
Part III Algebraic Geometry 2023 Dhruv Ranganathan

Main references for course

[Har] R. Hartshorne, Algebraic Geometry, Springer (1977). – this is the main reference for the course.

[V] R. Vakil, The Rising Sea: Foundations of Algebraic Geometry – this can be used as a replacement,
though some of the formal set up is different. The latest version available at:

http://math.stanford.edu/~vakil/216blog/

[GW] Görtz and Wedhorn, Algebraic Geometry I, Schemes with examples and exercises, Vieweg+Teubner,
2010.

[EH] D. Eisenbud and J. Harris, The Geometry of Schemes, Springer (2001) – this is great for examples
and intuition

Plan of course

§0 Brief review of classical Algebraic Geometry and motivation for scheme theory
§1 Sheaves on topological spaces
§2 Definition of schemes, basic properties and morphisms
§3 Locally free and coherent modules
§4 Sheaf cohomology
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§0. Preliminaries on classical Algebraic Geometry

In this section, we make explicit basic concepts and results that provide context for the course; this
material appeared in Part II Algebraic Geometry for Cambridge students. The course notes are available
here:

https://www.dpmms.cam.ac.uk/~dr508/AGIINotes.pdf

The first section on Sheaf Theory will take several lectures and will only incidentally mention any
algebraic geometry, so you will have time to look at §0.

A little classical algebraic geometry.
Throughout this discussion, we take the base field k to be algebraically closed.

Affine varieties: An affine variety V ⊆ An(k) (where, once one has chosen coordinates, An(k) = kn)
is given by the vanishing of polynomials f1, . . . , fr ∈ k[X1, . . . , Xn].
If I = 〈f1, . . . , fr〉 / k[X1, . . . , Xn] is any ideal, we set

V = V (I) := {z ∈ An : f(z) = 0 ∀f ∈ I}.

Projective varieties: First set Pn(k) := (kn+1 \ {0})/k∗ with homogeneous coordinates (x0 : x1 : . . . :
xn). A projective variety V ⊆ Pn is given by the vanishing of homogeneous polynomials F1, . . . , Fr ∈
k[X0, X1, . . . , Xn]. If I is the ideal generated by the Fi (a homogeneous ideal, i.e. if F ∈ I, then so are
all its homogeneous parts), we set

V = V (I) := {z ∈ Pn : F (z) = 0 ∀ homogeneous F ∈ I}.

Coordinate ring of an affine variety.

If V = V (I) ⊆ An, set

I(V ) := {f ∈ k[X1, . . . , Xn] : f(x) = 0 ∀x ∈ V }.

Observe: V (I(V )) = V (tautology) and I(V (I)) ⊇
√
I (obvious). Recall that the radical

√
I of the

ideal I is defined by f ∈
√
I ⇐⇒ ∃m > 0 s.t. fm ∈ I.

Hilbert’s Nullstellensatz (note k = k̄): I(V (I)) =
√
I. ([R] §3, [AM] pp 82-3).

Coordinate ring: k[V ] := k[X1, . . . , Xn]/I(V ). This may be regarded as the ring of polynomial func-
tions on V , and it is a finitely generated reduced k-algebra. Recall that a k-algebra is a commutative
ring containing k as a subring; it is finitely generated if it is the quotient of a polynomial ring over k, and
reduced if am = 0⇒ a = 0.

Given an affine subvariety W ⊆ V , have I(W ) ⊇ I(V ) defining an ideal of k[V ], also denoted
I(W ) / k[V ].

Corollary of 0-satz: If m is a maximal ideal of k[V ], then m = mP for some P ∈ V , where mP is the
maximal ideal {f ∈ k[V ] : f(P ) = 0}.

Proof. 0-satz implies I(V (m)) =
√

m = m 6= k[V ]. So V (m) 6= ∅, since otherwise I(V (m)) = k[V ].
Choose P ∈ V (m); then mp ⊇m. Since m maximal, this implies mP = m.

Observe that {P} = V (mP ) = V (m), and so there exists a natural bijection

{points of affine variety V } ←→ {maximal ideals of k[V ]} (†)

Definition. A variety W is irreducible if there do not exist proper subvarieties W1,W2 of W with
W = W1 ∪W2.
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Lemma 0.1. A subvariety W of an affine variety V is irreducible ⇐⇒ P = I(W ) is prime, i.e.
⇐⇒ k[W ] is an ID (integral domain).

Proof. (⇒) If I(W ) not prime, there exist f, g 6∈ I(W ) such that fg ∈ I(W ). Set W1 := V (f) ∩W and
W2 := V (g) ∩W ; then W1,W2 are proper subvarieties with W = W1 ∪W2, i.e. W not irreducible.

(⇐) If W1,W2 are proper subvarieties with W = W1∪W2, choose f ∈ I(W1)\I(W ) and g ∈ I(W2)\I(W );
then fg ∈ I(W ), i.e. I(W ) not prime.

For a projective variety V ⊆ Pn, we let I(V ) / k[X0, X1, . . . , Xn] be the homogeneous ideal of V , by
definition generated by the homogeneous polynomials vanishing on V .

Exercise. Show that a projective variety V is irreducible ⇐⇒ I(V ) is prime.
((⇐) as in (0.1), (⇒) by considering homogeneous parts of polynomials.) Generalizing (†), for V an affine

variety, we have a bijection given by W 7→ I(W ),

{irreducible subvarieties W of an affine variety V } ←→ {prime ideals of k[V ]}.

Proof. Given a prime ideal P / k[V ], the Nullstellensatz implies I(V (P)) =
√
P = P in k[V ], so there is

an inverse map.
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Projective Nullstellensatz. Suppose I is a homogeneous ideal in k[X0, X1, . . . , Xn] and V = V (I) ⊆
Pn. The Projective Nullstellensatz ([R] p82) says:
If
√
I 6= 〈X0, X1, . . . , Xn〉 (the irrelevant ideal), then I(V ) =

√
I.

Proof. An easy deduction from the Affine Nullstellensatz, noting that I also defines an affine variety in
An+1, the affine cone on the projective variety V ⊆ Pn. Decomposition of variety into irreducible

components.

For V an affine or projective variety, there is a decomposition V = V1∪ . . .∪VN with the Vi irreducible
subvarieties and the decomposition is essentially unique.

Proof. Suppose V is affine (similar argument for V projective): If there does not exist such a finite
decomposition in the above form, then there exists a strictly decreasing sequence of subvarieties

V = V0 ⊃ V1 ⊃ V2 ⊃ . . . .

(If V = W ∪W ′, then at least one of W,W ′ has no such decomposition and let this be V1; continue in
same way using Countable Axiom of Choice to obtain sequence.)

Hence in k[V ], 0 = I(V0) ⊆ I(V1) ⊆ . . .. Hilbert’s Basis Theorem implies that there exists N such
that I(VN+r) = I(VN ) for all r ≥ 0. Hence VN+r = V (I(VN+r)) = V (I(VN )) = VN for all r ≥ 0, a
contradiction.

An easy “topological” argument ([R] Exercise 3.8, [W]) with the Zariski topology (see below) shows
that the decomposition is essentially unique.

Zariski topology. Let V be a variety (affine or projective), then the Zariski topology is the topology on
V whose closed sets are the subvarieties. This is the underlying topology for this course

We check this is a topology. Wlog take V affine. Clearly V and ∅ are closed. Observe that for ideals
(Iα)α∈A of k[V ], we have V (

∑
α Iα) =

⋂
α V (Iα) is closed. Finally we claim for ideals I, J of k[V ] that

V (IJ) = V (I) ∪ V (J) (= V (I ∩ J)) is closed.

Proof. Clearly V (IJ) ⊇ V (I ∩ J) ⊇ V (I) ∪ V (J). Suppose however there exists a point P ∈ V (IJ) \
(V (I) ∪ V (J)): we can choose f ∈ I such that f(P ) 6= 0 and g ∈ J such that g(P ) 6= 0. Then fg ∈ IJ
with non-zero value at P , a contradiction.

Note that V being irreducible as a topological space corresponds to the previous definition. Also, we
have a well-defined concept of connectedness.
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When V is affine, we have a basis of open sets of the form D(f) for f ∈ k[V ], where D(f) := {x ∈
V : f(x) 6= 0}; any open set is of the form V \ V (f1, . . . , fr) =

⋃r
i=1D(fi). If V = A1, get cofinite

topology; in fact Zariski topology is only Hausdorff for a finite set of points. For V projective, we have a
basis of open sets of the form D(F ) = V \ V (F ), for F a homogeneous polynomial.

Exercise. The Zariski topology is compact in the usual sense (called precompact in some terminology
since it is not Hausdorff), i.e. any open cover of V has a finite subcover.

Function fields of irreducible varieties

If V is an irreducible affine variety, then the field of rational functions or the function field k(V ) :=
fof k[V ]. Here k[V ] is an integral domain and fof denotes the field of fractions. In fact, we define the
dimension of V by dimV := tr degk k(V ).

For V ⊆ Pn an irreducible projective variety, we define

k(V ) := {F/G : F,G homogeneous polynomials of the same degree, G 6∈ I(V )}/ ∼

where the zero polynomial has any degree and where F1/G1 ∼ F2/G2 ⇐⇒ F1G2 − F2G1 ∈ I(V ). Need
V irreducible here, i.e. I(V ) prime, to show that ∼ is transitive, and hence an equivalence relation.

If V ⊆ Pn an irreducible projective variety and U a non-empty affine piece of V (say U = V ∩ {X0 6=
0}), then U is an affine variety, U ⊆ An with affine coordinates xi = Xi/X0 for i = 1, . . . , n, the equations
for U coming from those for V by “putting X0 = 1”. It is an easy check now that U is irreducible and
k(V ) ∼= k(U), the isomorphism being given by “putting X0 = 1”.

We say that h ∈ k(V ) is regular at P ∈ V if it can be written as a quotient f/g with f, g ∈ k[V ], g(P ) 6=
0 (affine case), or F/G with F,G homogeneous polynomials of the same degree, G(P ) 6= 0 (projective
case).

Define OV,P := {h ∈ k(V ) : h regular at P}, the local ring of V at P , with maximal ideal mV,P :=
{h ∈ OV,P : h(P ) = 0}, the kernel of the evaluation map OV,P → k given by evaluation at P . OV,P is
a local ring, i.e. mV,P is the unique maximal ideal. Since OV,P \mV,P consists of units of OV,P and any
proper ideal consists of non-units, any proper ideal is contained in mV,P , and hence mV,P is the unique
maximal ideal.
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Morphisms of affine varieties

For V ⊆ An, W ⊆ Am, a morphism φ : V → W is a map given by elements φ1, . . . , φm ∈ k[V ]. This
yields a k-algebra homomorphism φ∗ : k[W ]→ k[V ] (where φ∗(f) = f ◦φ; so if yj a coordinate function on
W induced from polynomial Yj , we have φ∗(yj) = φj). Conversely, given a k-algebra homomorphism α :
k[W ] → k[V ], we define a morphism α∗ = ψ : V → W given by elements α(y1), . . . , α(ym) ∈ k[V ]. Note
that ψ(P ) is in W , since for all g ∈ I(W ), g(ψ(P )) = g(α(y1), . . . , α(ym))(P ) = (α(g(y1, . . . , ym)))(P ) = 0
since g(y1, . . . , ym) = 0 in k[W ].

Observe: For φ : V →W , we have φ∗∗ = φ; for α : k[W ]→ k[V ], we have α∗∗ = α. For ψ : U → V also
a morphism of affine varieties, we have φψ a morphism U →W with (φψ)∗ = ψ∗φ∗. For β : k[V ]→ k[U ]
a morphism of k-algebras, we have (βα)∗ = α∗β∗.

We deduce that affine varieties V,W are isomorphic (i.e. there is an invertible morphism between
them) V ∼= W ⇐⇒ k[W ] ∼= k[V ] as k-algebras. Recall: the k-algebras which occur as coordinate rings
are the finitely generated reduced k-algebras. So formally, there is an equivalence of categories between
the category of affine varieties over k and their morphisms, and the opposite of the category of finitely
generated reduced k-algebras and their morphisms, i.e. there is a contravariant equivalence between the
category of affine varieties and the category of finitely generated reduced k-algebras.

Thus affine algebraic geometry over k is a branch of commutative algebra. Commutative Algebra
may be interpreted as affine algebraic geometry once one has generalized varieties to schemes.

For (irreducible) affine varieties, we can reconstruct the variety (up to isomorphism) from its ring
of everywhere regular rational functions by (0.2) below; for irreducible projective varieties, the only
everywhere regular rational functions are the constants (see Corollary 2 to Proposition 2.2).

Lemma 0.2. For V an irreducible affine variety,

{f ∈ k(V ) : f regular everywhere} = k[V ].

Proof. Exercise.
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