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Abstract

In this informal note, we demonstrate the existence of forking and nondividing formulas in
continuous theory of the complete Urysohn sphere, as well as the discrete theories of the integral
Urysohn spaces of diameter n (where n ≥ 3). Whether or not such formulas existed was asked
in thesis work of the author, as well as joint work with Terry. We also show an interesting
phenomenon in that, for n = 3, forking and dividing over ∅ are the same for formulas in the
integral Urysohn sphere of diameter n, while this is not the case for (at least) n ≥ 8.

1 Introduction

A broad question one can ask about a complete first-order theory T is whether or not forking is
the same as dividing. This question can be focused in a few specific ways including:

1. Are forking and dividing the same for any formula over any set of parameters?

2. Are forking and dividing the same for any complete type over any set of parameters?

3. Given a fixed set of parameters C, are forking and dividing over C the same for any formula?

4. Given a fixed set of parameters C, are forking and dividing over C the same for any complete
type?

In a simple theory, we have the strongest answer, which says that forking and dividing are the
same for any formula over any set of parameters. This is generalized to NTP2 theories as follows.

Theorem 1.1 (Chernikov-Kaplan [2]). Suppose T is NTP2 and C ⊂ M is a set of parameters.
The following are equivalent.

(i) For any formula ϕ(x, y) and b ∈M, ϕ(x, b) forks over C if and only if ϕ(x, b) divides over C.

(ii) C is an extension base for non-forking, i.e., if p ∈ Sn(C) then p does not fork over C.

Recall that, in any theory, every set of parameters C is an extension base for non-dividing. So
(i) ⇒ (ii) is true without the assumption of NTP2. There are many classes of NTP2 theories in
which all sets are extension bases for non-forking (e.g. simple theories and o-minimal theories). On
the other hand, the canonical example of a theory in which some sets fail to be extension bases for
non-forking is the cyclic order on the rationals, which is NTP2 (in fact NIP).

In [3] I showed that, for any fixed n ≥ 3, if Tn is the theory of the generic Kn-free graph then
all sets of parameters are extension bases for non-forking, but there are forking and non-dividing
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formulas. Therefore, it is unclear whether there are generalizations of Chernikov and Kaplan’s
result to other classes of theories defined by the usual combinatorial dividing lines. In particular,
Tn has SOP3, so perhaps the following question still has a positive answer.

Question 1.2. Does the analog of Theorem 1.1 hold for NSOP3 theories? Or even just NTP1?

On the other hand, my work in [3] also showed that, in Tn, we still have a bit more good
behavior beyond just the fact that any set is an extension base for non-forking. In particular, we
have a positive answer to one of the other variations of the main question given above.

Theorem 1.3 (Conant [3]). If n ≥ 3 then, in Tn, forking and dividing are the same for any
complete type over any set of parameters.

Altogether, Tn becomes the first example of a complete theory in which forking and dividing
are the same for complete types, but not for formulas.

This also motivates the following question, which asks for a weaker version of Chernikov and
Kaplan’s result. As far as I know, this question is still open.

Question 1.4. Suppose T is a complete theory in which all sets are extension bases for non-forking.
Are forking and dividing the same for complete types (over any set of parameters)?

Even if this question has a negative answer, one can still relativize it to certain classes (e.g.
NSOP or NSOPn for some n ≥ 3).

2 A properly forking formula in the continuous theory of the
Urysohn sphere

In joint work with Caroline Terry [5], we show that in the theory of the complete Urysohn sphere
in continuous logic, there is similar behavior as in the generic Kn-free graphs.

Theorem 2.1 (Conant-Terry [5]). If T is the theory of the complete Urysohn sphere in continuous
logic, then forking and dividing are the same for any complete type over any set of parameters.

We then ask the obvious question:

Question 2.2. [5] Are forking and dividing the same for formulas in the theory of the complete
Urysohn sphere (in continuous logic)?

My suspicion was that the Urysohn sphere should behave like the generic Kn-free graphs, and
the answer to this question should be no. In this note, I will show this is indeed the case. I will also
note some other interesting examples and behavior found in the discrete “generalized” Urysohn
spaces I studied in my thesis [4]. At the moment, the only purpose of writing this down seems
to be to satisfy my own curiosity. However, I still believe there is interesting content to the main
question (Question 1.4), and its variants.

Let T be the theory of the complete Urysohn sphere considered as a continuous first-order
structure in the “empty” continuous language containing only the distance function. Let U denote
a sufficiently saturated monster model of T . For the rest of the note, we use letters a, b, c, . . . only
for singletons. In this section, + denotes truncated addition on [0, 1].
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Definition 2.3. Fix C ⊂ U and b1, b2 ∈ U. Define

dmax(b1, b2/C) = inf
c∈C

(d(b1, c) + d(c, b2))

dmin(b1, b2/C) = max

{
1
3d(b1, b2), sup

c∈C
|d(b1, c)− d(c, b2)|

}
.

By convention, sup ∅ = 0 and inf ∅ = 1.

Lemma 2.4 (Conant-Terry [5]). Fix C ⊂ U, b1, b2 ∈ U, and γ ∈ [0, 1]. The following are equivalent.

(i) There is a C-indiscernible sequence (bi1, b
i
2)i<ω such that (b01, b

0
2) = (b1, b2) and d(b01, b

1
2) = γ.

(ii) dmin(b1, b2/C) ≤ γ ≤ dmax(b1, b2/C).

Given r ∈ [0, 1], define the formula dr(x, y) = |d(x, y) − r|. In particular, if a, b ∈ U then
dr(a, b) = 0 if and and only if d(a, b) = r.

Define the formula ϕ(x, y1, y2) = max(d1(x, y1), d 1
2
(x, y2)).

Proposition 2.5. If b1, b2 ∈ U and d(b1, b2) = 1 then ϕ(x, b1, b2) divides over ∅.

Proof. We have dmin(b1, b2) = 1
3 and dmax(b1, b2/∅) = 1. By Lemma 2.4, there is an indiscernible

sequence (bi1, b
i
2)i<ω such that (b01, b

0
2) = (b1, b2) and d(b01, b

1
2) = 1

3 . To show ϕ(x, b1, b2) divides over
∅, we show {ϕ(x, b01, b

0
2) = 0, ϕ(x, b11, b

1
2) = 0} is inconsistent. If a realizes this type, then

1 = d(a, b01) ≤ d(a, b12) + d(b01, b
1
2) = 1

2 + 1
3 ,

which is a contradiction.

Now define the formula ψ(x, y1, y2, y3, y4) = mini 6=j ϕ(x, yi, yj).

Proposition 2.6. Fix a tuple b̄ = (b1, b2, b3, b4) ∈ U such that d(bi, bj) = 1 for all i 6= j. Then
ψ(x, b̄) forks over ∅, but does not divide over ∅.

Proof. By Proposition 2.5, ψ(x, b̄) forks over ∅. To show ψ(x, b̄) does not divide over ∅, we fix an
indiscernible sequence b̄n)n<ω, with b̄0 = b̄, and show {ψ(x, b̄n) = 0 : n < ω} is consistent.

First, we claim that there are 1 ≤ i < j ≤ 4 such that d(b0i , b
1
j ) ≥ 1

2 and d(b0j , b
1
i ) ≥ 1

2 . Suppose

this fails. Without loss of generality, assume d(b01, b
1
2) <

1
2 . Considering the triangle (b01, b

1
2, b

0
3), it

follows that d(b12, b
0
3) >

1
2 and so, by assumption d(b02, b

1
3) <

1
2 . By a similar argument, d(b03, b

1
4) <

1
2 .

Considering the triangle (b01, b
1
4, b

0
3), it follows that d(b01, b

1
4) >

1
2 and so, by assumption, d(b11, b

0
4) <

1
2 .

Considering the triangle (b01, b
1
3, b

0
2), we must have d(b01, b

1
3) >

1
2 and so, by assumption, d(b11, b

0
3) <

1
2 .

This contradicts the triangle (b11, b
0
3, b

0
4).

Fix 1 ≤ i < j ≤ 4 as above. By indiscernibility d(bmi , b
n
j ) ≥ 1

2 for all m,n < ω. By the triangle

inequality, there is a point a ∈ U such that d(a, bni ) = 1 and d(a, bnj ) = 1
2 for all n < ω. Then a

realizes {ϕ(x, bni , b
n
j ) = 0 : n < ω} and therefore realizes {ψ(x, b̄n) = 0 : n < ω}.

3 Properly forking formulas in generalized Urysohn spaces

At the end of [5], we discuss certain discrete analogs of the Urysohn sphere, which are well suited
for the study of relational structures in classical first-order logic. Specifically, given an integer
n > 0, one can define the integral Urysohn space with diameter n, i.e. the Fräıssé limit of the class
of finite metric spaces with distances in {0, 1, . . . , n}. This structure is also called the free nth root
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of the complete graph by Casanovas and Wagner [1]. For example, if n = 1 this structure is just an
infinite complete graph, and if n = 2 it is the same as the random graph.

The work in [5] can be adapted to these discrete Urysohn spaces. In particular, given n > 0,
let Tn be the theory of the integral Urysohn space with diameter n, in a finite relational language
Ln = {d0(x, y), . . . , dn(x, y)}, where dt(x, y) is interpreted as distance t. Then Tn has quantifier
elimination and, adapting the results of [5], it follows that forking and dividing are the same for
complete types in Tn (over any set of parameters). This is shown explicitly and in much greater
generality in my thesis [5] (see final discussion below).

Again, the natural question is whether forking and dividing are the same for formulas. From
the observations above, we see that Tn is simple with n ∈ {1, 2}, and so the question has a positive
answer for these cases because of general simplicity theory. However, Tn is not simple if n ≥ 3 (see
[1]). In fact, for n ≥ 3, Tn has SOPn and NSOPn+1 (see [5] or [4]). Once again, my suspicion was
that forking and dividing should not be the same for formulas in Tn, when n ≥ 3.

The most obvious approach to verify this would be to generalize the example in the previous
section. However, somewhat surprisingly, this doesn’t work. In fact, as I will show below, forking
and dividing over ∅ are the same for formulas in T3. One can still construct an example of a
properly forking formula, but parameters are necessary. On the other hand, if n = 6 or n ≥ 8,
then the example from the previous section can be adapted to Tn after replacing 1, 1

2 , and 1
3 by,

respectively, n, dn2 e, and dn3 e (one also needs the analog of Lemma 2.4, which I will discuss in the
next paragraph).

Given n > 0, let Un be a sufficiently saturated model of Tn. I will show that, if n ≥ 3, then
there is a suitable parameter set C ⊂ Un and a formula that properly forks over C. The only
tool we need is the analog of Lemma 2.4, which is obtained using the natural adaptations of dmax

and dmin to Un. These are defined using addition truncated at n and, for b1, b2 ∈ Un, replacing
1
3d(b1, b2) with dd(b1,b2)3 e. We also use the convention sup ∅ = 0 and inf ∅ = n.

Fix n ≥ 3, and work in Tn. Let ϕ(x, y1, y2) be the formula d1(x, y1) ∧ d3(x, y2).

Proposition 3.1. Suppose b1, b2 ∈ Un and C ⊂ Un are such that

(i) d(b1, b2) = 3,

(ii) there are distinct c1, c2 ∈ C with d(bi, ci) = 1 for i ∈ {1, 2},

(iii) d(c, c′) = 2 for any distinct c, c′ ∈ C,

(iv) d(bi, c) = 2 for any i ∈ {1, 2} and c ∈ C with c 6= ci.

Then ϕ(x, b1, b2) divides over C.

Proof. First, define a sequence (bl1, b
l
2)l<ω such that b̄l ≡C b̄l for all l < ω and

• d(bli, b
m
2 ) = 1 for all l < m < ω,

• d(bli, b
m
j ) = 2 for all l < m < ω and (i, j) 6= (1, 2).

If this sequence satisfies the triangle inequality, then it is an indiscernible sequence in Un. Since all
distances in the sequence are among {1, 2, 3}, the only possible violation of the triangle inequality
would occur from a triangle with distances (1, 1, 3). Suppose {u, v, w} is such a triangle. Then
there are l < m such that bl1, b

m
2 ∈ {u, v, w}; say {u, v} = {bl1, bm2 }. If d(bl1, w) = 1 then w = bk2 for

some k > l, contradicting d(w, bm2 ) = 3. If d(bm2 , w) = 1 then w = bk1 for some k < m, contradicting
d(w, bl1) = 3.

Finally, we show ϕ(x, b01, b
0
2) ∧ ϕ(x, b11, b

1
2) is inconsistent. Indeed, if a realizes this formula the

{a, b01, b12} is a triangle with distances (1, 1, 3).
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Proposition 3.2. Fix b̄ = (b1, b2, b3, b4) ∈ Un, with d(bi, bj) = 3 for all i 6= j. Let C =
{c1, c2, c3, c4} ⊂ Un be such that d(bi, ci) = 1 for all i ≤ 4, d(ci, cj) = 2 for all i 6= j, and
d(bi, cj) = 2 for all i 6= j. Define the formula

ψ(x, b̄) =
∨
i 6=j

ϕ(x, bi, bj).

Then ϕ(x, b̄) forks over C but does not divide over C.

Proof. For any i 6= j, (bi, bj) and C satisfy the conditions of Proposition 3.1, and so ϕ(x, bi, bj)
divides over C. Therefore ψ(x, b̄) forks over C.

Fix a C-indiscernible sequence (b̄l)l<ω, with b̄0 = b̄. By similar deductions as in the proof of
Proposition 2.6, we may fix 1 ≤ i < j ≤ 4 such that d(b0i , b

1
j ) ≥ 2 and d(b0j , b

1
i ) ≥ 2. Considering

the triangles {b0i , b1j , ci} and {b0j , b1i , cj}, it follows that d(b0i , b
1
j ), d(b0j , b

1
i ) ∈ {2, 3}. We claim that

there is some a ∈ Un such that d(a, bli) = 1 and d(a, blj) = 3 for all l < ω. For if not then, again,

there must be a triangle with distances (1, 1, 3). This triangle must be of the form {a, bli, bmi } for
some l < m < ω, with d(a, bli) = d(a, bmi ) = 1 and d(bli, b

m
i ) = 3. But this contradicts

d(bli, b
m
i ) ≤ d(bli, ci) + d(bmi , ci) = d(bi, ci) + d(bi, ci) = 2.

We have found a realization of {ϕ(x, bli, b
l
j) : l < ω}, which therefore realizes {ψ(x, b̄l) : l < ω}.

This shows that ψ(x, b̄l) does not divide over C.

Finally, we prove the curious result mentioned earlier that, at least in the case n = 3, the
nonempty parameter C is necessary.

Proposition 3.3. Suppose ϕ1(x̄, ȳ), . . . , ϕk(x̄, ȳ) are formulas (possibly with suppressed parame-
ters), and b̄ ∈ U3 is such that ϕt(x̄, b̄) divides over ∅ for all 1 ≤ t ≤ k. Let ψ(x̄, ȳ) =

∨k
t=1 ϕt(x̄, ȳ).

Then ψ(x̄, b̄) divides over ∅.

Proof. Fix 1 ≤ t ≤ k. We first show that ϕt(x̄, b̄) `
∨

i,j d(xi, bj) ≤ 1. Suppose not, and fix a

tuple ā ∈ U3 such that U3 |= ϕt(ā, b̄) and d(ai, bj) ≥ 2 for all i, j. Let (b̄l)l<ω be a C-indiscernible
sequence, with b̄l = b̄. We will find a tuple ā∗ such that ā∗b̄l ≡C āb̄ for all l < ω, which contradicts
the assumption that ϕt(x̄, b̄) divides over C. Suppose no such ā∗ exists. Then the type

{d(xi, b
l
j) = d(ai, bj) : l < ω, i ≤ |ā|, j ≤ |b̄|} ∪ {d(xi, c) = d(ai, c) : c ∈ C, i ≤ |ā|}

is inconsistent and therefore implies some violation of the triangle inequality. Since d(ai, bj) ≥ 2 for
all i, j, it follows that the violation of the triangle inequality involves at most one blj in

⋃
l<ω b̄

l. By

indiscernibility, this implies a violation of the triangle inequality among the points in āb̄C, which
is a contradiction.

Altogether, we have shown
∨k

t=1 ϕt(x̄, b̄) `
∨

i,j d(xi, bj) ≤ 1. Therefore, it suffices to show∨
i,j d(xi, bj) ≤ 1 divides over ∅.

Let (b̄l)l<ω be a sequence such that b̄l ≡ b̄ and d(bli, b
m
j ) = 3 for all l < m < ω and i, j ≤ |b̄|.

Note that this is an indiscernible sequence. Suppose, toward a contradiction, that there is a tuple
ā ∈ U3 such that U3 |=

∨
i,j d(ai, b

l
j) ≤ 1 for all l < ω. For each l < ω, there are il, jl ≤ |b̄| such

that d(ail , b
l
jl

) ≤ 1. By pigeonhole, there are l < m < ω such that i := il = im. Then the triangle

{ai, bljl , b
m
jm
} has distances (1, 1, 3), which is a contradiction. Altogether, {

∨
i,j d(xi, b

l
j) ≤ 1 : l < ω}

is inconsistent, and so
∨

i,j d(xi, bj) ≤ 1 divides over ∅.
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In my thesis, I studied the model theory of generalized Urysohn spaces in much larger generality.
Specifically, I developed a general framework for studying the Urysohn space over an arbitrary
countable linearly ordered commutative monoid with least element 0 (or distance monoid for short).
Such a monoid, denotedR = (R,⊕,≤, 0), serves as the set of distances for the “generalized Urysohn
space over R”, denoted UR. For example, if n > 0 and R = ({0, 1, . . . , n},+n,≤, 0), where +n

is addition truncated at n, then UR is the integral Urysohn space of diameter n described above.
Similarly, (Q≥0,+,≤, 0) yields the rational Urysohn space and (Q∩[0, 1],+1,≤, 0) yields the rational
Urysohn sphere. One can also obtain ultrametric Urysohn spaces by using the binary operation
max instead of usual addition.

It turns out that, while quantifier elimination can fail if the distance monoid R is exotic enough,
it seems to hold in most naturally occurring cases, including all of those mentioned above. Using
this, it is not hard to adapt the example from the previous section to construct a properly forking
(over ∅) formula in the theories of the rational Urysohn space and rational Urysohn sphere. This
does require, however, a certain analysis of saturated models as generalized metric spaces with
distances in a canonical monoid extension R∗ of R. (In fact, the theory of UR has quantifier
elimination if and only if the addition operation in R∗ is separately continuous.)

In my thesis, I characterized precisely when the theory of UR is simple (assuming quantifier
elimination). It turns out that simplicity is equivalent to NSOP3 in this class of structures, and
can be characterized using a fairly straightforward algebraic property of the monoid R. As in the
cases above, I suspect that if the theory of UR is not simple (i.e. is SOP3) then forking and dividing
will not be the same for formulas. On the other hand, forking and dividing is always the same for
complete types, using essentially the same argument as in [5].

At the moment, I don’t have a general argument for this claim. The example with the smallest
distance set, for which I have not yet constructed a properly forking formula, is the Urysohn space
with distances {0, 1, 2, 5, 6, 7}. In this example, both of the methods carried out above don’t seem
to immediately work.
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