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a claim

On numerous occasions since 2013, I have observed Abramovich make the

following claim:

“I don’t do Gromov–Witten theory.”

Despite many experts refuting this over the years, he continues to make the claim.



the claim is false for trivial reasons...



very false...



but anyway...

Let us discuss the details of some of these counterexamples in a story of roots and

logarithms in Gromov–Witten theory.



Luca & Navid

The original results presented are joint with Battistella and Nabijou. Mostly from a

2022 paper and work-in-progress.

from ICMS in Edinburgh in 2022.



enumerative geometry: the premise

Given a projective manifold X , we study X via an auxiliary space

X  M(X ) :

a moduli of objects on X .

Virtual Enumerative Invariants. Extracted from M(X ) by integrating natural

cohomology classes against the virtual class.

Many Possible Choices! Hilbert scheme of subschemes in X . Moduli of

sheaves on X . Moduli of maps from curves to X .

The choices lead to different “enumerative theories”... GW, DT, PT, GV etc.

The rest of the talk is about moduli of (stable) maps from nodal curves to X .



curves with tangency

For today, we fix D ⊂ X a simple normal crossings divisor and we imagine:

Model Problem. Count curves C in X with prescribed tangency orders with

components of D.

Precisely, study moduli M◦Λ(X |D) of maps of pairs:

(C , p1, . . . , pn)
f−→ (X ,D), D =

∑
Di

from smooth pointed curves to X , and fix Λ

• the genus g of C ,

• the curve class β for f?[C ] in H2(X ),

• matrix of tangency orders cij of pi along Dj .

Today’s Story. Two different systems of virtual enumerative invariants mod-

eling this problem. Features, bugs, comparisons, conjectures, applications.



what are the subtleties?

Let M◦Λ(X |D) be the moduli space of maps to (X ,D) with fixed numerical data Λ.

For virtual enumerative geometry we need two things:

• Compact Moduli. A space MΛ(X |D) compactifying M◦Λ(X |D).

• Virtual Classes. Reasonable deformation theory for objects in MΛ(X |D).

If we ignore tangency, then a perfect solution is provided by Kontsevich via the

theory of stable maps.

The space M◦Λ(X |D) is only locally closed in stable maps Mg ,n(X , β). Closure is

unworkable. Tangency not deformation open.



orbifold geometry

In 1998 Abramovich–Vistoli announced their theory of orbifold stable maps. Put

orbifolds on equal footing with projective manifolds for stable maps.

Key Idea. For compact moduli of maps from nodal curves to an orbifold X ,

the nodal curves should be allowed orbifold structure at nodes and markings.

We can assume everything works, but only after considerable effort. In fact:

“To prove this, Vistoli and I had to go through several chambers of hell.”

(Dan in Lecture notes from Cetraro, 2005)

But what is the relevance to tangency?



tangency via orbifolds

In 2003 Cadman used orbifolds to study tangent curves. Interested in maps:

(C , p)→ (X ,D),

with C tangent along D at p to order e. What does this look like? The model is:

A1
s → A1

t , via se ← [ t.

Key Idea. For large r , add r th roots to t and s. Now investgate action of µr .

A1
s̃ A1

t̃

[A1
s̃/µr ] [A1

t̃
/µr ]

A1
s A1

t .

ramified ramified
f

Crucially the data of f includes a group homomorphism:

µr → µr , via ζ 7→ ζe locally constant!



tangency via orbifolds: summing up

We have (X ,D) and we’ve fixed discrete data Λ:

• the genus g of C and number n of markings,

• the curve class f?[C ] in H2(X ),

• matrix of tangency orders cij of pi along Dj .

Fix r = (r1, . . . , rk) large rooting parameters for D1, . . . ,Dk .

Vistoli teaches us to build the root stack X , universal where Di has a r thi -root.

Cadman teaches us to use the homomorphisms on isotropy to encode tangency.

Abramovich–Vistoli give us a moduli space OrbΛ(X |D, r).

Abramovich–Graber–Vistoli give us virtual enumerative invariants. Modelled

on curves in X tangent to Di .



logarithmic geometry: very quickly!

In logarithmic geometry every space comes with a notion of monomial function.

Toric varieties have natural monomials. A choice of snc D ⊂ X gives monomials.

The product of two monomials is a monomial, but the sum is not!

Basic Idea. Add to (X ,OX ) a “sheaf of monoids” MX that records monomials.

Warining! There can be more monomials than polynomials!

Reasonableness condition: locally monomials come from maps to toric varieties.

Logarithmic geometry is the inevitable conclusion of this line.



logarithmic stable maps

In 2011 Abramovich–Chen and Gross–Siebert established logarithmic stable maps

completing Siebert’s program from 2001.

Here is roughly how it goes:

The stack Mg ,n of prestable curves has a natural logarithmic structure. So does its

universal curve. Immediately gives a notion of logarithmic curves.

Given (X ,D), with natural logarithmic structure, can consider families of

logarithmic maps from curves over a logarithmic base.

Key Result. Logarithmic maps from logarithmic curves to (X ,D) are parame-

terized by an algebraic stack Mg ,n(X ,D) with logarithmic structure. Stability

condition gives a Deligne–Mumford stack.



tangency via logarithms

What do logarithmic structures have to do with tangency?

We are interested in maps:

(C , p)→ (X ,D),

with C tangent along D at p to order e. Induced maps of “monomials up to units”:

A1
s → A1

t , via Ns
·e←− Nt .

Key Feature. In logarithmic geometry. even when the scheme theoretic tan-

gency is nonsensical e.g. if C maps into D, the monoid data must be specified.

Again, crucially there is a monoid homomorphism:

Ns
·e←− Nt locally constant!



an example to hold on to

Assume we work in genus zero and the pair (X ,D) is

X = Pr , D = H = union of r + 1 or fewer hyperplanes.

My Favourite Example. The space LogΛ(Pr ,H) is the normalization of the

closure of

MΛ(Pr |H) ⊂ M0,n(Pr , d)

in the usual space of stable maps,

If (Y ,E ) ↪→ (Pr ,H) is an “snc embedding” LogΛ(Y ,E ) is the locus in LogΛ(Pr ,H)

of curves that land in Y



tangency via logarithms: summing up

We have (X ,D) and we’ve fixed discrete data Λ:

• the genus g of C and number n of markings,

• the curve class f?[C ] in H2(X ),

• matrix of tangency orders cij of pi along Dj .

Tangency of C at pi with Dj always makes sense, and is locally constant. Again,

more monomials than polynomials!

Abramovich–Chen and Gross–Siebert tell us we can build a space LogΛ(X |D)

of logarithmic stable maps.

They also give us virtual enumerative invariants.



features and bugs

The two theories have very different natures.

Orbifold theory. Packaged by quantum cohomology and CohFTs. Equiv-

ariant localization is main computational tool. Givental formalism, Virasoro

constraints, etc.

Perfect parallel to traditional Gromov–Witten theory. On the other hand...

Logarithmic theory. Expected link to symplectic cohomology and mirror sym-

metry. Combinatorics of tropical curves and the degeneration formula gives

main computational tools. Currently no localization, Givental formalism, or

Virasoro constraints.

Hard to argue “better vs. worse” but for studying tangent curves, logarithmic

theory is more efficient and actually counts curves more often.



comparing roots and logarithms

In 2007, Cadman and Chen calculated invariants for the geometry (P2,E ) in genus

zero. Computations showed logarithmic and orbifold invariants coincide!

In 2010, Abramovich–Cadman–Wise proved conceptually that for (X ,D) with D

smooth that genus zero orbifold and logarithmic invariants always coincide.

Pivotal Insights. In doing so, and later with Fantechi and Marcus, they in-

troduced a host of fundamental techniques, including the prototype for Artin

fans.

Led to beautiful connection to tropical geometry in work of Ulirsch and others.



two counterexamples

The theorem of Abramovich–Cadman–Wise has two hypotheses: (i) the curves

have genus zero and (ii) D is smooth. Orthogonal sources of complexity.

Two Counterexamples. The theorem is sharp:

• In 2010 Maulik found examples in higher genus with D smooth, where

logarithmic and orbifold invariants do not coincide.

• In 2020 Nabijou–R found examples where D has two components in

genus zero, where logarithmic and orbifold invariants do not coincide.

The failures are ubiquitous, not pathological. Higher genus failure “morally”

attributed to torsion in Picard group.



higher genus

Combining work of Janda–Pandharipande–Pixton–Zvonkine and Tseng–You

resolves the higher genus problem when D is smooth.

Higher Genus. Fix tangency data and assume D is smooth. Then for large

enough r orbifold invariant is a polynomial in r . The constant term is equal to

the logarithmic invariant.

Intimately tied to geometry of the double ramification cycle.



simple normal crossings

In 2013 Abramovich–Wise proved that logarithmic invariants are insensitive to

strata blowups of (X ,D).

With Battistella–Nabijou we prove:

Simple Normal Crossings. Fix tangency data and assume genus zero. After

a sufficiently fine sequence of strata blowups

(X ′,D ′)→ (X ,D),

the orbifold invariant of (X ′,D ′) becomes equal to the logarithmic invariant of

(X ′,D ′) and therefore also of (X ,D).

We conjecture the “obvious” combination of results deals with higher genus and

snc divisors. Missing a couple of key pieces.



a taste of the proof

Proof uses one of the most powerful techniques in logarithmic geometry:

Ask yourself: what would Dan & Jonathan do?

Replace (X ,D) with the universal snc pair, namely the stack [Ar/Gr
m]. The

problem becomes combinatorial.

Key Aspect. Orbifold and logarithmic maps give tropical maps, i.e. maps from

metric graphs Γ:

Γ→ (R≥0 ∪ {∞})r .

Metric on Γ may be singular. Tropicalization of a log map is always smoothable.

Key to the proof is showing that after blowups, same is true in orbifold world.

Significant inspiration from Abramovich–Karu and Molcho on semistable reduction.



applications

Moving from the logarithmic side to the orbifold side gives new techniques.

Reconstruction Theorem. The genus zero logarithmic invariants of (X ,D)

are uniquely determined by the ordinary Gromov–Witten invariants of the strata,

i.e. of X , of the Di , and all their intersections.

For D smooth, same was proved in all genus by Maulik–Pandharipande (2006).

Result has purely to do with logarithmic theory. Proof passes through the orbifold

comparison.



applications

Beautiful application is to mirror symmetry and comes from work of Johnston,

giving a new proof of groundbreaking work of Gross–Siebert:

Associativity of Mirror Rings. The degree 0 symplectic cohomology ring of

a logarithmic Calabi–Yau pair is associative.

Symplectic cohomology is a beautiful invariant of non-compact symplectic

manifolds.

The ring SH0(X ) is the ring of functions on the mirror manifold X̌ .

Johnston deduces this by applying orbifold WDVV to logarithmic invariants.

Essentially uses the logarithmic/orbifold comparison to the mirror ring to orbifold

quantum cohomology.



thanks!

And a very happy birthday Dan!

(Photograph in Zurich in May ’23 taken by Sam Molcho, who refused to be in it!)


