there exists a principal
circle bundle IT : P — M with Euler class [¢2]. The bundle admits a connection
1-form « such that da = —2wcII*). Recall that the holonomy function is a map
loghol, : Z1(M) — R/Z, where Z1(M) is the space of 1-cycles, such that for every
2-chain f : ¥ — M we have

log hol,(0%) = —c / f*Q mod1.
by
Let v be a closed magnetic geodesic and let £(7y) be its length. We define the action
of v as:

A(7) :==£(7) + ¢ loghol,(v) mod 1.

We call the set S C R/Z of values A(7) as v ranges over all closed magnetic geodesics,
the action spectrum of the magnetic flow. If all the closed orbits of the magnetic flow
¢ are nondegenerate, then S is a countable set.

Suppose now that we vary the connection 1-form a.. Let a.; be a smooth 1-parameter
family of connections for 7 € (—¢,¢e) with oy = a Then we can write a, — o =
IT*3,, where (3, are smooth 1-forms on M. The connection «, has curvature form
—2mcQ 4+ dp,. If we let ), = Q — #CdﬁT we get a magnetic flow ¢ and an action

spectrum §;. If the magnetic flow ¢ is Anosov, then for € small enough ¢” is Anosov
for all 7 € (—¢,¢).

Theorem C. Let M be a closed oriented surface endowed with a Riemannian metric
g and let Q2 be a 2-form. Suppose the magnetic flow of the pair (g,$) is Anosov.
If S, = S for all T sufficiently small, then the deformation s trivial, that is, a, =
a+ IT*dF, and 2, = ), where F, are smooth functions on M.

Theorem C and the results of V. Guillemin and A. Uribe in [6] give a version of
infinitesimal spectral rigidity for magnetic flows. In order to describe this rigidity we
will assume that ¢ = 1. This is really no restriction at all since the magnetic flows of
(9,9Q) and (c? g,cQ) are the same up to a constant time change. For every positive
integer m, let L,, be the Hermitian line bundle with connection over M associated
with II via the character e — €™’ of S'. The metric on M, together with the
connection on L,, determine a Bochner-Laplace operator acting on sections of L,,.
For each m, let {v,,; : j =1,2,...} be the spectrum of this operator. If we now vary
the connection 1-form « as above we obtain eigenvalues vy, ;
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Corollary. Let M be a closed oriented surface endowed with a Riemannian metric g
and let S be an integral 2-form. Suppose the magnetic flow of the pair (g, ) is Anosov.
If v}, ; is independent of T for all m and j (i.e. the deformation is isospectral), then
the deformation is trivial, that is, oy = o+ [I*"dF; and 2, = ), where F, are smooth
functions on M.

Indeed, let us consider the periodic distribution

ng( l/m]—l—m2—m\/_>

where ¢ is a Schwartz function on the real line. Theorem 6.9 in [6] asserts that the
singularities of T are included in the set of all s € R for which s/2rmod 1 € S. More-
over, each point of the action spectrum arises as a singularity of T for an appropriate
choice of ¢. The corollary is now an immediate consequence of Theorem C.

Acknowledgements: The first author would like to thank the Max-Planck-Institut
fiir Mathematik in Bonn for hospitality and financial support while this work was in
progress.

2. PRELIMINARIES

Let M be a closed oriented surface, SM the unit sphere bundle and 7 : SM — M
the canonical projection. The latter is in fact a principal S!-fibration and we let V'
be the infinitesimal generator of the action of S!.

Given a unit vector v € T,, M, we will denote by v the unique unit vector orthogonal

to v such that {v,iv} is an oriented basis of T, M. There are two basic 1-forms « and
£ on SM which are defined by the formulas:

A (§) = (dzT(£),v);
Ba,w)(§) = (d(z,0)T(§), 10).

The form « is the canonical contact form of SM whose Reeb vector field is the
geodesic vector field X. The volume form a A da gives rise to the Liouville measure
dp of SM.

A basic theorem in 2-dimensional Riemannian geometry asserts that there exists
a unique 1-form ¢ on SM (the connection form) such that (V) =1 and

(2) da=vNp
(3) dB = —) A a
(4) dp = —(Kom)anp

where K is the Gaussian curvature of M. In fact, the form ¢ is given by

V) (§) = <%(0),w>,

where Z : (—e,e) — SM is any curve with Z(0) = (x,v) and Z(0) = ¢ and 2Z is the
covariant derivative of Z along the curve 7o Z.
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For later use it is convenient to introduce the vector field H uniquely defined by the
conditions B(H) =1 and a(H) = ¢(H) = 0. The vector fields X, H and V are dual
to «, f and ¢ and as a consequence of (2-4) they satisfy the commutation relations
(5) V. X|=H, [V,H=-X, [X,H=KV.

Equations (2-4) also imply that the vector fields X, H and V preserve the volume
form a A da and hence the Liouville measure.

3. PROOF OF THEOREM B

Henceforth (M, g) is a closed oriented surface and X, H, and V' are the same vector
fields on SM as in the previous section.

Let A\ be the smooth function on M determined by 2 = A(),, where (2, is the area
form of M, and let

XH=X+\V

be the generating vector field of the magnetic flow ¢ (X, also preserves Liouville
measure).
From (5) we obtain:

V. Xy|=H, [V,Hl=-X\+\V, [X),H]=- X+ (K- H)N+)\)V.
Note that
HX\(z,v) = (V(x),iv).
Lemma 3.1 (Pestov’s identity). For every smooth function ¢ : SM — R we have
2Hi - VXop = (Xap)? + (Hip)? — (K — HA+ N)(Vip)?
+ Xa(He - Vo) — H(Xxp - Vo) + V(Xap - Hp).

Remark 3.2. A similar identity for the vector fields X, H) := H + AV and V was
obtained in [16, Lemma 2.1].

Proof of Lemma 3.1. Using the commutation formulas, we deduce:
2Hp - VXyp = V(Hep - Xyp)
=Hp - VXyp—-—VHp X)p
= He- (X\Ve+ [V, Xilp) — Xap - (HV e + [V, Hp)

=Hp- (XouVo+ Hp) — Xop - (HV o — Xap + AVp)
= (X0@)* 4+ (Hp)? + (XaVe)(He) — (HVe)(Xap) — AXpp - Vo
= (X0@)? + (He)* + Xa(Vy - Hp) — H(Ve - Xap) — [ X, Hlo - Vo

—AXop Vo
= (Xx¢)?+ (Hp)* + Xo(Vo - Hp) — HV - X))
— (K — HX+ X)) (Vp)?

which is equivalent to Pestov’s identity. 0]
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Integrating Pestov’s identity over SM against the Liouville measure du, we get

(6) 2 HsO-Vdeu:/ (Xw)Qdqu/ (Hep)? dp
SM SM SM

— / (K — HX+ ) (V) dpu.

Let us derive one more integral identity. Let ¢ be again an arbitrary smooth
function on SM. By the commutation relations, we have

XaVo=VX\p— Hep.
Therefore,
(XaVp)? = (VXap)® + (Hp)? = 2VXsp - Ho.

Integrating, we obtain

(7) / (XAW)Qdu:/ (VXA¢)2dﬂ+/ (HsO)QdM—Q/ VXyp- Hodp.
SM SM SM SM

Subtracting (6) from (7), we arrive at the final identity

®) [ A0V~ (K~ HAS ) (V) dp

= / (VXap)? du — / (Xap)? dp.
SM SM
Let us now begin with the proof of Theorem B. If X ¢ = G(z) + w,(v), then it is
easy to see that the right-hand side of (8) is nonpositive. Indeed, since pu is invariant
under v — —v and v — v we have

/SM wy(v)dp =0 and / (we(v)?dp = /SM(C%(Z'U))? dp.

SM
But VX, p = w,(iv) and thus

/SM(VXASO)z dp — /SM(X,\SO)Z dp = —/ (G(z))*dp < 0.

SM
Setting v = Vi, we get

(9) . {(X2)? = (K — HX+ A*)¢*} dp < 0.

We now show that this is possible if and only if ¢» = 0. This would give V¢ = 0,
which says that ¢ = f o m where f is a smooth function on M. But in this case,
since dm(z»)(Xy) = v we have X,(p) = dfy(v). This clearly implies the claim of the
theorem.

Lemma 3.3. If ¢ is Anosov, then for every closed magnetic geodesic v : [0,T] — M
and every smooth function z : [0,T] — R such that z(0) = z(T') and 2(0) = 2(T") we
have

I:= /T{(z‘ﬂ — (K = (VX)) + A)2°} dt > 0



with equality if and only if z = 0.
Proof. Given (z,v) € SM and & € T(,WT'M, let

Je(t) = diaw)(m 0 &) (&)

We call J¢ a magnetic Jacobi field with initial condition &. It was shown in [14] that
Je satisfies the following Jacobi equation:

(10) Je + R(3, Je)y = [V (Je) + (V1. Y)(9)] =0,

where (t) = m o ¢y(x,v), R is the curvature tensor of g and Y is determined by the
equality Q,(u,v) = (Yz(u),v) for all u,v € T, M and all z € M. Let us express J; as
follows:

Je(t) = z(t)7(t) + y(t)iy(1),
and suppose in addition that § € T{, ,)SM, which implies

A straightforward computation using (10) and (11) shows that = and y must satisfy
the scalar equations:

(12) =)y

(13) i+ [K(y) = (VA(M), i) + X (7)] y = 0.

Let E be the weak stable bundle of ¢. Since for any (z,v) € SM the subspace F
does not intersect the vertical subspace Ker dm(; . [13, 10], there exists a linear map
S(z,v) : T,M — T, M such that E can be identified with the graph of S. Let u(z,v)
be the trace of S(z,v) and let J, = 2y +yi¥ be the Jacobi field with initial conditions
n = (iv, S(w)) € E. Since u(t) = (S(t)i?,7y) and J, = SJ, we see that

(14) y=uy

Note that y never vanishes. Given z as in the hypothesis of the lemma, let ¢ be
defined by the equation z = qy. Using equation (13) we have

P [ s+ 50) — (@A - MO = = [ o ) a
——laisly + [ v

Using the periodicity properties of z and (14) we have

lqay?1s = [2qy)} = —lqv2lf = —lquy2]§ = —[uz?]
and the last term vanishes since u is globally defined on SM. We conclude that
=0

with equality if and only ¢ = 0. Hence if I = 0, ¢ must be a constant, which must be
zero since y cannot be periodic in 7T'. 0]
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We continue now with the proof of Theorem B. The last lemma, applied to the
function z = ¥ (7), yields

(15) / [0 — (K — HA+ N)g?) dt > 0

for every closed magnetic geodesic . Since the flow is Anosov, the invariant measures
supported on closed orbits are dense in the space of all invariant measures on SM.
Therefore, the above yields

{(X)? = (K — HX+ X°)9*} dpu > 0.
SM
Combining this with (8), we find that
(16) {(X2)? = (K — HX + A*)¢*} dp = 0.
SM

By the non-negative version of the Livsic theorem, proved independently by M.
Pollicott and R. Sharp and by A. Lopes and P. Thieullen (see [9, 15]), we conclude
from (15) and (16) that

/ {(Xow)> = (K — HX+ M)*} dt =0

for every closed magnetic geodesic v. Applying again Lemma 3.3, we see that
vanishes on all closed magnetic geodesics. Since the latter are dense in SM, the
function v vanishes on all of SM, as required.

4. PROOF OF THEOREM C

We begin with a general easy lemma. Given a smooth closed curve v : [0, 7] — M
and k € R we define the free time action of v as:
1

T
Au) = 5 /0 ()2 dt + KT + ¢ log hol, (7) mod 1.

Recall that the energy is the function given by E(z,v) := 1|v|2.

Lemma 4.1. Let v : [0,T] — M be a closed magnetic geodesic with energy k. Let
v 2 [0,T;] — M, 7 € (—¢,¢), be a smooth variation of v by smooth closed curves.
Then

dAk (’YT)
dr

(0) = 0.

Proof. The curves v, —~ form a 1-cycle which is the boundary of a 2-chain ;. Then

(17) ¢ !loghol,(v,) + ¢ ' loghol, () = —/ Q2 mod 1.

T
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If we let W (t) be the variational vector field of v,, a straightforward calculation using
that v has energy k and (17) shows that

W)= [ (BLww) ar+ [ ot wina

Since 7 is a magnetic geodesic,
Dry
A v

where Y is determined by €, (u,v) = (Y, (u),v). Thus
dAy

Let us assume now that we are under the hypotheses of Theorem C.

Lemma 4.2. Suppose S; = S for all 7 € (—¢,¢). Then

a8,
4
%dT

for every closed magnetic geodesic v, of (g,.).

Proof. In each nontrivial homotopy class we have a 1-parameter family of closed
magnetic geodesics v,. Let

a-(77) = Al ja(v7) = €(y) + ¢~ loghol,, () mod 1.
Since § is countable and the map (—¢,¢) 3 7 — a,(7,) is continuous we have

ar (V) = ary (Vo)

for all 7 € (—¢,¢). Since

1
log hol,, (¢) = loghol,, (o) + o /(57 — 0r,) mod 1
m g
for all o, we have:
1
r(0n) = (3) + = [ (8, = ) mod L.

.

By Lemma 4.1, the map 7 — a,,(7,) has a critical point at 7 = 7, hence the last
equality implies
d

dr

which is easily seen to imply

[ 6= pa) =0

T=T0 T

/ s,
ey AT

0

=0.

T=To
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To complete the proof of Theorem C, observe that the previous lemma and Theo-
rem B imply that for each 7, % is exact. If we let f. be a primitive of 4B then

dr
F.o= / fsds
0

Remark 4.3. The proofs of Theorem C and its corollary work in any dimension
provided that Theorem B holds in any dimension. One only needs the cohomology
class [Q] to be rational, i.e. there exists A € R such that [AQ)] is an integral class.

Even if [)] is not rational, we can still attach to the magnetic flow an action
spectrum by considering a torus bundle T" over M. The action spectrum is now a
subset of T" and the same infinitesimal rigidity holds, provided that the magnetic
flow is Anosov.

The question of whether Theorem B extends to higher dimension is more delicate.
We hope to discuss these topics elsewhere, as well as the analogue of Theorem B for
higher order tensors.

are the required functions.
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