

Topology of genus one mapping spaces to projective space

Terry Dekun Song (University of Cambridge)

Summary

We study the topology of $\widetilde{\mathcal{M}}_{1,n}(\mathbb{P}^r,d)$, the Vakil–Zinger space of genus one maps to \mathbb{P}^r [VZO8] by giving a list of generators of its rational cohomology $H^*(\widetilde{\mathcal{M}}_{1,n}(\mathbb{P}^r,d))$ and classifying sources of potential relations.

Setup

- $\mathcal{M}_{1,n}(\mathbb{P}^r,d)$: moduli space of degree d maps from n-marked elliptic curves,
- $\mathcal{M}_{1,n}(\mathbb{P}^r,d)\subset\widetilde{\mathcal{M}}_{1,n}(\mathbb{P}^r,d)$: normal crossings compactification due to Vakil–Zinger [VZ08] as a desingularisation of the stable maps compactification $\overline{\mathcal{M}}_{1,n}(\mathbb{P}^r,d)$. It defines reduced genus one Gromov–Witten theory.

• Ranganathan–Santos-Parker–Wise [RSPW19]: $\widetilde{\mathcal{M}}_{1,n}(\mathbb{P}^r,d)$ is stratified by pairs (\mathbf{G},ρ) . \mathbf{G} a stable map dual graph and ρ a central alignment on vertices.

Figure 1. ρ assigns levels to vertices. The dotted circle denotes genus zero stable maps.

 $\widetilde{\mathcal{M}}_{[\mathbf{G},\rho]}^{\circ} \subset \widetilde{\mathcal{M}}_{1,n}(\mathbb{P}^r,d)$ parametrises stable maps with dual graph \mathbf{G} satisfying a smoothability condition imposed by ρ . The following classes live in $H^{\star}(\widetilde{\mathcal{M}}_{[\mathbf{G},\rho]}^{\circ})$:

C: Pullback from $H^*(\mathcal{M}_{1,n})$, relative polarisation $\Theta \in H^2(\operatorname{Pic}_{1,n}^{d'})$ of the Picard group $\operatorname{Pic}_{1,n}^{d'} \to \mathcal{M}_{1,n}$, and $\hat{H} \in H^2(\mathcal{M}_{1,n}(\mathbb{P}^r,d))$ hyperplane class of the (r+1)-direct sum of complete linear system on $\operatorname{Pic}_{1,n}^{d'}$.

P: Pullback of ψ class on a univalent or bivalent genus zero vertex. ψ classes for vertices with higher valencies vanish on $\widetilde{\mathcal{M}}^{\circ}_{[\mathbf{G},\rho]}$.

T: Pullback of a class on the genus zero stable maps space.

Let $\overline{\mathcal{M}}_{[\mathbf{G},\rho]}$ be the closure of $\widetilde{\mathcal{M}}_{[\mathbf{G},\rho]}^{\circ}$. The above classes admit lifts to $H^{\star}(\overline{\mathcal{M}}_{[\mathbf{G},\rho]})$.

Generators of cohomology

Let $F \in H^*(\overline{\mathcal{M}}_{[\mathbf{G},\rho]})$ be a polynomial of the classes listed previously, and let $\iota_{[\mathbf{G},\rho]}: H^*(\overline{\mathcal{M}}_{[\mathbf{G},\rho]}) \to H^*(\widetilde{\mathcal{M}}_{1,n}(\mathbb{P}^r,d))$ be the Gysin pushforward.

Theorem. The cohomology $H^*(\widetilde{\mathcal{M}}_{1,n}(\mathbb{P}^r,d))$ is generated by classes $\{\iota_{[\mathbf{G},\rho]}F\}$. Further, we identify all sources of relations among these generators.

Corollary. $H^*(\widetilde{\mathcal{M}}_{1,n}(\mathbb{P}^r,d))$ is generated by tautological cycles and $H^{2*+1}(\overline{\mathcal{M}}_{1,n})$.

Applications: Hodge structures and Picard group

The Hodge structures in $H^*(\overline{\mathcal{M}}_{1,n})$ are well understood by Getzler [Get99], Petersen [Pet14], and Canning-Larson-Payne [CLP24].

Corollary. The Hodge structures on $H^*(\widetilde{\mathcal{M}}_{1,n}(\mathbb{P}^r,d))$ are products of $L:=H^2(\mathbb{P}^1)$ and $S_{k+1}:=W_kH^k(\mathcal{M}_{1,k})$ for $k\leq n+d$.

The cusp forms $S_{k+1} \neq 0$ only for odd $k \geq 11$. By considering odd weight Hodge structures on $H^*(\mathcal{M}_{1,n}(\mathbb{P}^r,d))$, we recover the result of Fontanari [Fon07]:

Corollary. For k < 11 odd, $H^k(\widetilde{\mathcal{M}}_{1,n}(\mathbb{P}^r,d))$ vanishes.

We also determine the Picard group of $\widetilde{\mathcal{M}}_{1,n}(\mathbb{P}^r,d)$.

Theorem. $H^2(\widetilde{\mathcal{M}}_{1,n}(\mathbb{P}^r,d))$ has a *basis* given by Θ, \hat{H} , and the boundary divisors. The cycle class map $\operatorname{Pic}(\widetilde{\mathcal{M}}_{1,n}(\mathbb{P}^r,d)) \to H^2(\widetilde{\mathcal{M}}_{1,n}(\mathbb{P}^r,d))$ is an isomorphism.

Step 1: stratification

• The stratification by (\mathbf{G}, ρ) gives a spectral sequence

$$\underbrace{H_c^{\star}(\widetilde{\mathcal{M}}_{[\mathbf{G},\rho]})}_{\text{compact support}} \Rightarrow H^{\star}(\widetilde{\mathcal{M}}_{1,n}(\mathbb{P}^r,d)).$$

- Weight filtrations on $H^*(\widetilde{\mathcal{M}}_{[\mathbf{G},\rho]})$ are compatible with differentials, implying that:
- Only pure weight quotient $\operatorname{gr}^W_{\star}H^{\star}_c(\mathcal{M}_{[\mathbf{G},\rho]})$ survives to the limit and gives generators.
- Relations are images in the differentials, classified by subquotients of $\operatorname{gr}_{\star-1}^W H_c^{\star}(\mathcal{M}_{[\mathbf{G},\rho]}).$

The calculation of the $\operatorname{gr}_{\star-1}^W H_c^\star(\mathcal{M}_{[\mathbf{G},\rho]})$ suggests that for $k \ll r$, there are few relations among the generators of $H^k(\widetilde{\mathcal{M}}_{1,n}(\mathbb{P}^r,d))$, and that the cohomological degrees admitting relations grow *linearly* with r. We hope to derive a complete set of relations in future work.

Step 2: Weight graded pieces of strata $\operatorname{gr}_{\star(-1)}^W H_c^{\star}(\widetilde{\mathcal{M}}_{[\mathbf{G},\rho]})$

- $\widetilde{\mathcal{M}}_{[\mathbf{G},\rho]}$ is a fibre product of maps from the genus one subcurve and *genus zero* stable maps: we hence separate the known classes from the latter.
- Maps from elliptic curves are handled via linear systems on their universal Picard groups, leveraging knowledge of $H^*(\overline{\mathcal{M}}_{1,n})$ [Pet14, CLP24].
- Smoothability condition by ρ is equivalent to *linear dependency* conditions on differentials [BNR21, KS24a], which can be explicitly parametrised by adapting configuration space techniques on pointed maps from \mathbb{P}^1 to \mathbb{P}^r .
- The cohomology of fibre products and quotients are computed using the Leray spectral sequence, which is compatible with weight filtration [AraO5].

Related work

- We adapt stratification and weight filtration techniques of Arbarello-Cornalba [AC98], Petersen, and Canning-Larson-Payne to mapping spaces.
- The work is also a genus one extension of previous work on the topology of genus zero maps to the projective space [MM06, Opr06, Pan99], in which the complexity is already known to exceed that of $\overline{\mathcal{M}}_{0,n}$.

Future directions

- Joint with S. Kannan: calculate S_n -Euler characteristics of $\widetilde{\mathcal{M}}_{1,n}(\mathbb{P}^r,d)$, building on [KS24b, KK25] concerning $\overline{\mathcal{M}}_{1,n}(\mathbb{P}^r,d)$ and aligned genus zero maps.
- Describe the cohomology of the genus two Vakil-Zinger style construction by Battistella-Carocci [BC23].
- Intersection theory calculations on $\widetilde{\mathcal{M}}_{1,n}(\mathbb{P}^r)$ analogous to [Pan99].

References

- [AC98] Enrico Arbarello and Maurizio Cornalba. Calculating cohomology groups of moduli spaces of curves via algebraic geometry. *Publications Mathématiques de l'IHÉS*, 88:97–127, 1998.
- [AraO5] Donu Arapura. The Leray spectral sequence is motivic. Inventiones mathematicae, 160(3):567-589, June 2005. arXiv:math/0301140
- [BC23] Luca Battistella and Francesca Carocci. A smooth compactification of the space of genus two curves in projective space: via logarithmic geometry and Gorenstein curves. *Geometry & Topology*, 27(3):1203–1272, June 2023.
- [BNR21] Luca Battistella, Navid Nabijou, and Dhruv Ranganathan. Curve counting in genus one: Elliptic singularities and relative geometry. Algebraic Geometry, pages 637–679, 11 2021.
- [CLP24] Samir Canning, Hannah Larson, and Sam Payne. Extensions of tautological rings and motivic structures in the cohomology of $\overline{\mathcal{M}}_{g,n}$. Forum of Mathematics, Pi, 12:e23, 2024.
- [Fon07] Claudio Fontanari. Towards the cohomology of moduli spaces of higher genus stable maps. Archiv der Mathematik, 89(6):530-535, Oct 2007.
- [Get99] E. Getzler. Resolving mixed Hodge modules on configuration spaces. Duke Mathematical Journal, 96(1):175 203, 1999.
- [KK25] Siddarth Kannan and Lukas Kühne. Chow groups of braid matroids and relative maps to \mathbb{P}^1 , 2025.
- [KS24a] Siddarth Kannan and Terry Dekun Song. The dual complex of $\mathcal{M}_{1,n}(\mathbb{P}^r,d)$ via the geometry of the Vakil–Zinger moduli space, 2024.
- [KS24b] Siddarth Kannan and Terry Dekun Song. The S_n -equivariant euler characteristic of $\overline{\mathcal{M}}_{1,n}(\mathbb{P}^r,d)$, 2024.
- [MM06] Anca Mustata and Andrei Mustata. The chow ring of $\overline{M}_{0,m}(n,d)$, 2006. math/0507464.
- [Opr06] Dragos Oprea. Tautological classes on the moduli spaces of stable maps to \mathbb{P}^r via torus actions. Advances in Mathematics, 207(2):661–690, December 2006. [Pan99] Rahul Pandharipande. Intersections of \mathbb{Q} -divisors on Kontsevich's moduli space $\overline{M}_{0,n}(\mathbb{P}^r,d)$ and enumerative geometry. Transactions of the American Mathematical
- Society, 351(4):1481–1505, 1999.

 [Pet14] Dan Petersen. The structure of the tautological ring in genus one. Duke Mathematical Journal, 163(4), March 2014. arXiv:1205.1586 [math].
- [RSPW19] Dhruv Ranganathan, Keli Santos-Parker, and Jonathan Wise. Moduli of stable maps in genus one and logarithmic geometry, I. *Geometry & Topology*, 23(7):3315–3366,
- [VZ08] Ravi Vakil and Aleksey Zinger. A desingularization of the main component of the moduli space of genus-one stable maps into \mathbb{P}^n . Geometry & Topology, 12(1):1–95, February 2008

https://www.dpmms.cam.ac.uk/~ds2016/