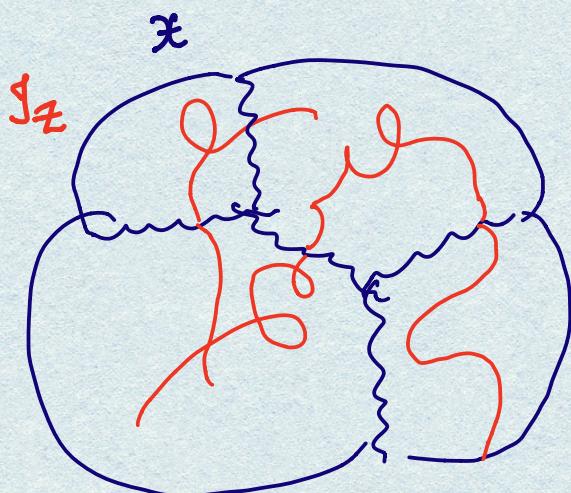
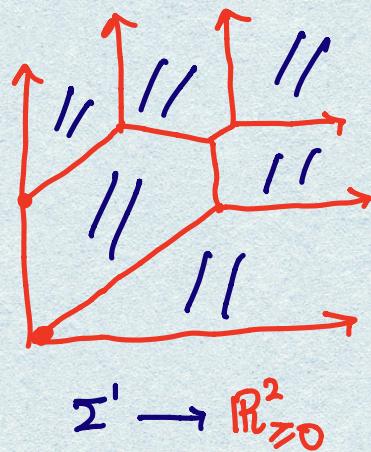
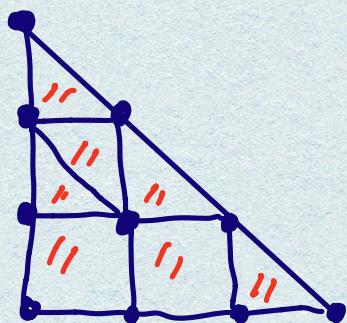
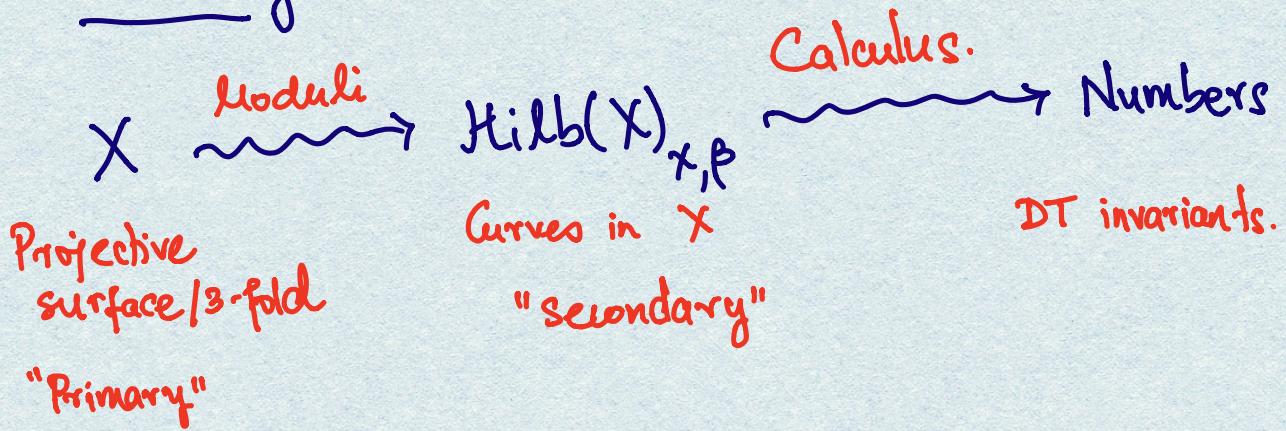
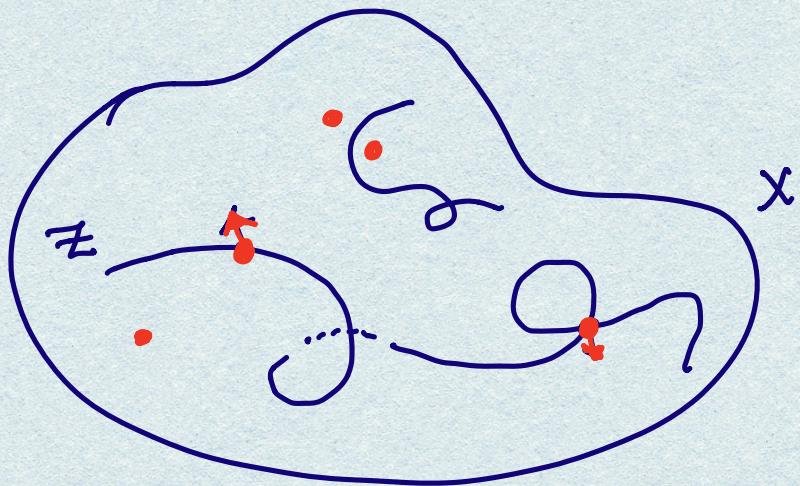


E
 the SECONDARY POLYTOPE

 w/ Davesh Maulik
 (MIT)



DT theory:



• subscheme of dimension 1 $\longleftrightarrow \mathcal{I}_z$ an ideal.

singular, non-reduced, embedded points, etc

$\chi(\mathcal{O}_z) = \chi$ is fixed $\left. \begin{array}{l} \text{Genus } \mathfrak{g} \\ \text{Degree} \end{array} \right\}$
 $[z] \in H_2(X; \mathbb{Z})$ is fixed

DT invariants: $\text{Hilb}(X)_{X, \beta}$ should have dimension

$-K_X \cdot \beta$ degree d in $\mathbb{P}^3 \longleftrightarrow$ should be $4d$.

Do calculus via "Universal structures"

$$\begin{array}{ccccc} Z & \xrightarrow{i} & \text{Hilb}(X)_{X, \beta} \times X & \xrightarrow{\mu} & X \\ & \pi_1 \searrow & \downarrow \pi_2 & & \\ & & \text{Hilb}(X)_{X, \beta} & & \end{array}$$

"Virtual fundamental class" extracts numbers
from cohomology classes of degree $-K_X \cdot \beta$.

Surfaces are nicer: n points on curves

$$\begin{array}{ccccc} \mathbb{P}^2 & \xrightarrow{\text{①}} & H_d & \xrightarrow{\text{[n]}} & \text{Glc II} \xrightarrow{\text{Glc II}} \text{"DT" Invariants} \\ & & \xrightarrow{\text{②}} & & \end{array}$$

Degree d
plane curves

Why is DT theory fun? The answers

- S a surface,

$$\sum_n \chi(\text{Hilb}^n(S)) q^n = \left(\prod_{m \geq 1} \frac{1}{(1-q^m)} \right)^{\chi(S)}.$$

[Grötsche]

- X a 3-fold, "virtual fundamental class"

gives $\text{Hilb}^n(X) \rightsquigarrow \text{DT}(X)_{n,0}$

$$\sum_{n \geq 1} \text{DT}(X)_{n,0} q^n = \left(\prod_{m \geq 1} \frac{1}{(1-(-q)^m)m} \right)^{C_3(K_X \otimes T_X)}$$

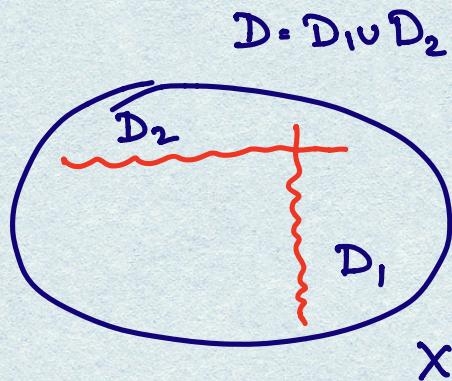
[“MNOP” + Levine-Pandharipande + others]

Logarithmic DT theory:

X smooth ; $D \subseteq X$ SNC

$(\mathbb{P}^3 | H)$

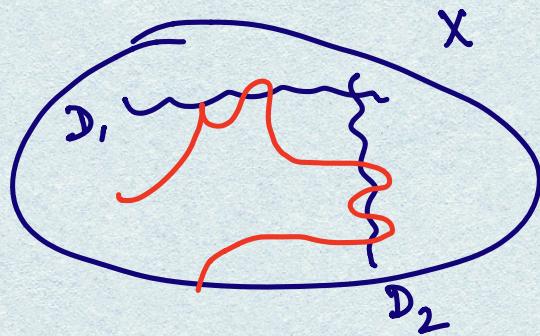
$(\mathbb{P}^2 | \partial \mathbb{P}^2)$



$(X|D) \rightsquigarrow \text{Hilb}^{\log}(X|D)_{\alpha, \beta} \rightsquigarrow \text{Log DT invariants.}$

open in $\text{Hilb}(X|D)$

$\text{Hilb}^{\circ}(X|D)$ "nice" locus:



$- \cap D_1 \rightarrow \text{Hilb}^{\text{pts}}(D_1)$

$\text{Hilb}^{\circ}(X)_{\alpha, \beta}$

[★]

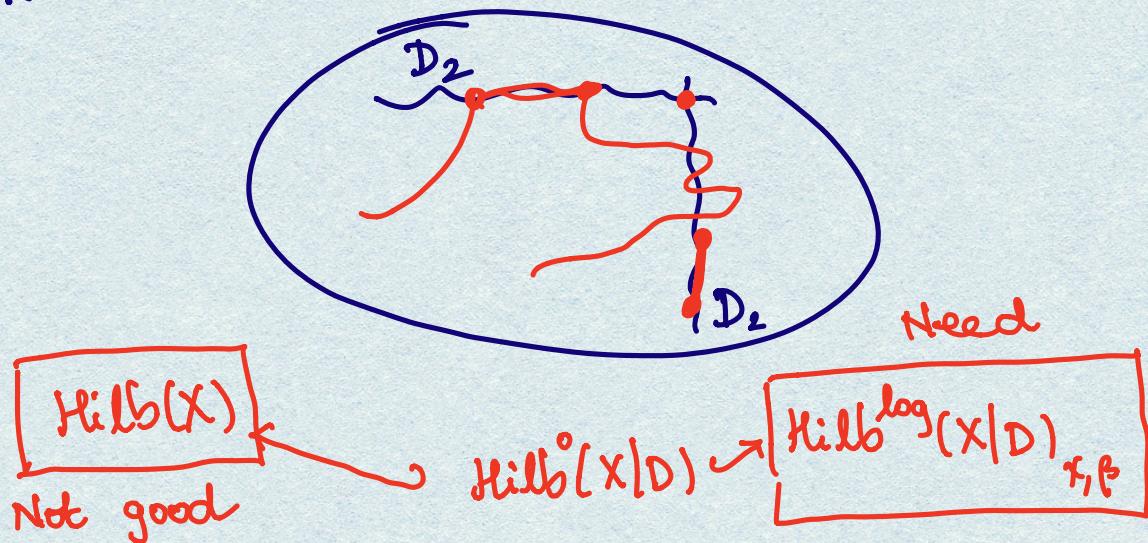
$- \cap D_2 \rightarrow \text{Hilb}^{\text{pts}}(D_2)$.

We use this to make
sense of "tangency" to
 $D_1 \& D_2$

Log DT theory: - Construct a compactification of this nice locus extending [★]

What is the basic geometric difficulty?

Curves fall into the boundary. In the usual Hilbert scheme

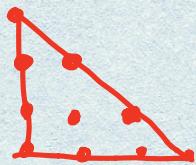


No chance of a map to Hilbert scheme of points

The solution to this problem involves a lot of pretty tropical combinatorics.

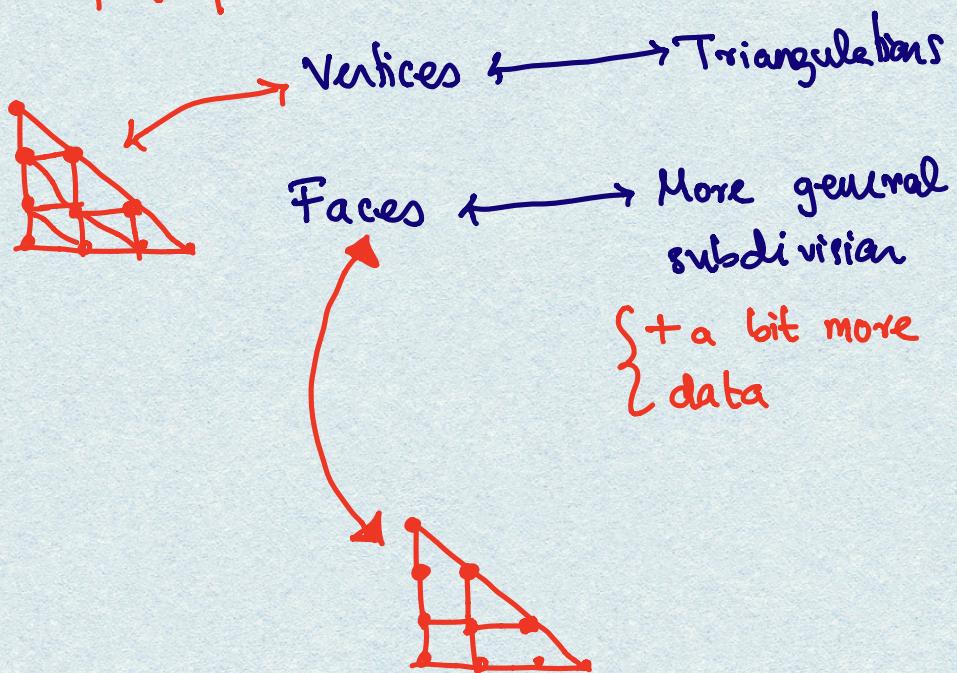
Where's the secondary polytope?

- P a lattice polytope



- $Q = \text{Secondary}(P)$

(Coherent) subdivisions of the primary
polytope



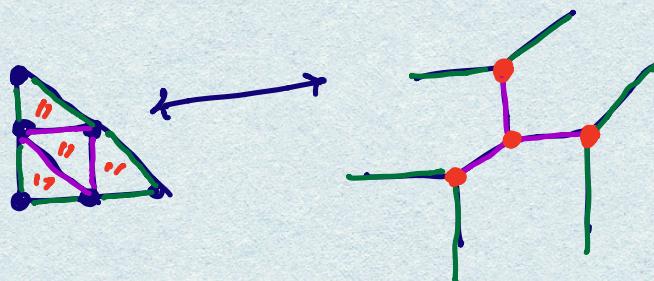
THM (GKZ) The space of subdivisions of P is
also a lattice polytope.

cf. The space of subschemes is a scheme.

Tropical geometry

Coherent subdivisions
of $P \subseteq M_{\mathbb{R}}$

Tropical curves
inside $N_{\mathbb{R}}$



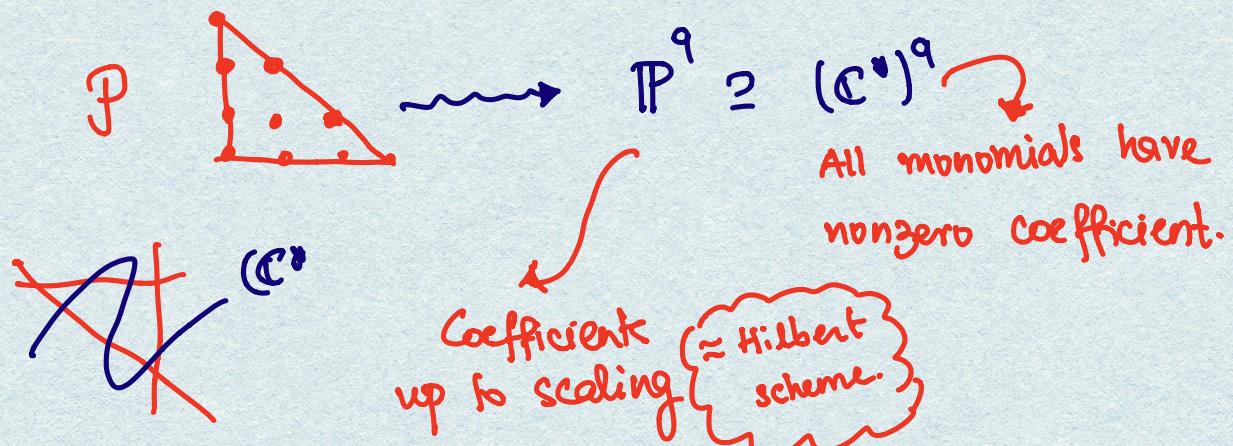
\mathcal{I}_P ^{Moduli} $\rightsquigarrow \mathcal{I}_Q$ $\rightsquigarrow ?$
 Toric surface fan "Primary"
 tropical curves in Σ_P "secondary"

First connection: the secondary polytope is already
analogous to the hilbert scheme.

{ Both are about embedded
objects.

Toric geometry:

The toric variety of the secondary polytope:

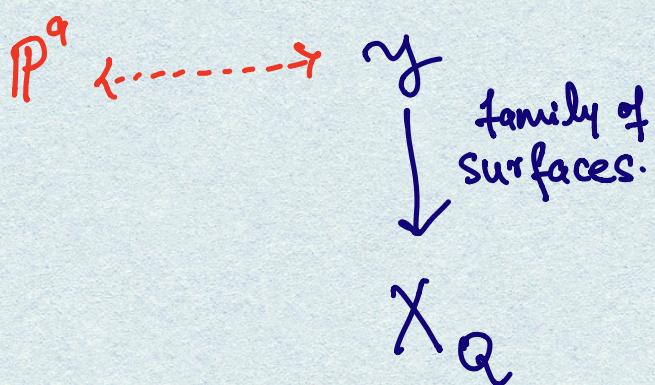


$$(\mathbb{C}^*)^2 \times X_P \cong \mathbb{P}^2; \text{ also act on } \mathbb{P}^9$$

Thm (GKZ) The toric variety X_Q is the ("best") Chow quotient

$$\mathbb{P}^9 \mathbin{\text{Ch}} \mathbin{\!/\mkern-5mu/\!} (\mathbb{C}^*)^2$$

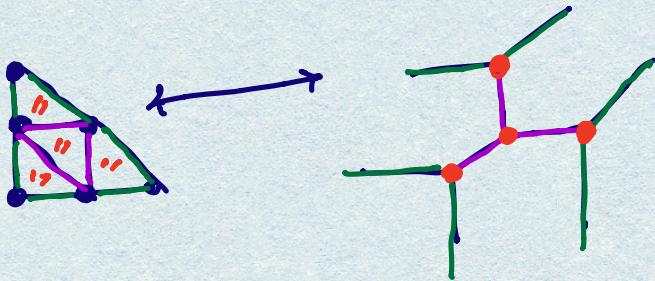
also: Billera - Sturmfels.



fibers over boundary are "broken" surfaces.

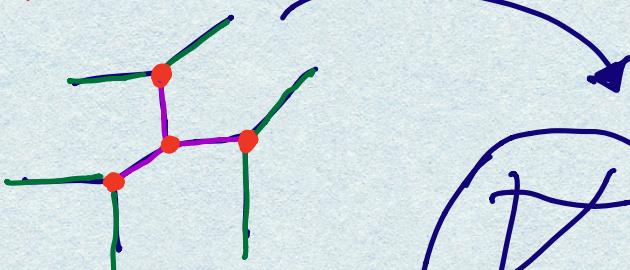
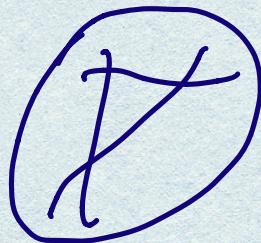
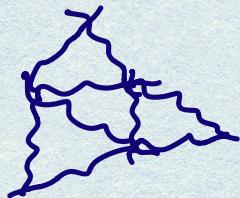
Who sees what?

Given



- Toric person: A toric degeneration associated

to via the "toric dictionary"



4 surfaces

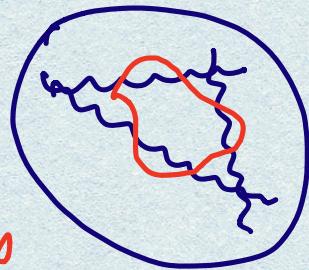
These are the orbits in the Chow quotient

- Tropical person: a curve in $(\mathbb{C}^{\times})^2$

of degree 2 with this tropicalization.

Lesson: Tropicalizations know how curves "want" to degenerate

Setup: $(\mathbb{P}^2 \setminus \partial \mathbb{P}^2)$



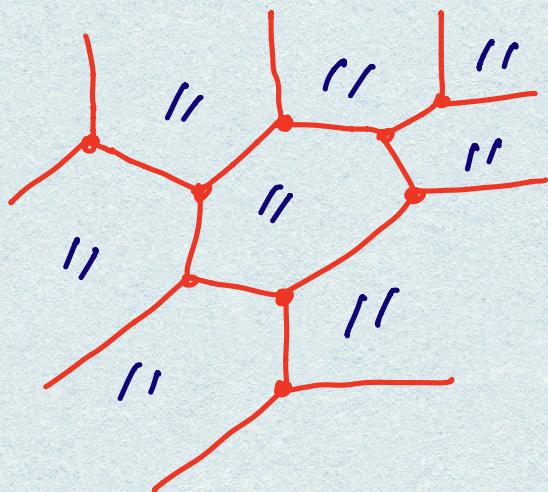
$\text{Hilb}^0(\mathbb{P}^2 \setminus \partial \mathbb{P}^2)$ nice locus

Take a family over $\mathbb{C}[[t]]$ of such objects.

• How to compactify?

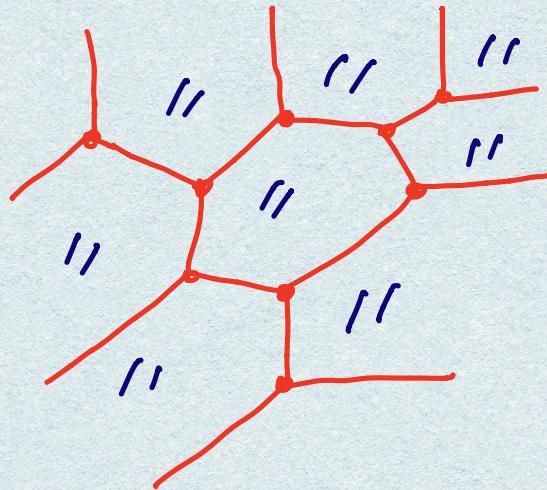
• Tevelev says: ① Compute the tropicalization:

$$\begin{aligned} Z_n &\hookrightarrow \mathbb{P}^2_{\mathbb{C}[[t]]} \\ \cup \quad & \\ Z_n^0 &\hookrightarrow (\mathbb{C}[[t]]^\times)^2 \xrightarrow{\text{trop}} \mathbb{R}^2 \end{aligned}$$



②

Turn this picture



9 toric
surfaces
glued
together.

Into a degeneration of \mathbb{P}^2

γ { and take the limit.
↓ limit in γ of
Spec $\mathbb{C}[[t]]$ the curve γ_t .

Output: Tropical geometry tells you to study:

- A tropical curve $\Sigma \hookrightarrow (X|D)^{\text{trop}} \hookleftarrow \mathbb{R}^2$
- Induced degeneration γ_Σ of $(X|D)$ $\hookleftarrow \mathbb{R}^2$
- A subscheme inside γ_Σ with "nice" condition.

Main Result: ("Logarithmic DT theory") we construct

these

logarithmic Hilbert schemes.

secondary toric variety

Algebraic world

Hilbert scheme
... and moduli of
1-dim subschemes
of degenerations

Tropical world

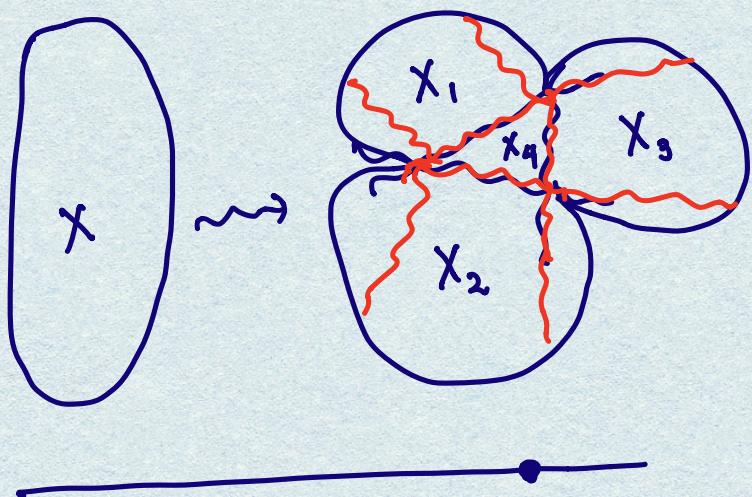
secondary polytopes
... moduli of 1-dim
embedded polyhedral
complexes in a fan

- In general the moduli of embedded tropical curves that we construct are much more general but they have fewer good properties. The secondary polytope remains the **GOLD standard!**

Some basic theorems: • New versions of old formulas

• Degeneration formalism

If we degenerate some $x \rightsquigarrow \cup (x_i | D_i)$



This determines a fan Σ_x and

$$DT(x) = \sum_i " \ast " DT^{\log}(x_i | D_i)$$

\ast : tropical
curves in Σ_x

In favourable situations the inside term collapses to something combinatorial.

→ "Correspondence theorems"
(Mikhalkin, Nishinou-Siebert,
et al)

Generalized secondary fans

Recall 2 invariants χ and β from before.

- A degree d plane curve C has arithmetic genus given by $\binom{d-1}{2} \rightsquigarrow \chi(\mathcal{O}_C)$.
- To change $\chi(\mathcal{O}_C)$ we study relative Hilbert schemes of points:

$$\mathcal{C}/\mathcal{G} \rightsquigarrow \text{Hilb}_{\mathcal{G}}^n(\mathcal{C}/\mathcal{G}).$$

Combinatorially: higher Euler characteristic versions of the secondary fan

$$\begin{array}{ccc} \mathbb{I} & \hookrightarrow & \mathbb{R}^2 + \mathbb{Z}\mathbb{Q} \\ & \searrow & \downarrow \\ \mathcal{P} & \rightsquigarrow & \mathcal{Q} \rightsquigarrow \Sigma \mathcal{Q} \\ \text{Primary} & & \text{Secondary} \end{array}$$

moduli of n points on \mathbb{I}

What is the object of study?

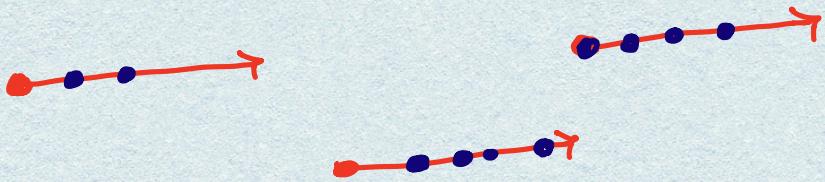
If Σ is a fan $PP^*(\Sigma)$ is the ring of piecewise polynomial functions on Σ .

So what is $PP^*(\Sigma_Q)$
 $PP^*(\Sigma_Q^{inj})$

$PP^*(\Sigma)$ gives rise to universal relations in log DT theory.

No idea. But surely this is beautiful.

Example: Take $\Sigma = \mathbb{R}_{\geq 0}$ & study the "fan" of $\leq n$ unlabelled tropical points on Σ :



$PP^*(\Sigma^{inj}) \approx$ Quasi symmetric polynomials in n variables.

Hopf algebra structure