THE ASYMPTOTIC MASLOV INDEX
AND ITS APPLICATIONS

GONZALO CONTRERAS, JEAN-MARC GAMBAUDO,
RENATO ITURRIAGA, AND GABRIEL P. PATERNAIN

Abstract. Let \mathcal{N} be a $2n$-dimensional manifold equipped with a symplectic structure ω and $\Lambda(\mathcal{N})$ be the Lagrangian Grassmann bundle over \mathcal{N}. Consider a flow ϕ^t on \mathcal{N} that preserves the symplectic structure and a ϕ^t-invariant connected submanifold Σ. Given a continuous section $\Sigma \to \Lambda(\mathcal{N})$, we can associate to any finite, ϕ^t-invariant measure with support in Σ, a quantity: The Asymptotic Maslov Index, that describes the way Lagrangian planes are asymptotically wrapped in average around the Lagrangian Grassmann bundle. We pay particular attention to the case when the flow is derived from an optical Hamiltonian and when the invariant measure is the Liouville measure on compact energy levels. The situation when the energy levels are not compact is discussed in an appendix.

1. Introduction

1.1. The Maslov Cocycle.

In his book Théorie des perturbations et méthodes asymptotiques [15], V. P. Maslov introduced an index of curves relevant in quantum mechanics. V. Arnold [2], in an Appendix to Maslov’s book, settled down the main geometric features of this index introducing a characteristic class. This introductive section is very much guided by Arnold’s Appendix.

Consider the standard $2n$-dimensional vector space \mathbb{R}^{2n} and its canonical decomposition $\mathbb{R}^{2n} = \mathbb{R}^n \oplus \mathbb{R}^n$, and denote by $x = (p,q)$ a point in \mathbb{R}^{2n}, where $p = (p_1, \ldots, p_n)$ and $q = (q_1, \ldots, q_n)$. The space \mathbb{R}^{2n} can be endowed with three structures:

• An Euclidean Structure i.e. a positive definite quadratic form on \mathbb{R}^{2n}:
 $$\langle x, x \rangle = \sum_{i=1}^{2n} (p_i^2 + q_i^2).$$

• A complex structure i.e. an endomorphism J on \mathbb{R}^{2n} satisfying $J^2 = -Id$:
 $$J(p, q) = (-q, p).$$

Date: February, 2003.
G. Contreras was partially supported by CNPq-Brazil.
G. Contreras and R. Iturriaga were partially supported by Conacyt-México, grant 28489-E.
G.P. Paternain was partially supported by CIMAT, Guanajuato, México.
2000 Mathematics Subject Classification: 53D12.
A symplectic structure i.e. an antisymmetric non degenerate bilinear form:

$$\omega(x, y) = \langle J(x), y \rangle = \sum_{i=1}^{n} dp_i \wedge dq_i.$$

The group of automorphisms of \mathbb{R}^{2n} that preserve these structures\(^1\) is called the unitary group and is denoted by $U(n)$. This group is isomorphic to the group of linear isometries of $\mathbb{C}^n = \mathbb{R}^n \oplus i\mathbb{R}^n \approx (\mathbb{R}^n \times \{0\}) \oplus J(\mathbb{R}^n \times \{0\}) = \mathbb{R}^{2n}$.

A subspace W in \mathbb{R}^n is said to be isotropic if the symplectic form ω vanishes on W. A Lagrangian plane is an isotropic subspace of maximal dimension n. The subspaces $p = 0$, $q = 0$ and $p = q$ are examples of Lagrangian planes.

The elements of the unitary group map Lagrangian planes onto Lagrangian planes. Actually the unitary group acts transitively on the set of Lagrangian planes $\Lambda(n)$ of \mathbb{R}^{2n}. This provides the set of Lagrangian planes $\Lambda(n)$ the structure of a compact manifold: $\Lambda(n) = U(n)/O(n)$, called the Lagrangian Grassmann manifold.

This last identification can be seen as follows. Given an orthonormal basis $\{e_1, \ldots, e_n\}$ of the Lagrangian plane $E_0 := \{q = 0\}$, consider another Lagrangian plane λ and an orthonormal basis $\{\ell_1, \ldots, \ell_n\}$ for λ. The automorphism of \mathbb{R}^{2n} that maps, for $i = 1, \ldots, n$, each vector e_i to ℓ_i and each vector Je_i to $J\ell_i$ is clearly a unitary automorphism. Any unitary automorphism that leaves the Lagrangian plane λ invariant, transforms the orthogonal basis $\{e_1, \ldots, e_n\}$ into another orthogonal basis $\{e'_1, \ldots, e'_n\}$ of E_0 and the corresponding orthogonal basis $\{Je_1, \ldots, Je_n\}$ of JE_0 into the orthogonal basis $\{Je'_1, \ldots, Je'_n\}$ of JE_0. Consequently a unitary isomorphism U that fixes E_0 fixes also JE_0. Furthermore the matrix of U restricted to E_0 written in the basis $\{e_1, \ldots, e_n\}$ coincides with the matrix of U restricted to JE_0 written in the basis $\{Je_1, \ldots, Je_n\}$ and is an element of the orthogonal group $O(n)$. Thus, given two Lagrangian planes E_0 and λ, there exists a unitary automorphism $u(\lambda)$ mapping the plane E_0 onto the plane λ. This automorphism is unique up to orthogonal self transformations of the plane E_0, hence its complex determinant is a complex number with modulus one which is unique up to multiplication by -1. This defines a map:

$$\det^2 : \Lambda(n) \to S^1,$$

which associates to each Lagrangian plane, the square of the determinant of the automorphism $u(\lambda)$.

The Maslov cocycle \mathcal{M} (see [2]) is the element of the first cohomology group $H^1(\Lambda(n), \mathbb{Z})$ which associates to any oriented closed curve γ in $\Lambda(n)$ the degree of the map:

$$S^1 \xrightarrow{\gamma} \Lambda(n) \xrightarrow{\det^2} S^1.$$

The Maslov cycle of the Lagrangian plane E_0 (also called the train of the Lagrangian plane) is the subset $\Lambda E_0(n)$ of $\Lambda(n)$, which consists of all the Lagrangian planes whose intersection with E_0 is non-trivial. V. Arnold proved [2] that the

\(^1\)In fact an automorphism that preserves two of these structures, preserves necessarily the third one.
Maslov cycle of a Lagrangian plane defines a codimension 1, co-oriented cycle in the Lagrangian Grassmann manifold $\Lambda(n)^2$. Writing $\Lambda(n) = U(n)/O(n)$, the transversal orientation of $\Lambda^\mathbb{E}_0(n)$ coincides with the orientation of $\theta \mapsto e^{i\theta} \mathbb{E}_0$.

Using the homotopy exact sequence of the fibration

$$O(n) \longrightarrow U(n) \longrightarrow \Lambda(n),$$

we get that $\pi_1(\Lambda(n)) = \mathbb{Z}$. Moreover, the following commutative diagram of fiber bundles

$$\begin{array}{ccc}
SO(n) & \rightarrow & O(n) \\
\downarrow & & \downarrow \det \\
SU(n) & \rightarrow & U(n) \\
\downarrow & & \downarrow \det \\
SA(n) & \rightarrow & \Lambda(n)
\end{array}$$

where $SA(n) = \{ \lambda \in \Lambda(n) | \det^2 \lambda = 1 \}$, implies that the generator of $\pi_1(\Lambda(n))$ is sent by \det^2 to the generator of $\pi_1(S^1)$. This implies that the Maslov cocycle is a generator of $H^1(\Lambda(n), \mathbb{Z})$ (cf. [2]).

The Maslov index $\mathcal{M}(h) \in \mathbb{Z}$ of a homology class $h \in H_1(\Lambda(n), \mathbb{Z})$ is the value that the cocycle \mathcal{M} takes on the cycle h. The Maslov cycle $\Lambda^\mathbb{E}_0(n)$ is the Poincaré dual of \mathcal{M}, so that $\mathcal{M}(h)$ is also equal to the oriented intersection number of h and $\Lambda^\mathbb{E}_0(n)$.

1.1. Remark. The Maslov cocycle \mathcal{M} in $H^1(\Lambda(n), \mathbb{Z})$ is induced by a 1-form η in $H^1(\Lambda(n), \mathbb{R})$ which is defined for every λ in $\Lambda(n)$ by $\eta_\lambda = d_\lambda u$, where $u : \Lambda(n) \rightarrow \mathbb{R}$ is locally determined by $\det^2(\lambda) = \exp(2i\pi u(\lambda))$. Thus, for any piecewise differentiable oriented closed curve $\gamma : [0,1] \rightarrow \Lambda(n)$ which is in the homology class h, we have:

$$\mathcal{M}(h) = \int_0^1 \eta_{\gamma(t)}(\dot{\gamma}(t))dt.$$

In the particular case when the dimension n is 1, Lagrangian planes are lines in \mathbb{R}^2 and the Lagrangian Grassmann manifold $\Lambda(1)$ is the projective line $\mathbb{RP}(1) = S^1$. The unitary group $U(1)$ is the group S^1 of complex numbers with modulus 1. The orthogonal group $O(1)$ is the group with 2 elements $\pm Id$ and the identification $\Lambda(1) = U(1)/O(1)$ reflects the fact that each line in \mathbb{R}^2 is image of a given line by a multiplication by a complex number with modulus 1, $\exp 2i\pi \theta$, where θ is defined up to translation by $\frac{1}{2}$ in \mathbb{R}/\mathbb{Z}. The Maslov cocycle is simply the morphism that associates to any curve in $\Lambda(1)$ its degree and the Maslov cycle of a Lagrangian plane (i.e. a line) is reduced to the line itself. Thus it is straightforward to notice that any two lines (i.e. Lagrangian planes) are joined by an arc in $\Lambda(1)$ whose intersection number with (the Maslov cycle of) any given line is bounded in norm by 1.

\footnote{In fact, for $k \geq 1$, the set $\Lambda^k(n) = \{ \lambda \in \Lambda | \dim \lambda \cap \mathbb{E}_0 = k \}$ is an open submanifold of $\Lambda(n)$ with codimension $\frac{1}{2} k(k+1)$, (see Arnold [2]). In particular $\Lambda^k_0(n) = \Lambda^k(n) = \cup_{k \geq 1} \Lambda^k(n)$ is a cycle in $\Lambda(n)$ of codimension 1 (actually it is an algebraic variety with singular set $\overline{\Lambda^2(n)} = \cup_{k \geq 2} \Lambda^k(n)$ of codimension ≥ 3 and thus its boundary chain is null).}
When the dimension n is greater than 1, even if more complex, the situation keeps part of this rigidity. More precisely, consider two Lagrangian planes λ_0 and λ_1 with trivial intersection, a basis $\{e_1, \ldots, e_n\}$ for λ_0 and a basis $\{e'_1, \ldots, e'_n\}$ for λ_1 such that:

$$\omega = \sum_{i=1}^{n} e^*_i \wedge e'^*_i$$

where $\{e^*_i, e'^*_i\}$ is the dual basis of $\{e_i, e'_i\}$. Any Lagrangian plane λ whose intersection with λ_1 is reduced to 0 can be seen as a graph of a map from λ_0 to λ_1. Actually, when written in coordinates with the basis $\{e_1, \ldots, e_n\}$ for λ_0 and $\{e'_1, \ldots, e'_n\}$ for λ_1, a straightforward calculation shows that this graph is given by a $n \times n$-symmetric matrix A:

$$y = Ax.$$

Furthermore if the intersection of λ with λ_0 is reduced to 0, the matrix A is invertible.

The path $\Gamma_{\lambda_0, \lambda_1, \lambda}$ defined for every $t \in [0, 1]$ by

$$\Gamma_{\lambda_0, \lambda_1, \lambda}(t) = \{(x, y) \in \lambda_0 \oplus \lambda_1 \approx \mathbb{R}^n \times \mathbb{R}^n \mid y = tAx\}$$

is a path from $[0, 1]$ to $\Lambda(n)$ joining $\Gamma_{\lambda_0, \lambda_1, \lambda}(0) = \lambda_0$ to $\Gamma_{\lambda_0, \lambda_1, \lambda}(1) = \lambda$.

The following lemma has its roots in the history of symplectic geometry (see [3]). However for the sake of completeness and since it will be useful in the following, we include a simple proof of it.

1.2. Lemma. Let λ a be Lagrangian plane whose intersection with λ_0 and λ_1 is reduced to 0 and E_0 be a Lagrangian plane whose intersection with λ_1 is reduced to 0, then the intersection number of the path $\Gamma_{\lambda_0, \lambda_1, \lambda}$ with the Maslov cycle of the Lagrangian plane E_0 is bounded in norm by n.

Proof: Written in coordinates in the basis $\{e_1, \ldots, e_n\}$ for λ_0 and $\{e'_1, \ldots, e'_n\}$ for λ_1 the equation of E_0 reads:

$$y = Bx.$$

where B is a $n \times n$-symmetric matrix. Assume that for some $t = t_1$ the two planes E_0 and $\Gamma_{\lambda_0, \lambda_1, \lambda}(t_1)$ have a non trivial intersection. This means that the kernel of $t_1 A - B$ that we denote by W_{t_1}, is a subspace of \mathbb{R}^n not reduced to 0. Let t_1, \ldots, t_k be a strictly increasing sequence of values of t such that W_{t_i} is not reduced to 0 for $i = 1, \ldots, k$. Since A is invertible, all these subspaces are linearly independent and thus:

$$\sum_{i=1}^{k} \dim W_{t_i} \leq n.$$

It follows that for $\varepsilon > 0$ small, the path $\Gamma_{\lambda_0, \lambda_1, \lambda}|_{t \in [t_i - \varepsilon, t_i + \varepsilon]}$ is homotopic, with fixed endpoints, to a path h which intersects E_0 at most $\dim W_{t_i}$-times and such that, for each $t \in [0, 1]$, $\dim h(t) \cap E_0 \leq 1$. \qed
1.3. Remark. Consider a linear transformation T of \mathbb{R}^{2n} that preserves the symplectic structure. It is clear that the path $\Gamma_{T\lambda_0, T\lambda_1}$ constructed with the bases $\{T e_1, \ldots, T e_n\}$ for $T\lambda_0$ and $\{T' e'_1, \ldots, T' e'_n\}$ for $T\lambda_1$ is the image under T of the path $\Gamma_{\lambda_0, \lambda_1}$ and is again given for every $t \in [0, 1]$ by the equation:

$$\Gamma_{T\lambda_0, T\lambda_1, T}(t) = T \circ \Gamma_{\lambda_0, \lambda_1}(t) = \{(x, y) \in T\lambda_0 \oplus T\lambda_1 \approx \mathbb{R}^n \times \mathbb{R}^n \mid y = tAx\}.$$

1.2. Symplectic manifolds and the Lagrangian Grassmann bundle.

Let \mathcal{N} be a $2n$-dimensional manifold equipped with a symplectic structure, i.e. a non degenerate closed 2-form ω.

Given x in \mathcal{N}, a subspace W in the tangent space $T_x\mathcal{N}$ is isotropic if the 2-form ω vanishes on W. Isotropic subspaces with maximal dimension are called Lagrangian planes and have dimension n. The Lagrangian Grassmann bundle $\Lambda(\mathcal{N})$ is the bundle over \mathcal{N} whose fibers consist of all the Lagrangian planes. We denote by $\Pi : \Lambda(\mathcal{N}) \to \mathcal{N}$, the standard projection.

Given x in \mathcal{N}, an almost complex structure in the tangent space $T_x\mathcal{N}$ is an endomorphism J_x of $T_x\mathcal{N}$, such that $J_x^2 = -Id$. We say that an almost complex structure J_x and a symplectic structure ω_x are compatible if $u \mapsto \omega_x(J_x u, u)$ is a positive quadratic form on $T_x\mathcal{N}$. This quadratic form induces an Euclidean structure associated to the compatible pair of symplectic and almost complex structures.

Let $\mathcal{J}(\mathcal{N})$ be the bundle over \mathcal{N} whose fiber over any point x in \mathcal{N} consists of all compatible almost complex structures in $T_x\mathcal{N}$. Since the fibers of this bundle are contractible, there exists a continuous section

$$J : \mathcal{N} \to \mathcal{J}(\mathcal{N}),$$

which is unique up to homotopy. The almost complex structure J can be chosen smooth.

Consider a connected submanifold Σ of \mathcal{N} (neither necessarily compact nor with finite first homology group) and the corresponding bundle $\Lambda(\Sigma) = \Pi^{-1}(\Sigma)$. Assume that there exists a continuous section

$$E : \Sigma \to \Lambda(\Sigma).$$

This section induces, over each point x in Σ, a continuous splitting of the tangent space:

$$T_x\mathcal{N} = E(x) \oplus J_x E(x).$$

Since the unitary group acts transitively on the set of Lagrangian planes of $T_x\mathcal{N}$ and its stationary group is isomorphic to the orthogonal group $O(n)$ (see §1.1), this section yields a trivialization of the bundle $\Lambda(\Sigma)$:

$$I_\mathbb{R} : \Lambda(\Sigma) \to \Sigma \times \Lambda(n) = \Sigma \times U(n)/O(n).$$
The Maslov cocycle of the section \(E \), \(\mathcal{M}_E \), is the element in \(H^1(\Lambda(\Sigma), \mathbb{Z}) \) which associates to any oriented closed curve \(\gamma \) in \(\Lambda(\Sigma) \) the degree of the map:

\[
\mathbb{S}^1 \to \Lambda(\Sigma) \approx \Sigma \times \Lambda(n) \to \Lambda(n) \xrightarrow{\det^2} \mathbb{S}^1,
\]

where \(\tau : \Sigma \times \Lambda(n) \to \Lambda(n) \) stands for the projection onto the second factor.

The Maslov cycle of the section \(E \) is the sub-bundle \(\Lambda^\Sigma(\Sigma) \) of \(\Lambda(\Sigma) \), whose fiber \(F_x \) over any point \(x \) in \(\Sigma \) consists of all the Lagrangian planes in \(T_xN \) whose intersection with \(E(x) \) is non-trivial, and is given by: \(\Lambda^\Sigma_x = (\tau \circ I_E)^{-1}(\Lambda^q(0)(n)) \). This sub-bundle defines a codimension 1, co-oriented cycle in the bundle \(\Lambda(\Sigma) \), the co-orientation of this cycle being induced by the co-orientation of \(\Lambda^q(0)(n) \).

The Maslov index of a homology class \(h \in H_1(\Lambda(\Sigma), \mathbb{Z}) \) is the value that the cocycle \(\mathcal{M}_E \) takes on the cycle \(h \). The Maslov cycle \(\Lambda^\Sigma(\Sigma) \) is the Poincaré dual of \(\mathcal{M}_E \), so that \(\mathcal{M}_E(h) \) is also equal to the oriented intersection number of \(h \) and \(\Lambda^\Sigma(\Sigma) \).

If \(E \) is a \(C^1 \) section and \(\gamma \) is a piecewise differentiable closed oriented curve in \(\Lambda(\Sigma) \) with homology class \(h \), Remark 1.1 gives an integral version of the Maslov index of \(h \):

\[
\mathcal{M}_E(h) = \int_0^1 \eta_{\tau \circ I_E \circ \gamma(t)} \left(\frac{d}{dt} \tau \circ I_E \circ \gamma(t) \right) \, dt = \int_0^1 \eta_{E \gamma(t)} \left(\frac{d}{dt} \gamma(t) \right) \, dt,
\]

where \(\eta_E \) is the pullback by \(\tau \circ I_E \) of the form \(\eta \). When \(E \) is only a continuous section we can approximate \(E \) by a \(C^\infty \) section \(\tilde{E} \) such that \(\mathcal{M}_E(h) = \mathcal{M}_{\tilde{E}}(h) \).

From its definition, the Maslov cocycle depends on the choice of the section \(E \), however this dependence can be made completely explicit. Consider another section:

\[
F : \Sigma \to \Lambda(\Sigma)
\]

and the trivialization obtained from this section

\[
I_F : \Lambda(\Sigma) \to \Sigma \times \Lambda(n) = \Sigma \times U(n)/O(n).
\]

Let us estimate the difference cocycle \(\mathcal{M}_E - \mathcal{M}_F \) evaluated on a homology class \(h \) in \(H_1(\Lambda(\Sigma), \mathbb{Z}) \). For this purpose consider a closed curve \(\gamma : \mathbb{S}^1 \to \Lambda(\Sigma) \) whose homology class is \(h \). The curve \(\gamma \) induces, through both trivializations, two closed curves \(\gamma_E, \gamma_F : \mathbb{S}^1 \to U(n)/O(n) \). On the other hand, the curve \(\gamma \) induces a third curve \(\gamma_{F*} : \mathbb{S}^1 \to U(n)/O(n) \) which is given by the section \(F \) above the projected curve \(\Pi \circ \gamma : \mathbb{S}^1 \to \Sigma \), seen through the trivialization \(I_F \). For each \(\theta \in \mathbb{S}^1 \), these three curves are related as follows:

\[
\det^2(\gamma_E(\theta)) = \det^2(\gamma_F(\theta)) \cdot \det^2(\gamma_{F*}(\theta)).
\]

Consequently

\[
\mathcal{M}_E(h) - \mathcal{M}_F(h) = \mathcal{M}_E(F_* \circ \Pi_*(h)),
\]

where \(F_* \) and \(\Pi_* \) are respectively the maps induced by \(F \) and \(\Pi \) on the first homology groups.

In terms of 1-forms we have:

\[
(1) \quad \eta_E - \eta_F = \Pi^* \circ F^*(\eta_E).
\]
It is worth noticing that the difference of the two 1-forms $\eta_E - \eta_F$ contains in its kernel the tangent space to the fibers of $\Lambda(\Sigma)$.

This work is organized as follows:

- In section 2, we consider a flow ϕ^t defined in a neighborhood of a submanifold Σ of \mathcal{N}, which leaves Σ invariant and preserves the symplectic 2-form. When there exists a continuous section $\Sigma \to \Lambda(\mathcal{N})$, we associate to any finite, ϕ^t-invariant measure with support in Σ, a quantity: The Asymptotic Maslov Index. The dependence of this asymptotic Maslov index on the section and the invariant measure is discussed. In particular we prove that there is no dependence on the section if the Schwartzman asymptotic cycle of the measure vanishes;

- In section 3 we focus on Hamiltonian flows. We show that the asymptotic cycle of the Liouville measure for a compact energy level is zero if the form ω^{n-1} is exact which is always true for Hamiltonian flows on the cotangent bundle of a manifold equipped with its canonical symplectic structure;

- In section 4 we prove that for Hamiltonians that are optical with respect to a given section (see the definition below or [5]) the asymptotic Maslov index of the Liouville measure with respect to this section is always non-negative and it is strictly positive if and only if there are conjugate points. As an application we prove that an optical Hamiltonian on a compact energy level which possesses a ϕ^t-invariant Lagrangian section (this is the case in particular when the flow on the energy level is Anosov) does not have conjugate points; a result already proved by W. Klingenberg [12] for geodesic flows on compact manifolds; by R. Mañe [13] for geodesic flows with dense non-wandering set; and by G. Paternain and M. Paternain [16] for convex Hamiltonians;

- The cotangent bundle of a manifold is equipped with a canonical symplectic form and a canonical section (the vertical section). Convex Hamiltonian flows -which are optical with respect to the vertical section- are studied in Appendix A;

- Finally, in Appendix B, we give an example of a convex Hamiltonian with an invariant Lagrangian section and conjugate points on a non-compact regular energy level with finite volume.

2. The Asymptotic Maslov Index

Consider a flow ϕ^t defined on a neighborhood of the submanifold Σ of \mathcal{N}, which leaves Σ invariant and preserves the symplectic 2-form:

$$\phi^t \ast \omega = \omega,$$

and denote by X the vector field induced by the flow ϕ^t.

We denote by $n_\mathcal{E}(\Gamma)$ the algebraic intersection number3 of an oriented curve Γ in $\Lambda(\Sigma)$ with $\Lambda^E(\Sigma)$. To a Lagrangian plane λ_x in the fiber $\Pi^{-1}(x)$ of $\Lambda(\Sigma)$ we associate

3This intersection number is well defined if its endpoints do not intersect $\Lambda^E(\Sigma)$. If its endpoints intersect $\Lambda^E(\Sigma)$ there is an ambiguity by adding or subtracting at most n. Since we shall be interested only in the growth rate of n_E, the ambiguity will not matter.
the path: \(\Gamma_{\lambda_x, T} : [0, T] \to \Lambda(\Sigma) \) defined for any \(t \in [0, T] \) by:

\[
\Gamma_{\lambda_x, T}(t) = d\phi^t_x(\lambda_x).
\]

The following lemma (or some very similar version) is, like Lemma 1.2, a well known fact in symplectic geometry and again for the sake of completeness we give here a very simple proof.

2.1. Lemma. Let \(x \) be a point in \(N \) and \(\lambda_x \) and \(\lambda'_x \) two Lagrangian planes in the fiber \(\Pi^{-1}(x) \) of \(\Lambda(\Sigma) \). Then, for any \(T \geq 0 \):

\[
|n_\Sigma(\Gamma_{\lambda_x, T}) - n_\Sigma(\Gamma_{\lambda'_x, T})| \leq 8n.
\]

Proof: Let \(\lambda_{0,x} \) and \(\lambda_{1,x} \) be two Lagrangian planes in \(\Pi^{-1}(x) \) such that:

- \(\lambda_{0,x} \cap \lambda_{1,x} = 0; \)
- \(\lambda_{0,x} \cap \lambda_x = \lambda_{0,x} \cap \lambda'_x = 0; \)
- \(\lambda_{1,x} \cap \lambda_x = \lambda_{1,x} \cap \lambda'_x = 0; \)
- \(\lambda_{1,x} \cap E(x) = 0; \)
- \(\lambda_{0,x} \cap E(x) = 0; \)
- \(\lambda_{1,x} \cap E(x) = 0. \)

Consider the two paths \(\Gamma_{\lambda_{0,x}, \lambda_{1,x}, \lambda_x} \) and \(\Gamma_{\lambda_{0,x}, \lambda_{1,x}, \lambda'_x} : [0, 1] \to \Pi^{-1}(x) \) respectively joining \(\lambda_{0,x} \) to \(\lambda_x \) and \(\lambda_{0,x} \) to \(\lambda'_x \). Let us denote by \(\Gamma_x(\lambda_x, \lambda'_x) \), the path connecting \(\lambda_x \) to \(\lambda'_x \) obtained by concatenating \(\Gamma_{\lambda_{0,x}, \lambda_{1,x}, \lambda_x} \) and \(\Gamma_{\lambda_{0,x}, \lambda_{1,x}, \lambda'_x} \). The path \(\Gamma_x(\lambda_x, \lambda'_x) \) possesses the following two properties:

- i) from Lemma 1.2, its intersection number with the Maslov cycle \(\Lambda^E(\Sigma) \) of the section \(E \) is bounded in norm by \(2n \);
- ii) from Remark 1.3, it is transported by the flow \(\phi^t \). More precisely

\[
d\phi^t_x(\Gamma_x(\lambda_x, \lambda'_x)) = \Gamma_{\phi^t(x)}(d\phi^t_x \lambda_x, d\phi^t_x \lambda'_x),
\]

and consequently the intersection number of \(d\phi^t_x(\Gamma_x(\lambda_x, \lambda'_x)) \) with the Maslov cycle \(\Lambda^E(\Sigma) \) is also bounded in norm by \(2n \).

The 2-chain \(A : [0, 1] \times [0, T] \to \Lambda(\Sigma) \) defined by:

\[
A(s, t) = d\phi^t_x(\Gamma_x(\lambda_x, \lambda'_x)(s))
\]

has a boundary:

\[
\Gamma_{\lambda_x, T} + d\phi^T_x(\Gamma_x(\lambda_x, \lambda'_x)) - \Gamma_{\lambda'_x, T} - \Gamma_x(\lambda_x, \lambda'_x)
\]

which is null homologous. Thus, if \(\lambda_x, \lambda'_x, d\phi^T_x(\lambda_x), d\phi^T_x(\lambda'_x) \) intersect trivially \(E(x) \), \(E(\phi^T(x)) \) respectively, then we have that

\[
|n_\Sigma(\Gamma_{\lambda_x, T}) - n_\Sigma(\Gamma_{\lambda'_x, T})| \leq |n_\Sigma(d\phi^T_x(\Gamma_x(\lambda_x, \lambda'_x)))| + |n_\Sigma(\Gamma_x(\lambda_x, \lambda'_x))| \leq 4n.
\]

If any of \(\lambda_x, \lambda'_x, d\phi^T_x(\lambda_x), d\phi^T_x(\lambda'_x) \) intersect the Maslov cycle \(\Lambda^E \) the 2-chain \(A \) may intersect \(\Lambda^E \) non-transversally at one of such points. In that case the last estimate may be modified by at most \(n \) at each of these four subspaces. \(\square \)
Notice that the bound in Lemma 2.1 can be improved with more sophisticated arguments. For instance a very elegant formulation is given in [4]. See also [3] and the proof of Theorem 4.2 below.

The \emph{asymptotic Maslov index} of point \(x\) in \(\Sigma\) is the following limit when it exists:

\[
M_E(x) := \lim_{T \to +\infty} \frac{1}{T} n_E(\Gamma_{\lambda_x, T}).
\]

It is clear from Lemma 2.1 that this limit is independent of the choice of the Lagrangian plane \(\lambda_x\) in the fiber \(\Pi^{-1}(x)\).

The flow \(\phi^t\) induces a flow \(\Phi^t\) in the Lagrangian Grassmann bundle defined for all \(x\) in \(\Sigma\) and for all \(\lambda_x\) in \(\Pi^{-1}(x)\) by:

\[
\Phi^t(x, \lambda_x) := (\phi^t(x), d\phi^t_x(\lambda_x)).
\]

We denote by \(X\) the vector field corresponding to the flow \(\Phi^t\) and we say that the data \((E, X)\) satisfies the bounding condition if the map:

\[
\Lambda(\Sigma) \to \mathbb{R},
\]

\[
(x, \lambda_x) \mapsto \eta_E(x, \lambda_x)(X(x, \lambda_x))
\]

is uniformly bounded on \(\Lambda(\Sigma)\).

From the path \(\Gamma_{\lambda_x, T}\), we construct a piecewise smooth loop \(\Gamma'_{\lambda_x, T}\) obtained by concatenating \(\Gamma_0, \Gamma_1, \Gamma_2\) and \(\Gamma_3\) in \(\Lambda(\Sigma)\) defined as follows:

- \(\Gamma_0 = \Gamma_{\lambda_x, T}\);
- \(\Gamma_1\) is a path (as in Lemma 2.1) from \(\Phi^T(x, \lambda_x)\) to \((\phi^T(x), J_{\phi^T(x)}E_{\phi^T(x)})\) in \(\Pi^{-1}(\phi^T(x))\) whose intersection number with the Maslov cycle \(\Lambda_E(\Sigma)\) is bounded in norm by \(4n\);
- \(\Gamma_2\) is the path \(t \mapsto J_{\phi^t(x)}E_{\phi^t(x)}\) for \(t\) going from \(T\) to 0;
- \(\Gamma_3\) is a path (as in Lemma 2.1) from \((x, \lambda_x)\) to \((x, \lambda_x)\) in \(\Pi^{-1}(x)\) whose intersection number with the Maslov cycle \(\Lambda_E(\Sigma)\) is bounded in norm by \(4n\).

It follows from the construction that if the limit \(M_E(x)\) exists, then it satisfies:

\[
M_E(x) = \lim_{T \to +\infty} \frac{1}{T} M_E([\Gamma'_{\lambda_x, T}]),
\]

where \([\Gamma'_{\lambda_x, T}]\) stands for the homology class of the path \(\Gamma'_{\lambda_x, T}\).

Using the integral version of the Maslov index, we have that:

\[
M_E([\Gamma'_{\lambda_x, T}]) = \int_{\Gamma_0} \eta_E + \int_{\Gamma_1} \eta_E + \int_{\Gamma_2} \eta_E + \int_{\Gamma_3} \eta_E.
\]

It is clear that \(\int_{\Gamma_2} \eta_E = 0\). If \((E, X)\) satisfies the bounding condition, the integrals \(\int_{\Gamma_1} \eta_E\) and \(\int_{\Gamma_3} \eta_E\) are uniformly bounded in \(T\). It follows that the limit \(M_E(x)\) when it exists, is also given by the average:

\[
M_E(x) = \lim_{T \to +\infty} \frac{1}{T} \int_0^T \eta_E(\Phi^t(x, \lambda_x)) \, dt.
\]

\[2.2. \text{Proposition. Let } \nu \text{ be an invariant probability measure of the flow } \phi^t \text{ with support in } \Sigma \text{ and assume that the data } (E, X) \text{ satisfies the bounding condition. Then:} \]
for ν-almost every x in Σ, the limit $M_\Sigma(x)$ exists;
ii) the map $x \to M_\Sigma(x)$ is integrable.

We denote by $M_\Sigma(\nu)$ the integral $\int_\Sigma M_\Sigma(x) d\nu(x)$ and call it the asymptotic Maslov index of the measure ν.

The proof of this proposition clearly relies on an ergodic theorem. The peculiarity here is that the probability measures we consider are invariant measures for the flow Φ_t on $\Lambda(\Sigma)$ and the quantities we average are computed for the flow Φ^t on $\Lambda(\Sigma)$. There are actually two ways to prove Proposition 2.2.

One way consists in forgetting a part of the dynamics of the flow Φ_t by showing that the quantity $n_\Sigma(\Gamma_{\lambda_x,T})$ up to a bounded error is independent of the Lagrangian plane λ_x and is quasi-additive. This allows us to define a bounded cocycle over Σ. The proof of Proposition 2.2 is then a direct application of the sub-additive ergodic theorem and can be found for instance in the work of Ruelle [17] and Barge and Ghys [4] (in a slightly different context).

The second way, that we shall follow in a moment, consists in lifting the invariant measures for the flow Φ_t to invariant measures for the flow Φ^t and then use the standard Birkhoff ergodic theorem. The advantage of this second approach is double:

• it gives a simple proof of the continuity of the asymptotic Maslov index with respect to the invariant measure for the weak* topology;
• it gives a better understanding of the dependence of the asymptotic Maslov index with respect to the section E.

Before proceeding to the proof and in order to understand better the way invariant measures of the flow ϕ^t can be lifted to invariant measures of the flow Φ^t, let us recall some basic definitions and results in ergodic theory.

Let $p : X \to Y$ be a surjective continuous map between compact metric spaces and let Φ_t be a flow on X and ϕ_t a flow on Y such that $\phi_t \circ p = p \circ \Phi_t$. Let M_{Φ} and M_{ϕ} be the invariant Borel probability measures of Φ_t and ϕ_t respectively. It is well known that the induced map $p_* : M_{\Phi} \to M_{\phi}$ is surjective. If X is not compact a similar result can be obtained if we assume that p is a proper map. Let $X \cup \{\infty\}$ and $Y \cup \{\infty\}$ be the one point compactification of X and Y respectively. The map p and the flows Φ_t and ϕ_t extend naturally to the compatifications and we denote these extensions by \bar{p}, $\bar{\Phi}_t$ and $\bar{\phi}_t$ respectively. A measure $\nu \in M_{\phi}$ induces a measure $\bar{\nu} \in M_{\Phi}$ by setting $\bar{\nu}(\infty) = 0$. Since \bar{p}_* is surjective there exists $\bar{\mu}$ such that $\bar{p}_*(\bar{\mu}) = \bar{\nu}$. But since $\bar{\mu}(\infty) = 0$, $\bar{\mu}$ in fact defines a measure μ that lifts ν.

Proof of proposition 2.2:

The compactness of the fibers of Π yields that the projection map Π is proper. Hence the discussion in the previous paragraph shows that given a ϕ-invariant measure ν there exists a Φ-invariant measure μ such that $\Pi_* \mu = \nu$.

Since the data (E, Σ) satisfies the bounding condition, we can apply the Birkhoff ergodic theorem to the dynamical system $(\Lambda(\Sigma), \mu, \Phi^t)$ and the observable $(x, \lambda_x) \mapsto \eta_{E_x}(\Sigma(x, \lambda_x))$. This yields that for μ-a.e. (x, λ_x) in $\Lambda(\Sigma)$ (and thus for ν-a.e. x in
the quantity $\frac{1}{T} \int_0^T \eta_E(X(\Phi^t(x, \lambda_x))) \, dt$ converges, when T goes to $+\infty$ to a limit which does not depend on λ_x in $\Pi^{-1}(x)$ and is a ν-integrable function of x in Σ.

2.3. Remark. The hypothesis that the data (E, X) satisfies the bounding condition is actually too strong and the proof of Proposition 2.2 works if we require only the map $(x, \lambda) \mapsto \eta_E(x, \lambda_x)$ to be μ-integrable where μ is an invariant measure of Φ^t which is a lift of ν. However in the sequel we will see that it is convenient to keep a hypothesis which does not depend on the invariant measure we consider.

2.4. Corollary. If (E, X) satisfies the bounding condition and ν is a Borel ϕ^t-invariant probability, then

$$M_E(\nu) = \int \eta_E(X) \, d\mu,$$

for any Φ^t-invariant lift μ of ν to $\Lambda(\Sigma)$.

2.5. Proposition. The asymptotic Maslov index of a probability measure depends continuously on the invariant probability measure for the weak* topology.

Proof: Suppose that ν_N is a sequence of ϕ^t-invariant probabilities on Σ with $\lim_N \nu_N = \nu$. We have seen in the proof of Proposition 2.2 that any ϕ^t-invariant probability measure ν_N on Σ can be lifted to a Φ^t-invariant probability measure μ_N on $\Lambda(\Sigma)$: $\Pi_* \mu_N = \nu_N$.

Consider a metric space S, a family M of Borel probability measures on S is tight if for each $\varepsilon > 0$, there is a compact set $K_{\varepsilon} \subset S$ for which $\mu(K_{\varepsilon}) > 1 - \varepsilon$ for all $\mu \in M$. Tight families are characterized by the fact that their closures are compact in the weak* topology (see for instance [7]).

Since the fibers of Π are compact, the family $\{\mu_N\}$ is tight. Thus, given any subsequence $\langle N_{k_l} \rangle$, there exists a subsequence $\langle N_{k_{l'}} \rangle$ such that the measures $\mu_{N_{k_{l'}}}$ converge when l goes to $+\infty$ to a Φ^t-invariant measure μ, which satisfies $\Pi_* \mu = \nu$.

Since the data (E, X) satisfies the bounding condition:

$$M_E(\nu_{N_{k_{l'}}}) = \int \eta_E(X) \, d\mu_{N_{k_{l'}}} \xrightarrow{\ell} \int \eta_E(X) \, d\mu = M_E(\nu).$$

The subsequence $\langle N_k \rangle$ has been chosen arbitrarily and the limit $M_E(\nu)$ does not depend on this subsequence, thus $\lim_{N \to +\infty} M_E(\nu_N) = M_E(\nu)$.

2.1. Change of reference section. Let us describe now how the asymptotic Maslov index behaves under a change of the section E. Let F be another section of $\Pi : \Lambda(\Sigma) \to \Sigma$ and assume that the data (F, X) also satisfies the bounding condition.

From (1), we get that the map:

$$\begin{align*}
\Sigma & \to \mathbb{R} \\
x & \mapsto F^* \eta_{E_x}(X(x))
\end{align*}$$
is uniformly bounded on Σ and
\begin{equation}
\mathcal{M}_E(\nu) - \mathcal{M}_F(\nu) = \int (F^*\eta_E)(X) \, d\nu.
\end{equation}

Notice that Equation (5) can be made more explicit when the Schwartzman asymptotic cycle of a ϕ^t-invariant measure ν [18, 19] can be computed. This is the case when the following two assertions\(^4\) are satisfied:

- the first homology group $H_1(\Sigma, \mathbb{R})$ has a finite dimension;
- the measure ν is X-tame i.e. the first de Rham cohomology group $H^1(\Sigma, \mathbb{R})$ is generated by a finite number of 1-forms ω_i such that for each i the map:
 \begin{align*}
 \Sigma & \to \mathbb{R} \\
 x & \mapsto \omega_{i,x}(X(x)).
 \end{align*}

 is ν-integrable.

In this context, the asymptotic cycle of the measure ν is the unique element $S(\nu)$ in $H_1(\Sigma, \mathbb{R}) = H^1(\Sigma, \mathbb{R})^*$, which satisfies for any closed 1-form ζ:
\begin{equation}
\langle [\zeta], S(\nu) \rangle = \int \zeta(X) \, d\nu,
\end{equation}

where $[\zeta]$ is the cohomology class of ζ and the brackets \langle , \rangle mean evaluation.

With these notations equation (5) reads\(^5\):
\begin{equation}
\mathcal{M}_E(\nu) - \mathcal{M}_F(\nu) = \langle [F^*\eta_E], S(\nu) \rangle.
\end{equation}

Notice that the asymptotic Maslov index of a ϕ^t-invariant measure ν does not depend on the section in the following two cases:

- if $H_1(\Sigma, \mathbb{R}) = 0$;
- or if the Schwartzman asymptotic cycle of the measure ν is zero.

If some Φ^t-invariant measure μ which is a lift of ν is X-tame, the asymptotic cycle $S(\mu)$ in $H_1(\Lambda(\Sigma), \mathbb{R})$ is well defined. The asymptotic cycle $S(\nu)$ in $H_1(\Sigma, \mathbb{R})$ and the Maslov index $\mathcal{M}_F(\nu)$ are also well defined (see Remark 2.3).

2.6. Remark. In the case of an odd dimensional manifold M (that we choose compact to make things simpler) equipped with a contact structure, there exists an analogous definition of the asymptotic Maslov index. More precisely, a contact structure is the data of a 1-form η such that the plane field corresponding to the kernels is nowhere integrable, i.e. for every x in M:
\begin{equation}
\eta_x \wedge (d\eta_x)^n \neq 0,
\end{equation}

where $\dim M = 2n + 1$. It is clear that the 2-form $d\eta$ restricted to $\ker \eta$ is symplectic.

To a contact structure η one can associate a vector field X whose flow ϕ^t is called the Reeb flow and which is defined by:

\(^4\)Notice that both assertions are satisfied when Σ is compact.
\(^5\)See [11] for a similar dependence on the trivialization in the case of non singular vector fields in a 3-dimensional manifold.
• $i_X \eta = 1$
• $i_X d\eta = 0$

This flow preserves the planes $\ker \eta$, the symplectic form $d\eta$ on $\ker \eta$ and the volume form $\eta \wedge (d\eta)^n$.

Assume there exists a continuous section which associates to each point x in M a Lagrangian plane $E(x)$ in $\ker \eta_x$. Then, it is possible to associate to each ϕ^t-invariant probability measure ν, its asymptotic Maslov index, in the same way as we did for the even dimensional case. In particular, this can be done for the measure induced by the volume form $\eta \wedge (d\eta)^n$.

3. Hamiltonian flows.

Let \mathcal{N} be a $2n$-dimensional complete connected Riemannian manifold. A Hamiltonian on \mathcal{N} is a C^∞ function $H : \mathcal{N} \to \mathbb{R}$. The Hamiltonian vector field X of H is defined by

$$\omega(X, \cdot) = -dH. \quad (7)$$

The level sets of the Hamiltonian $\Sigma = H^{-1}\{e\}$ are called the energy levels of H and are invariant under the flow of X.

In the sequel of this paper we focus our attention on the dynamics on regular energy levels Σ, i.e. the energy levels which correspond to a regular value of H. Thus, Σ is a codimension 1 submanifold of \mathcal{N} and X is a non-singular vector field on Σ. Furthermore, we shall always assume the following hypothesis:

(a) Completeness: The Hamiltonian vector field X gives rise to a complete flow $\phi : \Sigma \times \mathbb{R} \to \Sigma$ on the energy level Σ.

If the energy level Σ is compact, this last hypothesis is clearly satisfied.

3.1. The Asymptotic Maslov Index for the Liouville Measure.

The Hamiltonian flow on the energy level Σ inherits a canonical smooth invariant measure \bar{m}, called the Liouville measure, which correspond to the volume form $m = i^*\sigma$, where σ is a form such that $\omega^n = dH \wedge \sigma$ and $i : \Sigma \hookrightarrow T^*M$ is the inclusion map [1].

3.1. Proposition.

If the energy level Σ is compact and the form ω^{n-1} is exact\(^6\), then the asymptotic cycle $S(\bar{m})$ of the Liouville measure \bar{m} is zero.

\(^6\)We shall discuss later on the strength of the hypothesis on the exactness of ω^{n-1}.

Proof: Let Y be a vector field $Y \in T\Sigma$ such that $\omega(X,Y) \equiv -1$. The sequence of equalities:

$$
\begin{align*}
 dH \wedge i_Y \omega^n &= -i_Y(dH \wedge \omega^n) + (i_Y dH) \wedge \omega^n \\
 &= 0 + (i_Y i_X \omega) \omega^n \\
 &= \omega^n,
\end{align*}
$$

yields the explicit formulation:

$$
m = i^*(i_Y \omega^n).
$$

In order to prove that the asymptotic cycle is zero, it is enough to check that for any closed 1-form η on Σ:

$$
\langle \eta, S(\bar{m}) \rangle = \int \eta(X) \, d\bar{m} = 0.
$$

(8)

We have:

$$
\eta(X)m = i_X(\eta \wedge m) + \eta \wedge (i_Xm) = \eta \wedge (i_Xm).
$$

On the other hand, since $dH = -i_X\omega = 0$ on Σ:

$$
i_Xm = i_X(i^*i_Y \omega^n) = i^*(\omega^{n-1}).
$$

Since ω^{n-1} is exact, there exists a $(2n-1)$-form, τ such that $d\tau = i^*(\omega^{n-1})$. Consequently

$$
\eta(X)m = \eta \wedge d\tau = d(\eta \wedge \tau).
$$

A direct application of Stokes theorem gives $S(\bar{m}) = 0$. \qed

Let Σ and Σ' be two regular energy levels of two Hamiltonian functions H and H' respectively. Let F be a symplectic diffeomorphism from a neighborhood of Σ to a neighborhood of Σ'. We will say that F is a symplectic conjugacy if F maps Σ onto Σ' and conjugates the corresponding Hamiltonian flows on the energy levels.

3.2. Corollary.

If a regular energy level Σ is compact and ω^{n-1} is exact, then:

(i) for any two continuous Lagrangian sections E, F:

$$
\mathcal{M}_E(\bar{m}) = \mathcal{M}_F(\bar{m});
$$

(ii) the asymptotic Maslov index of the Liouville measure is invariant under symplectic conjugacies of the Hamiltonian flow.

Proof: (i) is a direct consequence of equation (6).

In order to prove (ii), suppose that F is a symplectic conjugacy and let E be a continuous Lagrangian section of Σ. A direct computation yields $F_\star \bar{m} = \bar{m}'$ where \bar{m} and \bar{m}' stand respectively for the Liouville measures on Σ and Σ'. The asymptotic Maslov index of the Liouville measure \bar{m} on the energy level Σ can be computed (thanks to (i)) using any Lagrangian section, E for instance.
It follows that \(\mathcal{M}_\varepsilon(\bar{m}) = \mathcal{M}_{F,\varepsilon}(F,\bar{m}) = \mathcal{M}_{F,\varepsilon}(\bar{m}') \) which is the asymptotic Maslov index of the Liouville measure \(\bar{m}' \) on the energy level \(\Sigma' \) computed using the Lagrangian section \(F,\varepsilon \).

4. Optical Hamiltonians.

Now we restrict our attention to Hamiltonian flows whose lift to \(\Lambda(\Sigma) \) cuts the Maslov cycle transversely with positive orientation. In the next two subsections, we relate the work of J.J. Duistermaat [10] and M. Bialy and L. Polterovich [5] with the asymptotic Maslov index.

4.1. Positive tangent vectors. Consider again the Lagrangian manifold \(\Lambda(n) \) introduced in Section 1, let us make more explicit here the tranverse orientation of the train of a given Lagrangian plane.

For \(t \in [-1,1] \), let \(t \mapsto \lambda(t) \in \Lambda(n) \) be a curve in \(\Lambda(n) \) passing through the Lagrangian plane \(\lambda(0) = \lambda \). There exists a curve of symplectic automorphisms of \(\mathbb{R}^{2n} \), \(t \mapsto \hat{Sp}(t) \) such that \(\lambda(t) = \hat{Sp}(t)\lambda \), \(\hat{Sp}(0) = \mathbb{I} \).

To the pair \((\lambda,\lambda'(0)) \) (where \(\lambda'(0) \) stands for the tangent vector \(\lambda'(0) = \frac{d}{dt}|_{t=0} \in T_\lambda \Lambda(n) \)), we can associate the bilinear form \(\beta_{\lambda,\lambda'(0)} \) on \(\lambda \):

\[
(\xi,\eta) \mapsto \omega(\xi,\hat{Sp}'(0)\eta) \quad \text{for} \ \xi,\eta \in \lambda.
\]

Notice that:

- this form is well defined: another choice of curve of symplectic transformations \(t \mapsto \hat{Sp}(t) \) such that \(\lambda(t) = \hat{Sp}(t)\lambda \) satisfies \(\hat{Sp}(t) = \hat{Sp}(t)Q(t) \), where \(Q(t) \) preserves \(\lambda \) and \(\hat{Q}(0) = \mathbb{I} \), hence \(\frac{d}{dt}\omega(\xi,\hat{Q}(t)\eta) = \omega(\xi,\hat{Q}'(0)\eta) \), a quantity that vanishes since \(\lambda \) is Lagrangian, it also depends only on \((\lambda,\lambda'(0)) \) and not on the specific curve \(\lambda(t) \);\(^7\)
- this form is symmetric since \(\hat{Sp}(t) \) preserves the symplectic form \(\omega \);
- the map \(\lambda'(0) \mapsto \beta_{\lambda,\lambda'(0)} \) is linear since it is a quotient of the derivative of the map that takes a symplectic automorphism \(S \) into the bilinear form \(\omega(\xi,S\eta) \).

Recall that the train \(\Lambda^{E_0}(n) \) of a given Lagrangian plane \(E_0 \) is the union for \(k \geq 1 \) of the collection of open submanifolds \(\Lambda^k = \{ \lambda \in \Lambda(n) \mid \dim(\lambda \cap E_0) = k \} \).

There exists a morphism from the normal bundle to \(\Lambda^k \), \(T_\lambda \Lambda(n)/T_\lambda \Lambda^k \), to the space \(\mathcal{S}^2(\lambda \cap E_0) \) of symmetric bilinear forms on \(\lambda \cap E_0 \) which is defined as follows: to each vector \(u + T_\lambda \Lambda^k \) we associate the restriction of the bilinear form \(\beta_{\lambda,u} \) to the subspace \(\lambda \cap E_0 \). In order to check that this map is well defined it is enough to show that \(\beta_{\lambda,u}|_{\lambda \cap E_0} = 0 \) for \(u \in T_\Lambda \Lambda^k \) (recall that the map \(u \mapsto \beta_{\lambda,u} \) is linear), which can be proved using an arc of symplectic linear maps \(t \mapsto Sp(t) \) such that \(Sp(0)\lambda = \lambda \), \(Sp'(0)\lambda = u \) and \(Sp(t)(\lambda \cap E_0) = \lambda(t) \cap E_0 \) for all \(t \) in \([-1,1] \). Actually, this morphism is an isomorphism: it is injective since \(\beta_{\lambda,u}|_{\lambda \cap E_0} \neq 0 \) when \(u \) is not in the symplectic orthogonal of \(\lambda \cap E_0 \) which contains \(\lambda \) and \(E_0 \) and has dimension \(2n - k \), it is onto because the source and the target have same dimension.

\(^7\)This can be shown using a local parametrization of the Lagrangian Grassmann bundle near \(\lambda \).
We say that a vector \(u \in T_\lambda \Lambda \) is positive if \(\beta_{\lambda,u}|_{\lambda \cap E_0} \) is positive definite whenever \(\lambda \cap E_0 \neq \{0\} \). A curve \(\lambda(t) \in \Lambda(n) \) is positive if its tangent vectors are positive. For a positive curve \(\lambda(t) \), the set of \(t \)'s for which \(\lambda(t) \) belongs to the train of \(E_0 \) is discrete. Indeed, if \(\lambda \in \Lambda^k \), the fact that \(\beta_{\lambda,u}|_{\lambda \cap E_0} \) is positive definite implies that \(\lambda'(t) \) is not in the tangent space over \(\lambda \) of the closure of \(\Lambda^p \) for all \(1 \leq p \leq k \).

In particular, if \(\lambda \in \Lambda^1 \) i.e. \(\dim(\lambda \cap E_0) = 1 \), \(S^2(\lambda \cap E_0) \approx T_\lambda \Lambda / T_\lambda \Lambda^1 \approx \mathbb{R} \).

A vector \(u \) in \(T_\lambda \Lambda(n) \) is transversal to \(\Lambda^1 \) if and only if \(\beta_{\lambda,u}|_{\lambda \cap E_0} \neq 0 \). This gives a transversal orientation on the cycle \(\Lambda E_0 \). Notice that for \(\lambda \in \Lambda^1 \), the curves \(t \mapsto e^{it} \lambda \) are positive. Thus this orientation agrees with the one given in Section 1.

It is clear how to extend the above definitions to the case of a manifold \(N \) equipped with a symplectic structure, a connected submanifold \(\Sigma \) of \(N \) and a section \(E \) from \(\Sigma \) to the Grassmann Lagrangian bundle.

4.2. Optical Hamiltonians

A Hamiltonian \(H : \mathcal{N} \to \mathbb{R} \) is optical or positively twisted with respect to a differentiable Lagrangian section \(E \) on a regular energy level \(\Sigma \) if the flow lines of the lifted Hamiltonian flow \(\Phi^t \) on \(\Lambda(\Sigma) \) are positive curves. That is, for any \(\lambda \in \Lambda^E(\Sigma) \), the form

\[
(\xi, \eta) \mapsto \omega(\xi, \frac{d}{dt}|_{t=0}(\Phi^t \eta))
\]

restricted to \(\lambda \cap E \), is positive definite.

Examples

1) A convex Hamiltonian in the cotangent bundle of a manifold equipped with its canonical symplectic structures is optical with respect to the vertical section (see Appendix A);

2) A Riemannian metric with a twisted symplectic structure is optical with respect to the vertical section (see Remark B.2);

3) A Riemannian metric with positive curvature is optical with respect to the section given by the kernel of the Riemannian connection i.e. the horizontal bundle;

4) \(C^2 \)-perturbations of the above examples remain optical with respect to the perturbed sections.

From now on, we consider a regular energy level \(\Sigma \) of an optical Hamiltonian system \(H \), on which the flow \(\phi^t \) induced by the Hamiltonian is complete and such that the data \((E, X) \) satisfies the bounding condition. The Maslov cocycle \(\mathcal{M}_E \) measures the oriented intersection with the Maslov cycle \(\Lambda^E \). Recall from Corollary 2.4 that if \((E, X) \) satisfies the bounding condition (which occurs if the second derivatives of the Hamiltonian are uniformly bounded on \(\Sigma \)), we have that

\[
\mathcal{M}_E(\nu) := \int \eta_E(X) \, d\mu ,
\]

for any invariant probability \(\nu \) on \(\Sigma \) and any invariant lift \(\mu \) of \(\nu \) to \(\Lambda(\Sigma) \).
To a Lagrangian plane λ_x in the fiber $\Pi^{-1}(x)$ of $\Lambda(\Sigma)$ we associate the path: $\Gamma_{\lambda_x,T} : [0,T] \rightarrow \Lambda(\Sigma)$ defined for any $t \in [0,T]$ by:

$$\Gamma_{\lambda_x,T}(t) = d\phi^t_x(\lambda_x).$$

Since H is optical, the set of intersection points of $\Gamma_{\lambda_x,T}$ with the Maslov cycle Λ^E is discrete and the curve $\Gamma_{\lambda_x,T}$ crosses the Maslov cycle always in the positive direction. As explained in [3, 5, 10] each time t for which $\Gamma_{\lambda_x,T}(t)$ intersects the Maslov cycle, adds precisely $\dim(\Gamma_{\lambda_x,T}(t) \cap E)$ to the intersection number $n_E(\Gamma_{\lambda_x,T})$. It follows that:

$$n_E(\Gamma_{\lambda_x,T}) = \sum_{\Gamma_{\lambda_x,T}(t) \cap E \neq \{0\}} \dim(\Gamma_{\lambda_x,T}(t) \cap E). \quad (11)$$

From (3) and (11), we get:

4.1. Lemma. Assume that H is E-optical and satisfies the bounding condition for (E, X). If the invariant measure ν is ergodic, then for ν almost every point x in Σ and for every λ_x in $\Pi^{-1}(x)$, we have that

$$\lim_{T \to +\infty} \frac{1}{T} \sum_{\Gamma_{\lambda_x,T}(t) \cap E \neq \{0\}} \dim(\Gamma_{\lambda_x,T}(t) \cap E) = \mathcal{M}_E(\nu). \quad (13)$$

We now recall the ergodic decomposition theorem (see for instance [14]). Let us consider for every point x in the ambient space, the probability measure $\mu(x,T)$ which is equidistributed along the arc of orbit joining x to $\phi^T(x)$. It turns out that for μ-a.e. x, the probabilities $\mu(x,T)$ converges in the weak* topology, to an ergodic invariant probability measure μ_x. Furthermore, we get a decomposition of the measure μ in the measures μ_x in the following sense: for any measurable function f bounded on the ambient space:

$$\int f d\mu = \int (\int f d\mu_x) d\mu. \quad (12)$$

Let us come back now to our particular situation and consider a Φ^t-invariant probability measure μ on $\Lambda(\Sigma)$ which is a lift of a ϕ^t-invariant probability measure ν on Σ. It is clear that the pushforward by the projection Π of any ergodic component measure $\mu(x,\lambda_x)$ of μ, associated to a point (x,λ_x), is the ergodic component measure of ν associated to the point x. Applying Equation (12) to the map: $(x,\lambda_x) \mapsto (\eta_E)_x(\mathbb{X}(x,\lambda_x))$ we get that for every invariant Borel probability measure ν on Σ:

$$\mathcal{M}_E(\nu) := \int \mathcal{M}_E(x) d\nu = \int \mathcal{M}_E(\nu_x) d\nu. \quad (13)$$
4.3. Conjugate points. A point $x_2 \in \mathcal{N}$ is said to be E-conjugate to $x_1 \in \mathcal{N}$ if $x_2 = \phi^\tau(x_1)$ and $\Phi^\tau(E(x_1)) \cap E(x_2) \neq \{0\}$ for some $\tau > 0$. Theorem 4.4 below provides a simple criterion for the existence of conjugate points.

We will need the following symplectic analogue of Sturm’s theorem on the number of zeros of solutions of second order differential equations. This result was proved by Arnold in [3] for the case of the linear symplectic space and a Hamiltonian given by kinetic energy plus a potential. However, Arnold’s proof holds in our setting without any significant changes. Set $\dim \mathcal{N} = 2n$.

4.2. Theorem. Let Σ be a regular energy level of an optical Hamiltonian and let λ_x and λ'_x be two Lagrangian planes in the fibre $\Pi^{-1}(x)$ of $\Lambda(\Sigma)$. If $t \mapsto d\phi_1^x(\lambda_x)$ has $n + 1$ points of intersection with the Maslov cycle Λ^E (counted with multiplicity) in an interval $[t_1, t_2]$, then $t \mapsto d\phi_1^x(\lambda'_x)$ has at least one point of intersection with Λ^E in the same interval $[t_1, t_2]$.

Proof: We will essentially reproduce Arnold’s proof of the Theorem on Zeros in [3].

We begin with a useful definition. The Maslov index of the path Γ in $\Lambda(n)$ starting at a point λ_0, which does not belong to Λ^{λ_1}, and ending at λ_1, is by definition the intersection number $n_{\lambda_1}(\Gamma')$, where Γ' is a path close to Γ starting at λ_0 and ending at a point λ'_1 close to λ_1 which lies on the positive domain of the Maslov cycle Λ^{λ_1}. The positive domain is defined as the set of all Lagrangian planes λ in a neighborhood of λ_1 for which there is a positive curve which begins at λ_1 and ends at λ intersecting the Maslov cycle Λ^{λ_1} only at λ_1.

Let $\tilde{\Lambda}(n)$ be the universal covering of $\Lambda(n)$. The homotopy class of a path connecting λ_0 to λ_1 in $\Lambda(n)$ can be represented by a pair of points $(\tilde{\lambda}_0, \tilde{\lambda}_1)$ in $\tilde{\Lambda}(n)$. Suppose that $\lambda_0 \not\in \Lambda^{\lambda_1}$ and let $m(\tilde{\lambda}_0, \tilde{\lambda}_1)$ be the Maslov index of such a path. Arnold shows in [3, p. 253] that the Maslov index $m(u, v)$ of pair of points in $\tilde{\Lambda}(n)$ has the following property:

$$ m(u, v) + m(v, w) - m(u, w) = I(\pi(u), \pi(v), \pi(w)), $$

where $\pi : \tilde{\Lambda}(n) \to \Lambda(n)$ is the covering projection and the index $I(\lambda_0, \lambda_1, \lambda_2)$ of a triplet of pairwise transverse Lagrangian planes is defined as the index of the following quadratic form. Write $\zeta = \xi + \eta$ where $\xi \in \lambda_0$ and $\eta \in \lambda_1$. Set

$$ q_{\lambda_0, \lambda_1}(\zeta) = \omega(\xi, \eta). $$

Then $I(\lambda_0, \lambda_1, \lambda_2)$ is the index of q_{λ_0, λ_1} restricted to λ_2.

Using the trivialization $I_E : \Lambda(\Sigma) \to \Sigma \times \Lambda(\Sigma)$, the section E corresponds to the Lagrangian plane $q = 0$, which we call α (following Arnold's notation). As before let $\tau : \Sigma \times \Lambda(n) \to \Lambda(n)$ be the projection onto the second factor.

Set $\gamma(t) = \tau \circ I_E \circ d\phi_1^x(\lambda_x)$ and $\gamma'(t) = \tau \circ I_E \circ d\phi_1^x(\lambda'_x)$. Consider now a family, depending continuously on t of paths $\delta(t)$ from $\gamma(t)$ to α. We first assume that $\gamma(t_1)$ and $\gamma(t_2)$ are transverse to α. Let
\[\nu := n_\mathbb{E} \left(d\phi^t_x(\lambda_x)|_{[t_1,t_2]} \right). \]

By (11) we have:

\[(15) \quad \nu = \sum_{\gamma(t) \cap \alpha \neq \{0\}} \dim(\gamma(t) \cap \alpha). \]

Consider also a family of paths \(\delta' \) connecting \(\gamma' \) with \(\alpha \). In the covering space we pick a point \(\tilde{\alpha} \) over \(\alpha \) and we cover the paths \(\delta(t) \) and \(\delta'(t) \) by paths \(\tilde{\delta} \) and \(\tilde{\delta}' \) which end at \(\tilde{\alpha} \); their origins are denoted by \(\tilde{\gamma} \) and \(\tilde{\gamma}' \), respectively. Then we have:

\[(16) \quad \nu = m(\tilde{\alpha}, \tilde{\gamma}(t_2)) - m(\tilde{\alpha}, \tilde{\gamma}(t_1)). \]

By (14),

\[m(\tilde{\alpha}, \tilde{\gamma}(t)) + m(\tilde{\gamma}(t), \tilde{\gamma}'(t)) - m(\tilde{\alpha}, \tilde{\gamma}'(t)) = I(\alpha, \gamma(t), \gamma'(t)). \]

The middle term does not depend on \(t \), since the index is symplectically invariant. The right hand side is always between 0 and \(n \) for all \(t \). Hence, the increment of the left-hand side between \(t_1 \) and \(t_2 \) is bounded in absolute value by \(n \), that is:

\[|(m(\tilde{\alpha}, \tilde{\gamma}(t_1)) - m(\tilde{\alpha}, \tilde{\gamma}'(t_1))) - (m(\tilde{\alpha}, \tilde{\gamma}(t_2)) - m(\tilde{\alpha}, \tilde{\gamma}'(t_2)))| \leq n. \]

Using (16) we get \(|\nu - \nu'| \leq n\) and the theorem follows from this and (15).

Now suppose that \(\gamma(t_1) \) or \(\gamma(t_2) \) are not transverse to \(\alpha \). For \(\varepsilon > 0 \), define

\[\nu_\varepsilon = n_\mathbb{E} \left(d\phi^t_x(\lambda_x)|_{[t_1-\varepsilon,t_2+\varepsilon]} \right). \]

Since the Hamiltonian is optical, for \(\varepsilon > 0 \) small enough, \(\gamma(t_1) \) and \(\gamma(t_2) \) are transverse to \(\alpha \) and also \(\nu_\varepsilon = \nu_0 = \nu \), counting multiplicities. Similarly, \(\nu'_\varepsilon = \nu'_0 = \nu \). We have proved above that \(|\nu_\varepsilon - \nu'_\varepsilon| \leq n\). Hence \(|\nu - \nu'| \leq n\).

\(\square \)

4.3. Corollary. If \(x_0 \in \Sigma \) and \(x_1 = \phi^*_t(x_0) \) is conjugate to \(x_0 \), then for any Lagrangian plane \(\lambda_{x_0} \in \Pi^{-1}(x_0) \) there exists \(0 \leq t \leq \tau \) such that

\[d\phi^*_x(\lambda_{x_0}) \cap \mathbb{E}(\phi^t(x_0)) \neq \{0\}. \]

Proof: Consider the path \(\eta(t) := d\phi^t_{x_0}(\mathbb{E}(x_0)) \) for \(t \in [0, \tau] \). Then \(\eta \) has \(n \) points of intersection with \(\Lambda^\mathbb{E} \) at \(t = 0 \) and at least one point of intersection with \(\Lambda^\mathbb{E} \) at \(t = \tau \). Then the curve \(t \mapsto d\phi^t_{x_0}(\lambda_{x_0}) \) has at least one intersection with the Maslov cycle \(\Lambda^\mathbb{E} \) on \([0, \tau]\). \(\square \)

4.4. Theorem.

Let \(\nu \) be an invariant probability measure on a regular energy level of an optical Hamiltonian \((H, \Sigma, \mathbb{E})\) which satisfies the completeness hypothesis and the bounding condition. Then \(\mathcal{M}_\mathbb{E}(\nu) > 0 \) if and only if there are \(\mathbb{E} \)-conjugate points in the support of \(\nu \).
Proof: If the orbit of any point \(x \) in \(\Sigma \) has no conjugate points then for all \(T > 0 \):
\[
\nu_E(\Gamma_{E,x},T) = n,
\]
and consequently using Lemma 2.1: \(0 \leq \nu_E(\Gamma_{\lambda_x,T}) \leq 9n \) for any Lagrangian plane \(\lambda_x \) in \(\Pi^{-1}(x) \). Hence \(\mathcal{M}_E(x) = 0 \), for all \(x \in \Sigma \) and thus \(\mathcal{M}(\nu) = 0 \).

Conversely, suppose that there exists \(x_1 \) in the support of \(\nu \) such that \(x_2 = \phi^T(x_1) \) is conjugate to \(x_1 \). Since \(H \) is optical, for any small enough flow box \(U_1 \) containing \(x_1 \) and for every \(y_1 \) in \(U_1 \), there exists a conjugate point to \(y_1 \) on the arc of orbit starting at \(y_1 \) before the next return to \(U_1 \). Choose now an ergodic component measure \(\nu_x \) of \(\nu \). Using the Birkhoff ergodic theorem, we know that for \(\nu_x \)-a.e. \(y \) in \(\Sigma \):
\[
\lim_{T \to +\infty} \frac{1}{T} \theta(y, T, U_1) = \nu_x(U_1),
\]
where \(\theta(y, T, U_1) \) is the time spent in \(U_1 \) by the arc of orbit with length \(T \) starting at \(y \). Call \(\alpha \) the maximal time length of a connected component of an arc of orbit crossing \(U_1 \), then
\[
\liminf_{T \to +\infty} \frac{1}{T} n(y, T, U_1) \geq \frac{\nu_x(U_1)}{\alpha},
\]
where \(n(y, T, U_1) \) is the number of times the arc of orbit starting at \(y \) of length \(T \), visits \(U_1 \). Corollary 4.3 implies that in between two conjugate points there must be a time \(t \) for which \(\Gamma_{\lambda_y,T}(t) \cap E \) is non-trivial. Hence, the last inequality imply that for \(\nu_x \)-a.e. \(y \) in \(\Sigma \) and for every \(\lambda_y \) in \(\Pi^{-1}(y) \) we have:
\[
\liminf_{T \to +\infty} \frac{1}{T} \sum_{\Gamma_{\lambda_y,T}(t) \cap \mathbb{E} \neq \{0\}} \dim(\Gamma_{\lambda_y,T}(t) \cap \mathbb{E}) \geq \frac{\nu_x(U_1)}{\alpha}.
\]
Hence, using Lemma 4.1:
\[
\mathcal{M}_E(\nu_x) \geq \frac{\nu_x(U_1)}{\alpha}.
\]
Integrating against \(\nu \), equation (13) yields:
\[
\mathcal{M}_E(\nu) \geq \frac{\nu(U_1)}{\alpha} > 0.
\]

4.5. Corollary.

Let \((H, \Sigma, \mathcal{E})\) be an optical Hamiltonian

with complete Hamiltonian flow and satisfying the bounding condition for \((\mathcal{E}, \mathcal{X})\). If the Liouville measure of \(\Sigma \) is finite, then the asymptotic Maslov index of the Liouville measure is nonzero \((\mathcal{M}(\bar{m}) > 0) \) if and only if \(\Sigma \) has conjugate points with respect to \(\mathcal{E} \).

In fact, the same result holds for any invariant probability \(\nu \) with \(\text{supp}(\nu) = \Sigma \).

We now give the first application of the asymptotic Maslov index.

Observe that when the energy level is compact and \(\omega^{n-1} \) is exact, by Corollary 3.2.(i), the Maslov index of the Liouville measure does not depend on the choice of Lagrangian section.
4.6. Proposition. Let \((M, g)\) and \((N, h)\) be two closed Riemannian manifolds. Suppose that there exists a contactomorphism between the unit sphere bundle of \(M\) and the unit sphere bundle of \(N\) which conjugates the geodesic flows of \(M\) and \(N\). Then \(\mathcal{M}_M(\bar{m}) = \mathcal{M}_N(\bar{m})\).

Proof: It is well known that the geodesic flow of a Riemannian manifold is optical with respect to the vertical section which is given by the kernel of the differential of the projection map from the tangent bundle to the manifold (see Section 5). By Corollary 3.2 and Remark 2.6 if there exists a contactomorphism between the unit sphere bundle of \(M\) and the unit sphere bundle of \(N\) which conjugates the geodesic flows, we have \(\mathcal{M}_M(\bar{m}) = \mathcal{M}_N(\bar{m})\). \(\square\)

4.7. Remark. In particular \(M\) has conjugate points if and only if \(N\) does. This was proved by C. Croke and B. Kleiner [9] under the much weaker assumption of the existence of a \(C^0\)-conjugacy between the geodesic flows. This naturally raises the question: is it true that the asymptotic Maslov index is an invariant of \(C^0\)-time preserving conjugacy?

We now give our main application of the asymptotic Maslov index.

4.8. Theorem. Let \((H, \Sigma, \mathbb{E})\) be an optical Hamiltonian with \(\Sigma\) compact and \(\omega_{n-1}\) exact. Assume that \(e : \Sigma \to \Lambda(\Sigma)\) is a continuous semi-conjugacy between the Hamiltonian flow \(\phi^t\) on \(\Sigma\) and its lift \(\Phi^t\) to \(\Lambda(\Sigma)\). Then

(a) \(\Pi(e(\Sigma))\) has no conjugate points.
(b) \(e(z) \cap \mathbb{E}(\Pi e(z)) = \{0\}\) for all \(z \in \Sigma\).

When \(e\) is a section (i.e. \(\Pi \circ e = id_\Sigma\)), R. Mañé [13] gave a proof of this theorem in the case of recurrent geodesic flows and G. Paternain and M. Paternain [16] proved it for convex Hamiltonians.

4.9. Remark. M. Bialy and L. Polterovich proved in [6] that if \(H : \mathcal{N} \to \mathbb{R}\) is proper,\(^8\) bounded from below and optical then \(H^{2n-2}(\mathcal{N}, \mathbb{R}) = 0\) for \(n \geq 3\) and therefore any closed \(2n - 2\) form is exact. This implies in particular the exactness of the form \(\omega^{n-1}\).

Proof of Theorem 4.8:

(a) Write \(f = \Pi \circ e\). Since \(e\) is a semi-conjugacy, the measure \(e_*\bar{m}\) is a \(\Phi^t\)-invariant lift of the push forward \(f_*\bar{m}\) of the Liouville measure \(\bar{m}\). Using (10), we have that

\[
\mathcal{M}_\mathbb{E}(f_*\bar{m}) = \int \eta_\mathbb{E}(\mathbb{X}) \, d(e_*\bar{m}) = \int \eta_\mathbb{E}(\mathbb{X} \circ e) \, d\bar{m} = \langle e^*\mathcal{M}_\mathbb{E}, S(\bar{m}) \rangle = 0,
\]

where \(e^*\mathcal{M}_\mathbb{E}\) is the cohomology class obtained from the map induced by \(\Sigma \xrightarrow{e} \Lambda(\Sigma)\) and the last equality follows from Proposition 3.1. (To see why the third equality holds when \(e\) is only continuous just view \(e^*\mathcal{M}_\mathbb{E}\) as the class of a function \(\Sigma \to S^1\)

\(^8\)In particular with compact energy levels.
differentiable along the flow and given by \(\psi \circ e \), where \(\psi : \Lambda(\Sigma) \to S^1 \) represents the Maslov class. Since \(\text{supp}(f, \bar{m}) = \Pi(e(\Sigma)) \), Theorem 4.4 completes the proof of (a).

(b) Write \(f = \Pi \circ e \). Suppose that \(e(z) \cap E(f(z)) \neq \{0\} \) for some \(z \in \Sigma \). Since \(H \) is optical, there exists a small flow box \(U \) for \(\phi_t \) containing \(z \) such that for every \(w \in U \), the path \(t \mapsto \Phi_t(e(w)) = e(\phi_t(w)) \) crosses the Maslov cycle at least once. Since almost every point for the Liouville measure is recurrent we can choose a point \(w \in U \) such that its orbit under \(\phi_t \) returns infinitely many times to \(U \). Therefore for \(T \) large enough the path \([0, T] \ni t \mapsto \Phi_t(e(w)) \) intersects the Maslov cycle at least \(n + 1 \) times. It follows from Theorem 4.2 that there must be conjugate points along the orbit of \(f(w) \). This contradicts (a). (Alternatively, instead of Theorem 4.2 we could have used Lemma 2.1 by taking \(T \) large enough so that the path \([0, T] \ni t \mapsto \Phi_t(e(w)) \) intersects the Maslov cycle at least \(8n + 1 \) times.)

When the energy level is non-compact the conclusion of Theorem 4.8 does not hold. An example is given by the geodesic flow of the paraboloid of revolution (cf. G. Paternain & M. Paternain [16]). In this case \(e = (X) \oplus (Y) \), is an invariant Lagrangian section, where \(X = \frac{\partial}{\partial t} \psi_t \) is the vector field of the geodesic flow and \(Y = \frac{\partial}{\partial t} dR_t \), where \(R_t \) is the flow on the paraboloid given by rotation isometries. However this example has infinite Liouville measure. In Appendix B, we give a more elaborate example that shows that the compactness hypothesis in Theorem 4.8 cannot be replaced just by finite Liouville measure.

4.4. Anosov Flows. A complete flow \(\phi^t \) on a manifold \(V \) is Anosov if there exists a continuous splitting of the tangent space over each point \(x \) in \(V \):

\[
TV_x = E^s_x \oplus E^u_x \oplus Y_x,
\]

where \(Y \) stands for the direction of the vector field induced by \(\phi^t \) such that, for some Riemannian metric on \(V \), \(d\phi^t|_{E^s} \) (resp. \(d\phi^t|_{E^u} \)) is uniformly exponentially contracting as \(t \) goes to \(+\infty\) (resp. \(-\infty\)).

Anosov flows possess a very rich and well understood dynamics and consequently, it is important to know whether the flow of a Hamiltonian which is complete on a regular energy level can be Anosov.

4.10. Lemma. Let \(\Sigma \) be a regular energy level with complete Hamiltonian flow \(\phi^t \) and finite Liouville measure such that the flow \((\Sigma, \phi^t)\) is Anosov. Then, for all \(x \) in \(\Sigma \), the spaces \(E^s_x := E^s_x \oplus Y_x \) and \(E^u_x := E^u_x \oplus Y_x \) are Lagrangian planes.

The proof is already standard in slightly different contexts. We give it here for sake of completeness and to make it fit with our hypotheses.

Proof: Since the sum of the dimensions of \(E^s_x \) and \(E^u_x \) is \(2n \), it is enough to prove that both spaces are isotropic. Actually, from the definition of the Hamiltonian vector field (7), \(\omega(Y_x, \cdot) \equiv 0 \) on \(\Sigma = H^{-1}(e) \), so we only have to prove that \(E^s_x \) and \(E^u_x \) are isotropic.
Choose a neighborhood U of the point x in Σ whose closure \bar{U} is compact. Recall that since the Liouville measure is finite, then \bar{m}-a.e. point is recurrent. Thus, it is possible to find a recurrent point z in U. We consider a sequence of times (t_n) such that t_n goes to $+\infty$ with n and $\phi^{t_n}(z)$ is in U. Choose now two vectors v_1 and v_2 in E^s_z. The quantity $\omega_{\phi^{t_n}(z)}(d\phi^{t_n}(v_1), d\phi^{t_n}(v_2))$ decreases in norm at least exponentially at n goes to $+\infty$ (since ω is bounded on \bar{U}). On the other hand the same quantity is independent on n since ϕ^t preserves ω. Thus $\omega_z(v_1, v_2) = 0$. A similar argument works for E^u_z. Since recurrent points are dense we get that E^s_x and E^u_x are isotropic for all x in Σ.

Lemma 4.10 shows that a prerequisite to find a flow ϕ^t of a Hamiltonian, complete and Anosov on a regular energy level Σ, is to find a continuous $d\phi^t$-invariant Lagrangian section e. Theorem 4.8 shows some clear obstructions to the existence of such sections when H is optical.

4.11. Corollary.

Let (Σ, H, E) be an optical Hamiltonian with Σ compact and ω^{n-1} exact and such that (Σ, ϕ^t) is Anosov. Then E^s and E^u are transversal to E and Σ has no conjugate points.

Corollary 4.11 was proved by W. Klingenberg [12] for geodesic flows on compact manifolds; by R. Mañé [13] for geodesic flows whose non-wandering set is the whole unit sphere bundle; and by G. Paternain and M. Paternain [16] for convex Hamiltonians.

APPENDIX A.

Convex Hamiltonians.

An important special class of optical Hamiltonians is given by convex Hamiltonians on the cotangent bundle T^*M.

Let M be a n-dimensional, connected manifold without boundary, $\mathcal{N} = T^*M$ its cotangent bundle and $\pi : \mathcal{N} \to M$ the standard projection. The cotangent bundle is equipped with a canonical 1-form, called the Liouville 1-form, defined by:

$$\Theta_p(\zeta) := p(d\pi(\zeta)),$$

for all $p \in T^*M$ and $\zeta \in T_pT^*M$. The 2-form $\omega = d\Theta$ is a symplectic form on \mathcal{N}. The Lagrangian Grassmann bundle $\Lambda(\mathcal{N})$ is also equipped with a canonical smooth section $V = \ker d\pi$, called the vertical section.

A Hamiltonian $H : T^*M \to \mathbb{R}$ is convex if for all $q \in M$, $p \in T^*_qM$, the Hessian matrix $\frac{\partial^2 H}{\partial p_i \partial p_j}(q, p)$ (calculated with respect to linear coordinates on T^*_qM) is positive definite. Convex Hamiltonian systems play a central role in physics and have been extensively studied.

\footnote{In this situation, ω^{n-1} is exact.}
A.1. Lemma ([5]).

A convex Hamiltonian is optical with respect to the vertical section \(\mathcal{V} \).

Proof: Locally \((T^*M, \omega, \mathcal{V})\) can be identified with \((\mathbb{R}^{2n}, dp \wedge dq, q = 0)\). We consider a Lagrangian plane in the train of the plane \(q = 0 \) and in order to fix the notations, we assume that \(\dim(\lambda \cap \mathcal{V}) = k \) (notice that it is not restrictive to assume also that \(\lambda \cap [p = 0] = \{0\} \)). As we already saw in Section 1, \(\lambda \), written in coordinates is a graph:

\[
\lambda = \{ q = Ap | p \in \mathbb{R}^n \},
\]

where \(A \) is a (symmetric) linear map, \(A : \mathbb{R}^n \to \mathbb{R}^n \).

Then \(\lambda \cap \mathcal{V} = \{ (q, p) | q = 0, p \in \ker A \} \). Consider now a curve \(t \mapsto \lambda(t) \) passing through \(\lambda \) at \(t = 0 \) and write \(\lambda(t) = S(t)\lambda \) with

\[
S(t) = \begin{bmatrix} a(t) & b(t) \\ c(t) & d(t) \end{bmatrix}.
\]

The symmetric two-form \(\beta_{\lambda, \lambda'}(0)|_{\lambda \cap \mathcal{V}} \) reads:

\[
\beta_{\lambda, \lambda'}(0)|_{\lambda \cap \mathcal{V}}(\xi, \xi) = p^\top \dot{b}(0) p,
\]

where \(p \in \ker A \) is the unique vector in \(\mathbb{R}^n \) such that \(\xi = (0, p) \).

The Hamiltonian vector field (7) is given by \(X = (H_p, -H_q) = (\dot{q}, \dot{p}) \). From the equation \(\frac{d}{dt} d\psi_t = DX \cdot d\psi_t \), we get that the orbit of the Lagrangian plane \(\lambda \) under the lifted Hamiltonian flow is a curve \(t \mapsto S(t)\lambda \) passing through \(\lambda \) at \(t = 0 \) such that:

\[
S'(t) = DX = \begin{bmatrix} H_{pq} & H_{pp} \\ -H_{qq} & -H_{qp} \end{bmatrix}.
\]

In particular \(\dot{b}(0) = H_{pp} \) is positive definite.

\(\square \)

A.2. Remark. Notice that our definition of \(\mathcal{V} \)-conjugate points coincides with the usual definition of conjugate points for convex Hamiltonians and also with the more standard definition that uses Jacobi fields.

In the case of convex Hamiltonians, Theorem 4.8 can be improved as follows:

A.3. Corollary. Assume that \(\phi^t \) is a convex Hamiltonian flow on a regular energy level \(\Sigma \subset T^*M \) with \(\Sigma \) compact. If there is a continuous \(\Phi^t \)-invariant Lagrangian section \(e : \Sigma \to \Lambda(\Sigma) \), then

(a) \(\Sigma \) has no conjugate points.

(b) \(e(z) \cap \mathcal{V}(z) = \{0\} \) for all \(z \in \Sigma \).

(c) \(\pi(\Sigma) = M \).

The fact that item c) is a necessary condition for the existence of an Anosov flow on energy levels was first observed in [16].

Proof: We only have to prove item (c). We have to show that the map \(\pi : \Sigma \to M \) is a submersion since in such a case, \(\pi(\Sigma) \) is open and closed on \(M \) (which is connected) and then equal to \(M \). Note that the existence of a continuous \(d\phi^t \)-invariant Lagrangian section \(e \) implies the existence of a continuous \(d\phi^t \)-invariant
Lagrangian section \mathcal{F} such that for all x in Σ, $\mathcal{F}_x \subset T\Sigma_x$. Indeed, this section \mathcal{F} is defined by $\mathcal{F}_x = e(x) \cap T\Sigma_x \oplus Y(x)$ where $Y(x)$ is the direction in $T\Sigma_x$ tangent to the flow ϕ^t. Let x be a point in Σ where π is not a submersion. Then $\mathcal{V}_{x_0} \subset T\Sigma_{x_0}$ and consequently:

$$\dim \mathcal{V}_{x_0} \cap \mathcal{F}_{x_0} \geq 1,$$

a contradiction with (b).

In the previous Corollary the proof of item (a) is even simpler than that in Theorem 4.8: observe that $e_*\bar{m}$ is an invariant lift of \bar{m} whose support is disjoint from the section $J e$. By the invariance of the asymptotic Maslov index with respect to the section (cf. Corollary 3.2.(ii)), $\mathcal{M}_V(\bar{m}) = \mathcal{M}_{Je}(\bar{m}) = 0$. Now use Theorem 4.4.

APPENDIX B.

The aim of this appendix is to prove the following result:

B.1. Theorem. There exists a convex Hamiltonian on a surface with a regular energy level that satisfies the following properties:

(a) the flow is complete on this energy level;
(b) the Liouville measure of the energy level is finite;
(c) there exists a smooth invariant Lagrangian section;
(d) every orbit in the energy level has conjugate points.

We know from Theorem 4.8 that if a compact energy level of a convex Hamiltonian admits a continuous invariant Lagrangian section, then there are no conjugate points in the level. On the other hand, it is also known (see [16]) that this result extends to a special class of Hamiltonians (namely the symmetric Hamiltonians) when the energy level is not compact but has a finite Liouville measure. Theorem B.1 shows that the symmetry in the Hamiltonian cannot be removed.

B.1. Magnetic flows in general. Let M^n be a closed n-dimensional manifold endowed with a C^∞ Riemannian metric g, and let $\pi : TM \to M$ be the canonical projection. The symplectic form on TM obtained by pulling back the canonical symplectic form of T^*M via the Riemannian metric is denoted by ω_0. Consider a closed 2-form Ω of M and the new symplectic form ω_1 defined by:

$$\omega_1 := \omega_0 + \pi^* \Omega.$$

The 2-form ω_1 is a symplectic form. We say that it defines a *twisted symplectic structure*.

Let $E : TM \to \mathbb{R}$ be given by

$$E(x, v) = \frac{1}{2} g_x(v, v).$$
The Hamiltonian flow of E with respect to ω_1 models the motion of a particle of unit mass and charge under the effect of a magnetic field, whose Lorentz force $Y : TM \to TM$ is the bundle map determined by:

$$\Omega_x(u, v) = g_x(Y_x(u), v),$$

for all $x \in M$ and all u and v in T_xM. In other words, the curve

$$t \mapsto (\gamma(t), \dot{\gamma}(t)) \in TM$$

is an orbit of the Hamiltonian flow iff

$$\frac{D\dot{\gamma}}{dt} = Y_\gamma(\dot{\gamma}),$$

where D stands for the covariant derivative of g. The Hamiltonian flow of E with respect to ω_1 leaves the unit sphere bundle $SM = E^{-1}(1/2)$ invariant and therefore it defines a flow

$$\phi^t : SM \to SM,$$

that we call the magnetic flow of the pair (g, Ω). The magnetic flow of the pair $(g, 0)$ is the geodesic flow of the Riemannian metric g. A curve γ that satisfies (17) will be called a magnetic geodesic.

B.2. Remark.

The magnetic flow is locally conjugate to the Lagrangian flow of the Lagrangian $L(x, v) = \frac{1}{2} \langle v, v \rangle_x + \eta_x(v)$, where $\eta_x(v)$ is a local 1-form such that $d\eta = \Omega$. The conjugacy preserves the vertical section. This Lagrangian flow, in turn, is conjugate to the Hamiltonian flow of the convex Hamiltonian $H(x, p) = \frac{1}{2} \|p - \eta_x\|^2_x$, in T^*M with the canonical symplectic structure. In particular the twisted geodesic flow is optical with respect to the vertical section. A computation also shows that the Liouville measure on a regular energy level of the twisted geodesic flow coincides with the Liouville measure on a regular energy level of the geodesic flow itself.

B.2. Magnetic flows for constant fields on rotationally symmetric surfaces.

Let M be an oriented surface. Given $(x, v) \in SM$, let iv be the unique vector in T_xM such that $\{v, iv\}$ is a positively oriented orthonormal basis of T_xM. The area form Ω is given by

$$\Omega_x(u, v) = g_x(iu, v),$$

hence the Lorentz force Y is given by

$$Y_x(v) = iv.$$

Define the λ-magnetic flow as the magnetic flow of $(g, \lambda \Omega)$. It follows from equation (17) that $t \mapsto \gamma(t)$ is a λ-magnetic geodesic iff:

$$\frac{D\dot{\gamma}}{dt} = \lambda i\dot{\gamma},$$

In other words, γ is a λ-magnetic geodesic iff γ has constant geodesic curvature λ.

Suppose now that $M = \mathbb{R} \times S^1$ is a rotationally symmetric surface, i.e. if (s, φ) are the obvious coordinates in M, then the Riemannian metric of M in these coordinates has the expression:

$$g = ds^2 + r(s)^2 d\varphi^2,$$

where $r : \mathbb{R} \to (0, \infty)$ is a smooth function.

We orient S^1 counterclockwise and we give M the product orientation. This means that

$$\left\{ \frac{\partial}{\partial s}, \frac{\partial}{\partial \varphi} \right\}$$

is a positively oriented basis of M and hence the area form Ω is given by

$$\Omega = r \, ds \wedge d\varphi.$$

Define

$$R(s) := \int_0^s r(u) \, du.$$

B.3. Lemma. A curve $t \mapsto (s(t), \varphi(t))$ is a λ-magnetic geodesic iff

$$\ddot{s} = r \dot{\varphi} (r' \dot{\varphi} - \lambda)$$

$$\frac{d}{dt} \left(r^2 \dot{\varphi} - \lambda R \right) = 0,$$

where dot indicates derivative with respect to t and prime indicates derivative with respect to the s-parameter.

In particular the quantity $r(s)^2 \dot{\varphi} - \lambda R(s)$ is a first integral of the flow called the Clairaut integral.

Proof: Let us consider the Lagrangian:

$$L(s, \varphi, \dot{s}, \dot{\varphi}) = \frac{1}{2} \left(\dot{s}^2 + r(s)^2 \dot{\varphi}^2 \right) - \lambda R(s) \dot{\varphi}.$$

Note that

$$d(R \, d\varphi) = r \, ds \wedge d\varphi = \Omega.$$

Hence the extremals of L are the λ-magnetic geodesics. The lemma follows from a simple computation derived from the Euler-Lagrange equations:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{s}} \right) - \frac{\partial L}{\partial s} = 0$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\varphi}} \right) - \frac{\partial L}{\partial \varphi} = 0.$$

B.4. Lemma.
The parallel \(t \mapsto (s_0, at) \) \((a \neq 0)\) is a unit speed \(\lambda \)-magnetic geodesic iff

\[
|a^{-1}| = r(s_0) \\
\frac{r'(s_0)}{r(s_0)} = \pm \lambda,
\]

where the positive sign holds if \(a > 0 \) and the negative signs holds if \(a < 0 \).

Proof: The parallel has unit speed iff \(r^2(s_0) a^2 = 1 \). Using Lemma B.3 we see that the parallel is a \(\lambda \)-magnetic geodesic iff \(r'(s_0) a = \lambda \).

Let \(\theta \in [0, \pi] \) be the angle that a unit speed \(\lambda \)-magnetic geodesic makes with the parallel \(t \mapsto (s, t/r(s)) \) at the point \((s, \varphi)\). We have:

\[
r \cos \theta = r^2 \varphi,
\]

and therefore the Clairaut integral from Lemma B.3 reads:

\[
r \cos \theta - \lambda R = c, \tag{18}\]

where \(c \) is a constant that depends only on the \(\lambda \)-magnetic geodesic.

Define

\[
f_{+,\lambda}(s) := r(s) - \lambda R(s), \\
f_{-\lambda}(s) := -r(s) - \lambda R(s),
\]

B.5. Lemma. Suppose that there exists a \(\lambda \)-magnetic geodesic for which \(\theta = 0 \) at values \(r(s_1) \) and \(r(s_2) \) with \(s_1 < s_2 \). Then there exists \(s_0 \in (s_1, s_2) \) on which \(f_{+,\lambda} \) has a local maximum and such that the parallel \(t \mapsto (s_0, t/r(s_0)) \) is a \(\lambda \)-magnetic geodesic.

Similarly, suppose that there exists a \(\lambda \)-magnetic geodesic for which \(\theta = \pi \) at values \(r(s_1) \) and \(r(s_2) \) with \(s_1 < s_2 \). Then there exists \(s_0 \in (s_1, s_2) \) on which \(f_{-,\lambda} \) has a local minimum and such that the parallel \(t \mapsto (s_0, -t/r(s_0)) \) is a \(\lambda \)-magnetic geodesic.

Proof: We only give here a proof of the first statement (the proof of the second one is completely analogous).

If for all \(s \in (s_1, s_2) \) the \(\lambda \)-magnetic geodesic is always tangent to the parallel at \(s \) the parallel is an integral curve and the lemma is proved. If not, there exists \(s_3 \in (s_1, s_2) \) such that the angle \(\theta_3 \) at which the \(\lambda \)-magnetic geodesic crosses the parallel at \(s_3 \) is not zero and then \(\cos \theta_3 < 1 \).

Since \(r(s_3) > 0 \), using the Clairaut integral (Lemma B.3), we get:

\[
f_{+,\lambda}(s_3) > f_{+,\lambda}(s_1) = f_{+,\lambda}(s_2).
\]

Consequently there exists \(s_0 \in (s_1, s_2) \) such that \(f_{+,\lambda} \) presents a local maximum at \(s_0 \). But

\[
f'_{+,\lambda}(s) = r'(s) - \lambda r(s) = r(s) \left(\frac{r'(s)}{r(s)} - \lambda \right),
\]
Hence \(f'_+(s_0) = 0 \) iff \(\frac{r'(s_0)}{r(s_0)} = \lambda \). By Lemma B.4 this implies that the parallel \(t \mapsto (s_0, t/r(s_0)) \) is a \(\lambda \)-magnetic geodesic.

B.3. **Proof of Theorem B.1.** The example that achieves the properties described in Theorem B.1, is choosen among \(\lambda \)-magnetic flows associated to rotationally symmetric surfaces.

Let us first construct the rotationally symmetric surface. Consider a smooth function \(u : \mathbb{R} \to \mathbb{R} \) with the following properties:

1. \(u \) is odd i.e. \(u(s) = -u(-s) \) for all \(s \in \mathbb{R} \);
2. For all \(s \in \mathbb{R} \), \(-1 < u(s) < 1 \).
3. For all \(s > 3 \), \(u(s) = -2/s \).

Now let \(r(s) : \mathbb{R} \to (0, \infty) \) be defined by
\[
\frac{r'(s)}{r(s)} = u(s),
\]
\[
r(0) = r_0 > 0.
\]

In other words,
\[
r(s) = r_0 \exp \left(\int_0^s u(t) \, dt \right).
\]

Observe that \(r(s) \) is an even function of \(s \) and that for \(s > 3 \) we have
\[
r(s) = r(3) \frac{9}{s^2}. \tag{19}
\]

Let \(M = \mathbb{R} \times S^1 \) be the rotationally symmetric surface determined by such a function \(s \mapsto r(s) \). The estimate (19) implies that the area of \(M \) is finite:
\[
\int_M \Omega = 2\pi \int_{-\infty}^{+\infty} r(s) \, ds = 4\pi R(+\infty).
\]

Consequently (using Remark B.2) the Liouville measure of the \(\lambda \)-magnetic flow on the unit tangent bundle \(SM \) is also finite. This ensures item (b) of Theorem B.1.

We consider now the \(\lambda \)-magnetic flow on \(SM \) which corresponds to \(\lambda = 1 \) and prove items (a), (c) and (d) for this particular flow.

Since the vector field generated by the circle action is tangent to the energy levels, above each point in \(SM \) the vector space generated by the magnetic vector field and the vector field generated by the circle action is isotropic. Since \(u(s) \in (-1, 1) \), Lemma B.4 ensures that no parallel is a magnetic geodesic. In other words, no magnetic geodesic is an orbit of the circle action and consequently we have constructed an invariant Lagrangian section \(E \) spanned by the magnetic vector field and the lift of the circle action that generates the symmetry. This ensures item (c) of Theorem B.1.

Observe that the Clairaut integral \(C : SM \to \mathbb{R} \) and the lagrangian section \(E \) satisfy
\[
E(x, v) = \ker d_{(x,v)}C.
\]
for all points \((x, v)\) in \(SM\). In particular \(C\) does not have critical points\(^{10}\).

Notice that
\[
f_{-1}(s) \leq C(s, \varphi, \dot{s}, \dot{\varphi}) \leq f_{+1}(s),
\]
for all \(s \in \mathbb{R}\) and that \(f_{-1}\) and \(f_{+1}\) are strictly decreasing functions which have the same finite limit when \(s \to +\infty\) (resp. when \(s \to -\infty\)). Hence the projection to \(M\) of any level set of \(C\) has to be contained in a compact set. Therefore this level set is compact and hence its connected components are finitely many tori. In conclusion the energy level \(SM\) is foliated by tori on which the Clairaut integral is constant. This implies in particular that the magnetic vector field is complete: the item (a) of Theorem B.1.

\[\text{Figure 1. The figure on the left hand side shows a typical geodesic while the figure on the right hand side shows a typical magnetic geodesic that "curls".}\]

Actually it is possible to give a better visualization of the dynamical behavior of the magnetic flow: The connected components of the level sets of the Clairaut integral \(C\) are 2-tori that project on \(M\) onto strips bounded by two parallels. The magnetic geodesics on these tori oscillate between these two parallels. The difference with the case of the geodesic flow of a surface of revolution comes from the fact that in our example a parallel cannot be a magnetic geodesic. It follows from Lemma B.5 that a magnetic geodesic makes an angle \(\theta = 0\) with the bottom parallel and an angle \(\theta = \pi\) with the top one. In other words it "curls" like in Figure B.3.

Let us prove now item (d) of Theorem B.1. More precisely let us show that every magnetic geodesic has conjugate points.

Consider a magnetic geodesic. The invariant section \(E\) (spanned by the magnetic vector field and the vector field induced by the circle action) intersects non trivially the vertical fibers above the points of the magnetic geodesic at which the latter is tangent to the parallels. Consequently, by Lemma 2.1 the magnetic geodesic has conjugate points.

\(^{10}\)The image by the derivative \(dC\) of a tangent vector to a meridian is non-zero.
References

CIMAT, A.P. 402, 36.000 Guanajuato, Gto., México

E-mail address: gonzalo@cimat.mx

Laboratoire de Topologie, UMR du CNRS 5584, Université de Bourgogne, BP 47870 - 21078 Dijon, France

E-mail address: gambaudo@u-bourgogne.fr

E-mail address: renato@cimat.mx

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, CB3 0WB, UK

E-mail address: g.p.paternain@dpmms.cam.ac.uk