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Tropical curve counting and double ramification cycles
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In this talk, I described the relationship between tropical and logarithmic curve
counting and recent developments concerning the double ramification cycle. The
main result, joint with Ajith Urundolil Kumaran, is a complete solution to the
logarithmic Gromov-Witten (GW) theory of toric varieties, relative to the full
toric boundary. The solution is in terms of the intersection theory of logarith-
mic tautological classes, and is not practically implementable. However, in recent
work of Kennedy-Hunt, Shafi, and Urundolil Kumaran, a simple tropical corre-
spondence theorem is proved in special cases that gives a link to refined tropical
curve counting.

0.1. The problem. We fix a toric variety X with toric boundary divisor D, itself
a union of components D1, ..., Dg. In logarithmic GW theory, one is interested
in curves in X that meet D with fixed tangency data. Precisely, we study maps
of pairs:

f
(C7p17 e >pn) — (X7 D)7
from smooth pointed curves to X, and fix:

e the genus g of C,
e the curve class § for f,[C] in H2(X),
e matrix of tangency orders c;; of p; along Dj.

When (X, D) is a toric pair, there are a couple of simplifications. First, the
curve class [ is determined by the matrix of tangency orders; we will still keep
the symbol § reserved for this curve class when we need it. Second, if we make
an identification of the cocharacter lattice the dense torus with Z", then at each
marked point, we can record a point in this lattice. Precisely, if the point p; has
positive tangency order with some subset of divisors, it picks out a cone in the fan
Y., dual to the intersection of these. The multiplicities then give a lattice point in
this cone.

Putting these vectors together, in this setting, we will denote this r X n matrix
by the symbol A. Logarithmic GW theory gives rise to a proper Deligne-Mumford
stack M (X|D) parameterizing such maps, and “logarithmic degenerations”. We
will not say too much here about the nature of these degenerate objects; the
details can be found in the foundational papers of Abramovich—Chen and Gross—
Siebert [1, 4, 5]. An important feature of the space is that every point in My (X|D)
determines two things:

e A stable map from an n-pointed nodal curve C' — X, of class 8 and
e A tropical map T' — R™, i.e. a piecewise linear map from a metric graph
to R", enhancing the dual graph of C.
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The data have to be compatible in various ways, which can be found in the
original sources. For now, we encourage the reader to take My (X|D) to be a
“good compactification” of the space of tangent curves described above.

Associated to the moduli space My (X |D) are certain tautological structures.
First, at every marked point p;, we can evaluate the stable map to obtain:

ev; : MA(X|D) — X.
We can put these together to form
ev: My (X|D) — Eva(X).

The target space is, to first approximation, the product of n copies of X, though it
is often useful to refine this. There is also a tautological map to the moduli space
of curves:
7 MA(X|D) — My .

Finally, the space Ma(X|D) has a “virtual class”. It usually takes some technical
machinery to say what this means, however this particular case we are lucky. For
(X|D) toric, it turns out that there is a canonical expression of My (X|D) as an
intersection of two smooth schemes inside of a third scheme, each of predictable
dimension see [11]. As a consequence, the space My (X|D) has a distinguished
class in Chow homology. That is, if the expression is

Ma(X|D) = M; N My inside B,

we can define [M,(X|D)]¥" to be the refined intersection class, in the sense of
Fulton—-Macpherson. The homology class lives in the “expected” or “virtual di-
mension”:
vdim M (X|D) = (r —3)(1 — g) + n.
The goal of logarithmic GW theory is, in some sense, to calculate the classes
T (ev*y N [MA(X|D)]M)

Special interest is paid to the intersection numbers of these classes with the
)-classes of the moduli space My ,. The pushforwards are called logarithmic
Gromov—Witten classes, while the numbers are called logarithmic Gromov—Witten

nvariants.

0.2. The main result and some specializations. The Chow ring of mg,n con-
tains a subring known as the tautological ring. It includes two sets of classes in
particular: substacks paramaterizing curves of fixed topological type (e.g. the
singular curves) and Chern classes 1); of the cotangent line bundles.

The main theorem proved with Urundolil Kumaran is the following:

Main Theorem. All logarithmic GW classes of (X, D) lie in the tautological ring
of the moduli space of curves Mgy ,,.

The proof of the theorem is effective: it actually produces an expression that
calculates any such class in terms of the standard generators of the tautological



ring. It also therefore gives the first complete method for calculating all logarithmic
GW invariants of (X, D).

The main new input in the theorem is a method to reduce such calculations to a
variant of the double ramification cycle; see [6] for an introduction. New methods
in logarithmic intersection theory, developed with Molcho, play the key role [10].

0.3. Specializations, and refined curve counting. In the stated generality,
it is not really practical to “do calculations” in this way. But let us conclude by
explaining how the result comes alive when specializing to special geometries and
special sectors.

Before doing this, we point out the terminology for two types of GW invari-
ants. The primary invariants are those obtained by taking degrees of classes of
the form 7, (ev*y N [My(X|D)]Y").The descendant GW invariants are obtained
by first capping 7, (ev*fy N [MA(X|D)}"”) with a polynomial in the classes 1; on
Mg?n, and then taking degree.

(1) When r = 2, the primary log GW invariants are computed by Mikhalkin’s
tropical correspondence theorem [9].

(2) When g = 0, the primary invariants are calculated by tropical correspon-
dence theorems, by Nishinou—Siebert, and the descendants were treated
by Mandel-Ruddat [8, 7].

(3) When r = 3, but the matrix A has rank 2, without descendants, Bousseau
has shown that these invariants can be again computed by tropical corre-
spondence using Block-Gottsche’s refined multiplicities [3].

In recent work, Kennedy-Hunt, Shafi, and Urundolil Kumaran show that the
main theorem rapidly specializes to all these results using intersection theory on
Mg,n, quite different from the original proofs.

They also use the result to give a geometric interpretation of Blechman—Shustin’s
refined descendant tropical curve counting, which had earlier been defined purely
combinatorially [2].
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