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The Hilbert scheme in logarithmic geometry, after Kennedy-Hunt

Dhruv Ranganathan

In this talk, I discussed shortly forthcoming work of Patrick Kennedy-Hunt
(Cambridge) concerning the Hilbert scheme in logarithmic geometry [1].

0.1. Degenerations. The motivation for studying such an object are as follows.
Suppose

π : X → B,

is a simple normal crossings degeneration over a smooth curve B. That is, a flat
and proper morphism with smooth domain, with π a smooth fibration away from
a single point 0 ∈ B, and such that X0 = π−1(0) is a reduced snc variety. Let
X ◦ denote the complement of the singular fiber. We might then ask the following
slightly vague question:

How does the relative Hilbert scheme Hilb(X ◦/B◦) degenerate?

The question being asked is really “what should we put in the special fiber of
such family?” There is an obvious candidate, which is the relative Hilbert scheme
Hilb(X/B). However, this is rather poorly behaved. For example, if π has relative
dimension 2, and if we consider Hilbert scheme of points, the family Hilb(X ◦/B◦) is
smooth over B◦ – so in particular, very nice. One might expect that the proposed
mystery family L(X/B) → B that completes this should be correspondingly very
nice. For example, one might ask that this family is again simple normal crossings.
At the very least, one could ask for L(X/B) → B to be flat over B. The relative
Hilbert scheme achieves neither.

0.2. Pairs. An intimately tied mystery to the one above is encapsulated by the
following, equally vague question. Let Y be a smooth projective variety and let
D ⊂ Y be a simple normal crossings divisor.

How does the presence of D affect the Hilbert scheme Hilb(Y )?

Again, the simplest answer is that “it doesn’t”. But also, it clearly does e.g. we
specify that subschemes must intersect D or its strata in particular dimensions,
one ends up stratifying the Hilbert scheme of Y . This is not dissimilar to the
construction of Schubert cells, or the matroid stratification of the Grassmannian.
Our version of this is as follows. Define

Hilb◦(Y |D) ⊂ Hilb(Y )

to be the subfunctor parameterizing points [Z ⊂ Y ] of Hilb(Y ) such that the
pullback of D to Y is regular crossings – the pullbacks of equations for the different
irreducible components of D form regular sequences on Z. In other words, from
the point of view of algebra, the subschemes Z ⊂ Y are transverse. We call
such subschemes algebraically transverse. Since the transversality condition can
be phrased in terms of the vanishing of higher Tor’s, the subfunctor above is open.
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This transversality condition is natural from the point of view of logarithmic
geometry. It is precisely the condition that Z is log flat over a a point when
equipped with the pullback log structure from Y to Z. This is the first hint that
the questions above should really be asked, and answered, in logarithmic geometry.

0.3. A pair of paragraphs on logarithmic geometry. Logarithmic schemes
are enhancements of schemes by combinatorial information. While a scheme comes
with a notion of a polynomial function, logarithmic schemes come also with the
notion of a monomial function. Precisely, it is a scheme Y equipped with a sheaf
of monoids MY that record the “monomials”. Part of the data is a map

MY → OY

of sheaves of monoids, that tells us how to take an element of the monomial sheaf
and think about it as a polynomial. An artefect of the theory is that this map is
merely a morphism of sheaves of monoids – it does not have to be injective. In
particular, there can be more monomials than polynomials. Logarithmic schemes
can be assembled into a category with good geometric properties.

Numerous schemes come with natural notions of monomial, and give examples
of logarithmic schemes. If Y is a toric variety, the monomials on Y for a sheaf of
monoids. A pair (Y,D) as above of a variety and an snc divisor also has a sheaf
of monoids – the functions locally defined by a monomial in defining equations for
the components of D. The “more monomials than polynomials” phenomena come
via taking pullback in this category.

0.4. The solution of Kennedy-Hunt. In his thesis, Kennedy-Hunt proposes a
moduli functor on the category of logarithmic schemes Hilblog(Y |D) that contains
Hilb◦(Y |D) as a subfunctor. He establishes several of its basic properties. The
moduli space is reverse engineered from an “imagined proof” of properness via the
valuative criterion, which comes from a 2007 theorem of Tevelev [4].

Tevelev’s Theorem. Let Z ↪→ Y be a subvariety of a smooth toric variety.
There exists a toric blowup Y ′ → Y such that the strict transform Z ′ ↪→ Y ′ is
algebraically transverse.

A particular example of the theorem applies in the following context. Consider
the toric variety Y × A1, and an algebraically transverse subscheme

Z ↪→ Y ×Gm,

flat over Gm. The theorem explains how to complete such families to ones that
remain algebraically transverse. The special fibers in these families are not simply
blowups of Y , but reducible varieties obtained by gluing together torus bundles
over strata in Y together. We call such an an object an expansion of Y along D.

As a simple example, the deformation to the normal cone of a union of strata
of D, inside Y , is an example of such a special fiber. There is some ambiguity in
the limit, because there is not always a most efficient blowup.

A logarithmic subscheme of (Y,D) is a subscheme of an expansion of Y along
D that is algebraically transverse.
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By using this definition in families, and imposing an appropriate equivalence
relation among expansions, Kennedy-Hunt arrives at a moduli functor:

Hilblog(Y |D) : LogSch→ Sets.

He proves that it satisfies the existence and uniqueness parts of the valuative
criterion. He also proves a certain representability result. Precisely, he defines
another functor

Supp(X|D) : ConeComplexes→ Sets,

a polyhedral geometry construction. Some readers may want to think of this as a
tropicalization for the functor.

The fans of toric geometry are examples of functors on cone complexes, as
are conical dual complexes of boundary divisors in snc compactifications. What
Kennedy-Hunt constructs is slightly more general – what he calls a piecewise linear
space. In any event, the functor Supp(X|D) determines a topological space just
like a fan does. He then proves that there is a natural bijection:

{Polyhedral decompositions of Supp(X|D)}
l

{Subfunctors of Hilblog(Y |D) representable by stacks with logarithmic structures}.
The representable subfunctors still satisfy the valuative criterion. The situation

is analogous to toric geometry: different fan structures give rise to a different,
equivariant birational toric compactifications of a torus.

In the lecture, I described examples that demonstrate that the spaces, with
some combinatorial burden, are essentially as well-behaved as a one could hope
and lead to a good theory of degenerations for the Hilbert scheme:

(1) The logarithmic Hilbert scheme of hypersurfaces in a toric variety is itself
a toric variety, via the “secondary fan” of Gelfand–Kapranov–Zelevinsky.

(2) The logarithmic Hilbert scheme of a surface pair (Y,D) is itself an snc
pair. As a consequence, the relative logarithmic Hilbert scheme of an snc
surface degeneration is itself an snc degeneration.

(3) The theory coincides with work of Maulik–R for curves in a threefold. This
space had been constructed using different methods earlier; the space has
a virtual fundamental class and leads to logarithmic DT invariants.

Finally, I note that in the special case when D is smooth, the construction
above reduces to a theory developed by Li–Wu [2]
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