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Premise

Recent direction in the study of Mg ,n: logarithmic intersection theory.

Motivation from logarithmic Gromov–Witten theory and the study of curve

counting using tropical and degeneration methods.

The case study for the day: higher double ramification cycles, i.e. cycles in

Mg ,n of curves admitting a map to a given toric variety.
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People

Main results today are work with Samouil Molcho (ETH Zürich) in our paper “A

case study of intersections on blowups of the moduli of curves”.

Connections to enumerative geometry are work with Renzo Cavalieri (Colorado

State) and Hannah Markwig (Tübingen) and Ajith Urundolil Kumaran

(Cambridge).

Parallel and related work by Bae, Barrott, Holmes, Herr, Molcho, Nabijou,

Pandharipande, Pixton, Schwarz, Schmitt.



Core goals

Logarithmic intersection theory is a refinement and enlargement of intersection

theory. The input is a pair (X ,D) a normal crossings pair:

CH⋆(X ) ↪→ logCH⋆(X ,D) ↠ CH⋆(X ).

I will explain:

• What is the logarithmic Chow ring of (X ,D)?

• How it is motivated by the higher double ramification cycle problem.

• The geometry and combinatorics of working in the ring logCH⋆(X ,D).
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It is stratified by connected components of (potentially self) intersections of the

components of the divisor D.



Setting: varieties with boundary

Let (X ,D) be a normal crossings pair with X projective.

It is stratified by connected components of (potentially self) intersections of the

components of the divisor D.



Logarithmic intersection theory

A logarithmic blowup of (X ,D) is any blowup

X ′ → X ,

with centre that is monomial with respect to D.

The blowup π : X ′ → X induces π⋆ : CH⋆(X ) ↪→ CH⋆(X ′). Define

logCH⋆(X ,D) := lim−→
X ′→X

CH⋆(X ′).

Proper pushforward gives:
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Basic observations

The ring logCH⋆(X ,D) is almost always infinite dimensional.

If (X ,D) is toric, there are complete answers for logCH⋆(X ,D) and its equivariant

analogue (Morelli, Fulton–Sturmfels, Brion, Payne).

If (X ,D) is (M0,n, ∂M0,n) then logCH⋆(M0,n, ∂M0,n) is completely controllable –

find your local tropical geometer.

Interest today is logCH⋆(Mg ,n, ∂Mg ,n).

... why would you study it? What extra information does it contain? How do you

work with it?
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The case study: double ramification cycles

Fix x in Zn with sum 0.

The double ramification cycle in Mg ,n is

DR◦
g (x) =

{
(C , p) : there exists a map C → P1with ramification x

}
.

Basic Facts:

Locus where the line bundle O(
∑

xipi ) is trivial.

Expected codimension g in Mg ,n.
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Double ramification cycles in Mg ,n

A compactification is provided by logarithmic Gromov–Witten theory.

Compactify by maps from nodal curves to nodal degenerations of P1.

Furnishes an algebraic cycle class DR(x) in Mg ,n of codimension g .
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Why study it?

• Basic object in higher genus enumerative geometry.

• Intersection theory on the universal Picard variety over Mg ,n.

• Gives relations in the Chow ring of Mg ,n.

Connections to integrable systems, meromorphic differentials, tropical geometry,

enumerative geometry of surfaces and threefolds, GW/DT correspondence, etc.



History

The study of DRg (x) was proposed by Eliashberg in 2001.

• (Faber–Pandharipande ’03) The cycle lies in the tautological part of the

cohomology of Mg ,n.

• (Hain ’11, Grushevsky–Zakharov ’12) Explicit formula on the locus of

compact type curves.

• (Janda–Pandharipande–Pixton–Zvonkine ’16) Complete formula1 on Mg ,n.

1For glorious details see Pixton’s ICM lecture https://youtu.be/p3r1fsHmcG8

https://youtu.be/p3r1fsHmcG8


Towards the logarithms



Symptoms of an incomplete story

One can formulate a similar problem for P1 × P1:

DDR◦
g (x, y) =

{
(C , p) : C admits a map to P1 × P1 with tangency x and y

}
.

Compactification from logarithmic Gromov–Witten theory.

More generally, maps to any toric variety with tangency with the boundary.
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Symptoms of an incomplete story

We have a simple equality on the interior Mg ,n:

DDR◦
g (x, y) = DR◦

g (x) ∩ DR◦
g (y)

The equality fails on the compact moduli space Mg ,n

DDRg (x, y) ̸= DRg (x) ∩ DRg (y).

Therefore control of DR does not give control of DDR.

Today’s Story

Lifts of DR and DDR to logCH⋆(Mg ,n, ∂Mg ,n) that are better behaved.
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Spoiler: information in the logarithmic DR

The logarithmic higher DR cycles are basic objects in enumerative geometry. As a

preview:

• Intersections with logarithmic DR encode complete information about

Hurwitz numbers of P1 and Severi degrees of P2.

• Higher DR intersection calculations lead immediately to correspondence

theorems in (refined) tropical curve counting.

• Fundamental part of studying Gromov–Witten theory under normal crossings

degenerations.



Building classes in logarithmic Chow



Constructing classes I: cycles

Suppose we have a map

ι : (W ,E ) → (X ,D)

with preimage of D contained in E . Let X ′ → X be a blowup at Z ⊂ X .

Let W ′ be the blowup at the preimage of Z .

Theorem

If X ′ → X is sufficiently fine then [W ′] is well-defined in logCH⋆(X ,D).

Key Fact!

It is the strict transform and not cohomological pullback!
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The toric incarnation

Suppose X ′ → X is a toric blowup and W → X is torus equivariant.

The fibre product is typically not toric.

However, the category of toric varieties admits fibre products. The two fibre

products play the roles of the two lifts2.

2See Molcho’s “Universal stacky semistable reduction” for a compelling treatment.
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Constructing classes II: cocycles

Classes in logCH⋆(X ,D) constructed via piecewise polynomials:

• Choose a subdivision Σ′ of Σ(X ,D) – this names the blowup.

• Choose a continuous function |Σ′| → R that is a polynomial function on each

cone of Σ′.

Theorem (Holmes–Schwarz, Molcho–R)

There is a ring homomorphism

PP(Σ(X ,D))) → logCH⋆(X ,D).

The construction has expected functoriality properties in (X ,D).
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A reminder of the problem...

Fully understand: the class DRg (x) in the standard Chow ring of Mg ,n.

Want: the higher DR classes such as DDRg (x, y) in the standard Chow ring of

Mg ,n.

The results will control the higher DR classes via the logarithmic promotions of

usual DR classes.
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First results

Fancy version of Construction I lifts DRg (x) to3 DRlog
g (x).

Theorem (Molcho–R ’21)

The difference DRg (x)− DRlog
g (x) is a piecewise polynomial on the

tropicalization of Mg ,n.

The logarithmic lifts restore the product rule so:

Corollary

All higher double ramification cycles lie in the tautological ring of the moduli

space of curves.

3The same class can be obtained by Abel–Jacobi theory using the work of Holmes.
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Further results

Theorem (Holmes–Molcho–Pixton–Pandharipande–Schmitt ’22)

Formula for the logarithmic double ramification cycle.

Theorem (Cavalieri–Markwig–R ’22, R ’22)

Explicit piecewise polynomial b such that b ∩ DRlog
g (x) recovers the double

Hurwitz numbers. Similarly for the Severi degrees.

Theorem (R–Urundolil Kumaran ’22)

Logarithmic GW cycles of toric varieties lie in the tautological ring of Mg ,n.
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The tropical perspective

A purely combinatorial analogue of the DR cycle problem.

Study balanced piecewise linear maps from metric graphs to R.

Some graphs admit such a map and some do not. We are led to a conical subset

in the moduli space of curves.

Theorem (R ’19)

Subdivide Mtrop
g ,n so this subset is included. The lift of DRg (x) to this subset is

stable under further blowups.
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A few concluding words

Phenomena of this flavour seem to be common – degeneration formulas in

GW/DT theory, Fourier–Mukai transforms for degenerations of abelian varieties,

and results of an arithmetic nature.



Thanks!
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