Graph enumeration for moduli spaces of curves and maps

Terry Song

University of Cambridge

Joint work with Siddarth Kannan

Stratification on $\overline{\mathcal{M}}_{g,n}$

 $\mathbb{G} = (G, w, m)$ decorated dual graph. $\mathcal{M}_{\mathbb{G}} \subset \overline{\mathcal{M}}_{g,n}$ locally closed stratum.

$$\mathcal{M}_{\mathbb{G}} \cong \prod_{v \in V(G)} \mathcal{M}_{w(v), val(v)} / Aut(\mathbb{G}),$$

 $\overline{\mathcal{M}}_{g,n}$ is stratified by $\mathcal{M}_{\mathbb{G}}$.

A stratum in $\overline{\mathcal{M}}_3$:

Task

Express cut-and-paste invariants of $\mathcal{M}_{\mathbb{G}}$ in terms of the invariants of each $\mathcal{M}_{w(v),\mathrm{val}(v)}$.

Serre characteristics

Task

Express cut-and-paste invariants of

 $\mathcal{M}_{\mathbb{G}} = \prod_{v \in V(G)} \mathcal{M}_{w(v), \mathrm{val}(v)} / \mathrm{Aut}(\mathbb{G})$ in terms of the invariants of each $\mathcal{M}_{w(v), \mathrm{val}(v)}$.

X a variety with S_n -action, then $H_c^i(X)$ is a mixed Hodge structure with S_n -action. The S_n -Serre (Hodge–Euler) characteristic

$$\mathrm{e}^{S_n}(X) := \sum_i (-1)^i [H^i_c(X)] \in K_0(\mathsf{MHS}_{S_n}) \cong K_0(\mathsf{MHS}) \otimes K_0(\mathsf{Rep}_{S_n})$$

They specialise to E-polynomials and Euler characteristics and their S_n -equivariant enrichments.

Generating functions

We work with the following generating functions.

Definition

$$\begin{aligned} \mathbf{b} &= \sum_{g,n} \mathrm{e}^{S_n}(\overline{\mathcal{M}}_{g,n}) t^{g-1}, \mathbf{b}_g = \sum_n \mathrm{e}^{S_n}(\overline{\mathcal{M}}_{g,n}) t^{g-1}, \\ \mathbf{a} &= \sum_{g,n} \mathrm{e}^{S_n}(\mathcal{M}_{g,n}) t^{g-1}, \mathbf{a}_g = \sum_n \mathrm{e}^{S_n}(\mathcal{M}_{g,n}) t^{g-1} \end{aligned}$$

take value $K_0(MHS_S)((t))$ ($S = \bigsqcup_{n \ge 0} S_n$,). Again,

$$K_0(\mathsf{MHS}_\mathbb{S})\cong K_0(\mathsf{MHS})\otimes \Lambda.$$

 $\Lambda := \bigoplus_n K_0(\operatorname{Rep}_{S_n})$ is K_0 of symmetric sequences/ $\mathbb S$ -modules: collections $(\mathcal V(n))_{n\geq 0},\ \mathcal V(n)$ an S_n -rep.

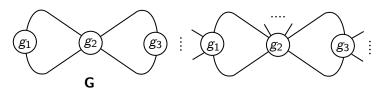
$$\Lambda \cong \mathbb{Q}\underbrace{[p_1,p_2,\dots,]}_{\mathsf{power \; sums}} \cong \bigoplus_{\mathsf{Integer \; partitions} \; \lambda} \mathbb{Q} \cdot \mathsf{s}_{\lambda} \; \mathsf{(Schur \; functions)}$$

Graph strata formula

Let $\mathbf{G} = (G, w)$ be a genus decorated graph. Let

$$\mathsf{a}_{\mathsf{G}} = \sum_{n \geq 0} \mathsf{e}^{\mathsf{S}_n} \Big(\bigsqcup_{\substack{\mathbb{G} = (\mathsf{G}, w, m), \\ \#m = n}} \mathcal{M}_{\mathbb{G}} \Big) t^{g(\mathsf{G}) - 1}$$

be all strata in $\overline{\mathcal{M}}_{g,n}$ from attaching markings to **G**.



Graph strata formula

Let $\mathbf{G} = (G, w)$ be a genus decorated graph. Let

$$\mathsf{a}_{\mathbf{G}} = \sum_{n \geq 0} \mathsf{e}^{\mathcal{S}_n} \Big(\bigsqcup_{\substack{\mathbb{G} = (\mathcal{G}, w, m), \\ \#m = n}} \mathcal{M}_{\mathbb{G}} \Big) t^{g(\mathbf{G}) - 1}$$

be all strata in $\overline{\mathcal{M}}_{g,n}$ from attaching markings to **G**.

Theorem [Kannan-S. '25]

We explicitly define operators on symmetric functions $\mathfrak{D}_{\textbf{G},\mathrm{Aut}(\textbf{G})}$ such that

$$\mathsf{a}_{\mathbf{G}} = \mathfrak{D}_{\mathbf{G}, \mathrm{Aut}(\mathbf{G})}(\{\mathsf{a}_{w(v)}, v \in V(G)\}).$$

The operators $\mathfrak{D}_{\mathbf{G},\mathrm{Aut}(\mathbf{G})}=\sum_{\sigma\in\mathrm{Aut}(\mathbf{G})}\mathfrak{D}_{\sigma}$ are graph-theoretic: each \mathfrak{D}_{σ} only depends on its permutation cycle type on the map $H(G)\to V(G)$, where H(G)= set of half-edges of G.

Formulas for $\overline{\mathcal{M}}_{g,n}$

Recall
$$b_g = \sum_n e^{S_n}(\overline{\mathcal{M}}_{g,n})t^{g-1}, a_g = \sum_n e^{S_n}(\mathcal{M}_{g,n})t^{g-1}.$$

$$a_G = \mathfrak{D}_{G,\operatorname{Aut}(G)}(\{a_{w(v)},v\in V(G)\})$$

Grouping graphs **G** and automorphisms $\sigma \in \operatorname{Aut}(\mathbf{G})$ via the permutation cycle types of $\operatorname{Aut}(\mathbf{G})$ on $H(G) \to V(G)$,

Theorem [Kannan–S.]

$$\mathsf{b}_g = \sum_{\underline{\Theta}: \mathsf{cycle} \ \mathsf{types}} \mathsf{K}_g(\underline{\Theta}) \cdot t^{||\Theta||/2} \mathfrak{D}^{(\underline{\Theta})}(\mathsf{a}_0, \dots, \mathsf{a}_g).$$

- The cycle types are recorded by tuples of maps {integer partitions} → {integer partitions}.
- $\mathfrak{D}^{(\underline{\Theta})}$ are explicit operators on symmetric functions.

•

$$\mathcal{K}_g(\underline{\Theta}) := \sum_{\mathbf{G}} \frac{\#\{\sigma \in \operatorname{Aut}(\mathbf{G}) \text{ has type } \underline{\Theta}\}}{\operatorname{Aut}(\mathbf{G})}$$

is a weighted count of graphs with their automorphisms.

Getzler-Kapranov formula

Theorem [Getzler–Kapranov, §8.13]

$$b = \operatorname{Log}\left(\exp\left(\sum_{n\geq 1} t^n \left(\frac{n}{2} \frac{\partial^2}{\partial p_n^2} + \frac{\partial}{\partial p_{2n}}\right)\right) \operatorname{Exp}(a)\right),$$

Log, Exp, and $\partial/\partial p_n$ are operations on symmetric functions/representations.

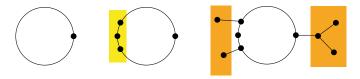
- Explicit formulas from Theorem: $\overline{\mathcal{M}}_{0,n}, \overline{\mathcal{M}}_{1,n}$ [Getzler '95-'98], $\overline{\mathcal{M}}_{2,n}$ [Diaconu '20], $\overline{\mathcal{M}}_{3,\leq 11}$ and $\overline{\mathcal{M}}_{4,\leq 3}$ [Faber, Bergström].
- Hard to extract formulas of each $\mathcal{M}_{\mathbb{G}}$.

Connection

We independently expand Getzler–Kapranov's formula and give the terms $K_g(\underline{\Theta})\mathfrak{D}^{(\underline{\Theta})}(a_0,\ldots,a_g)$ graph-theoretic interpretations.

Simplification

We may simplify our formulas by recording subdivisions and attachments by genus zero subgraphs (catepillars and rational tails)



After the steps, the formula for $b_g = \sum_n e^{S_n}(\overline{\mathcal{M}}_{g,n})$ is only in terms of the finitely many graphs in $\overline{\mathcal{M}}_g$ (rather than all the graphs underlying $\bigsqcup_n \overline{\mathcal{M}}_{g,n}$) and their automorphisms.

Applications

A large range of moduli spaces are recursively stratified by graphs: $(\bigsqcup_n \mathcal{M}_n) = \mathcal{M} \subset \overline{\mathcal{M}}$, and

$$\overline{\mathcal{M}} = \bigsqcup_{G : \text{ graphs}} \mathcal{M}_G, \mathcal{M}_G = \left(\prod_{v \in V(G)} \mathcal{M}_{\operatorname{val}(G)}\right) / \operatorname{Aut}(G).$$

- Combinatorial subspaces of $\bigsqcup_{g,n} \overline{\mathcal{M}}_{g,n}$ such as stable curves of compact type (dual graph being a tree) $\bigsqcup_{g,n} \mathcal{M}_{g,n}^{\operatorname{ct}}$.
- Torus-fixed stable maps $\coprod_{g,n,\beta} \overline{\mathcal{M}}_{g,n}(X,\beta)^{\mathbb{C}^*}$, where X admits suitable \mathbb{C}^* -action.
- Fulton–MacPherson spaces ⊃ configuration spaces and trees of projective spaces of Chen–Gibney–Krashen.
- Admissible covers ⊃ Hurwitz spaces.
- ullet Compactified Jacobians \supset universal Jacobian over $\bigsqcup_{g,n} \mathcal{M}_{g,n}.$

Sample calculations

For any \mathbb{C}^* -space M (not necessarily smooth), $\chi(M)=\chi(M^{\mathbb{C}^*})$.

g	$\chi\left(\overline{\mathcal{M}}_{g,0}(\mathbb{P}^r,3) ight)$
0	$16\binom{r+1}{4} + 21\binom{r+1}{3} + 6\binom{r+1}{2}$
1	$216\binom{r+1}{4} + 247\binom{r+1}{3} + 55\binom{r+1}{2}$
2	$3160\binom{r+1}{4} + 3342\binom{r+1}{3} + 645\binom{r+1}{2}$
3	$44800\binom{r+1}{4} + 45114\binom{r+1}{3} + 8088\binom{r+1}{2}$
4	$630352\binom{r+1}{4} + 613213\binom{r+1}{3} + 104208\binom{r+1}{2}$

Sample calculations

Let $s_{\lambda} \in \Lambda$ denote the Schur function for the partition λ . Let \mathbb{L} be the Hodge structure on $H^2(\mathbb{P}^1) = H^2_c(\mathbb{A}^1)$. It is the specialisation of $[\mathbb{A}^1] \in \mathcal{K}_0(\operatorname{Var})$.

	L 3 - 1 /
n	$e^{S_n}(\mathcal{M}^{\mathrm{ct}}_{3,n})$
0	$\mathbb{L}^6 + 2\mathbb{L}^5 + 2\mathbb{L}^4 + \mathbb{L}^3 + 1$
1	$(\mathbb{L}^7 + 4\mathbb{L}^6 + 7\mathbb{L}^5 + 4\mathbb{L}^4 + \mathbb{L}^3 + 1)s_1$
2	$(2\mathbb{L}^7 + 7\mathbb{L}^6 + 7\mathbb{L}^5 + \mathbb{L}^4 - 4\mathbb{L}^3 - 3\mathbb{L}^2)s_{11}$
	$+(\mathbb{L}^8 + 6\mathbb{L}^7 + 17\mathbb{L}^6 + 17\mathbb{L}^5 + 6\mathbb{L}^4 - 2\mathbb{L}^2 + 1)s_2$
3	$(2\mathbb{L}^7+6\mathbb{L}^6-11\mathbb{L}^4-8\mathbb{L}^3-3\mathbb{L}^2+1)s_{111}$
	$+(4\mathbb{L}^{8}+24\mathbb{L}^{7}+43\mathbb{L}^{6}+22\mathbb{L}^{5}-9\mathbb{L}^{4}-16\mathbb{L}^{3}-9\mathbb{L}^{2}+1)s_{21}$
	$+(\mathbb{L}^9 + 8\mathbb{L}^8 + 32\mathbb{L}^7 + 52\mathbb{L}^6 + 32\mathbb{L}^5 + 6\mathbb{L}^4 - 6\mathbb{L}^3 - 5\mathbb{L}^2)s_3$

Sample calculations

n	$e(\mathcal{M}^{\mathrm{ct}}_{3,n})$
0	$\mathbb{L}^6 + 2\mathbb{L}^5 + 2\mathbb{L}^4 + \mathbb{L}^3 + 1$
1	$\mathbb{L}^7 + 4\mathbb{L}^6 + 7\mathbb{L}^5 + 4\mathbb{L}^4 + \mathbb{L}^3 + 1$
2	$(2\mathbb{L}^7 + 7\mathbb{L}^6 + 7\mathbb{L}^5 + \mathbb{L}^4 - 4\mathbb{L}^3 - 3\mathbb{L}^2) \\ + (\mathbb{L}^8 + 6\mathbb{L}^7 + 17\mathbb{L}^6 + 17\mathbb{L}^5 + 6\mathbb{L}^4 - 2\mathbb{L}^2 + 1)$
3	$(2\mathbb{L}^7 + 6\mathbb{L}^6 - 11\mathbb{L}^4 - 8\mathbb{L}^3 - 3\mathbb{L}^2 + 1) \\ + (4\mathbb{L}^8 + 24\mathbb{L}^7 + 43\mathbb{L}^6 + 22\mathbb{L}^5 - 9\mathbb{L}^4 - 16\mathbb{L}^3 - 9\mathbb{L}^2 + 1) \cdot 2 \\ + (\mathbb{L}^9 + 8\mathbb{L}^8 + 32\mathbb{L}^7 + 52\mathbb{L}^6 + 32\mathbb{L}^5 + 6\mathbb{L}^4 - 6\mathbb{L}^3 - 5\mathbb{L}^2)$

Sending $\mathbb{L}\mapsto uv\mapsto 1$ specialises to *E*-polynomials and Euler characteristics.