

ALGEBRAIC GEOMETRY : PART II

A brief introduction to algebraic geometry

This subject is about the ring of polynomials $k[x_1, \dots, x_n]$ and the geometry that it and its quotients by ideals.

STARTING POINT Let k be a field

$$I \subseteq k[x_1, \dots, x_n] \xrightarrow{\quad} \frac{k[x_1, \dots, x_n]}{I} = A$$

an ideal

This is how we organize the information in $k[x_1, \dots, x_n]$.

Building Question : On what space is the ring A

naturally the ring of functions?

$k[x_1, \dots, x_n]$ is naturally defined on k^n . Given

$f \in k[x_1, \dots, x_n]$ we get

$\text{ev}_f: k^n \longrightarrow k$ by evaluation.

Given $f_1, f_2 \in \mathcal{S}$, f_1 is meant to be equal to f_2 (and equal to the zero function). Thus,

whatever subset of k^n we want, ev_{f_1} will only be well defined on $\mathbb{V}(f_1) \cap \mathbb{V}(f_2)$

$\underbrace{\quad}_{\text{VANISHING LOCUS.}}$

Given \mathcal{S} , we have $\mathbb{V}(\mathcal{S}) = \{p \in k^n \mid f(p) = 0 \text{ } \forall f \in \mathcal{S}\}$

and $k[X]/\mathcal{S}$ is the RING OF FUNCTIONS.

EVENTUALLY: we will want "spaces" X st "locally" X has the form $\mathbb{V}(S)$ (or something close). This is a bit like:

Calculus in $\mathbb{R} \rightsquigarrow$ Calculus in $\mathbb{R}^n \rightsquigarrow$ Calculus on manifolds

\rightsquigarrow Differential geometry

AFFINE SPACE) Affine n -space or "affine space of dimension n " is denoted as A_k^n and as a set is \mathbb{K}^n . we think of A_k^n as coming with a natural ring of functions

$\mathbb{K}[X] := \mathbb{K}[x_1, \dots, x_n]$. Each $f \in \mathbb{K}[X]$

gives $f: A_k^n \longrightarrow \mathbb{K}$

>If k is finite, then two polynomials can represent the same function.

FUNDAMENTAL FACTS :

- (1) The ring $k[x]$ is a UFD $\&$
- (2) Given an ideal $I \subseteq k[x]$ there exists a set f_1, \dots, f_r st $\langle f_1, \dots, f_r \rangle = I$

HILBERT BASIS THEOREM

DEFINITION: An affine variety (closed algebraic subset of \mathbb{A}_k^n) is given by;

$$V(S) = \{ \mathbf{p} \in \mathbb{A}_k^n \mid f(\mathbf{p}) = 0 \text{ for some } f \in S \}$$

$$S \subseteq k[x]$$

 some people will ask also for "irreducible", more on this later.

EXAMPLES & WORDS

(1) The affine varieties in A_k^n are precisely the finite sets.

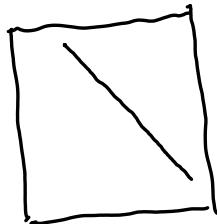
(2) If $Z = V(\{f\})$ is the vanishing of a single polynomial, it is called a hypersurface.

Note: In general, this is useful when $k = \bar{k}$ is algebraically closed. But, $k = \mathbb{R}$ is good for pictures.

PICTURES over \mathbb{R}

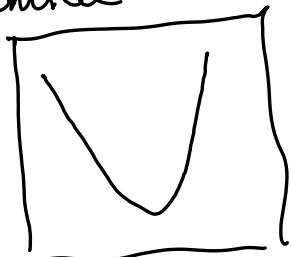
$f \in \mathbb{R}[x, y]$ a degree d polynomial

$d=1$

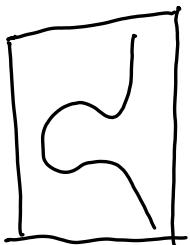


$\rightarrow V(f)$

$d=2$



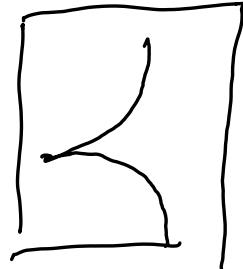
$d=3$



for example

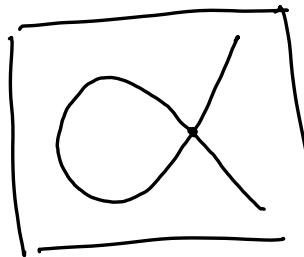
$d=3, y^2 = x^3$

CUSP



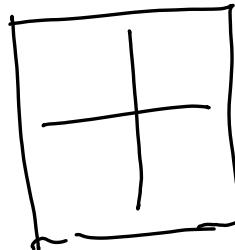
$d=3$

$$f = y^2 - x^3 - x^2$$



$d=2$

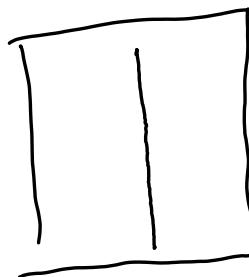
$$f = xy$$



SOMETHING
DIFFERENT
HERE

$d=2$

$$f = x^2$$



SOMETHING VERY
DIFFERENT
HERE !

EXPECTATIONS

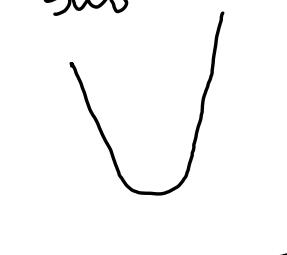
Given $f \in k[x,y]$ of degree d

and $l \subseteq \mathbb{A}_k^2$ a line, $W(f) \cap l$ is

"probably d points", but:



I. $d=2$



II. $d=2$

$d=1$

THEOREM • Given $S \subseteq k[\underline{x}]$ and \mathfrak{I}_S the ideal generated by S , there is an equality 7

$$V(S) = V(\mathfrak{I}_S)$$

• Given and S , there exists a finite set

f_1, \dots, f_r st

$$V(S) = \bigcap_{i=1}^r V(f_i)$$

PROOF: • Clear from the definition of an ideal

• Apply the Hilbert basis theorem.

PROPOSITION: • If $S, T \subseteq k[\underline{x}]$ and $T \subseteq S$

then $V(S) \subseteq V(T)$

$$\bigcap_i V(\mathfrak{I}_i) = V\left(\sum_i \mathfrak{I}_i\right)$$

$$V(\mathfrak{I}) \cup V(\mathfrak{I}') = V(\mathfrak{I} \cap \mathfrak{I}').$$

pf : All but the last statement are clear in light of the preceding theorem.

For the last: " \subseteq " is clear. Conversely,

take $p \in V(S \cap S')$ and $p \notin V(S)$. Then there exists $g \in S$ st $g(p) \neq 0$. For every $f \in S'$, $fg \in S \cap S'$ and thus,

$fg(p) = 0$. Thus $f(p) = 0 \forall f \in S'$

so $p \in V(S')$.

IRREDUCIBILITY

□

A variety Z is reducible if

$$Z = Z_1 \cup Z_2 \quad Z_i \text{ varieties}$$

means that $Z = Z_1$ or Z_2 .

Otherwise it is IRREDUCIBLE.

When are two varieties the same?

9

If $V(S) = V(S')$ then what can we say about f and f' ?

Not always! $V(f) = V(f^k) \quad k \in \mathbb{N}_0$

But, given a variety Z , we can take $I(Z) = \{f \mid f(p) = 0 \quad \forall p \in Z\}$.

PROPOSITION: $Z = V(S)$, then $S \subseteq I(Z)$

$\therefore I(Z) = V(I(Z))$ $\therefore Z = Z' \iff I(Z) = I(Z')$

so $I(Z)$ is the largest ideal that could give Z as a vanishing locus.

We have built an association

$$\left\{ \begin{array}{l} \text{affine varieties} \\ \mathcal{Z} \subseteq \mathbb{A}_k^n \end{array} \right\} \longrightarrow \left\{ \begin{array}{l} \text{Ideals in } k[\underline{x}] \\ \end{array} \right\}$$

which is an injective association

$$\mathcal{Z} \longmapsto I(\mathcal{Z}) = \{ f \in k[\underline{x}] \mid f(p) = 0 \ \forall p \in \mathcal{Z} \}$$

with left side inverse

$$I(\mathcal{Z}) \longleftarrow V(I(\mathcal{Z})).$$

Ideals obtained as $I(\mathcal{Z})$ have the following property:

(*) If $f^d \in I(\mathcal{Z})$ then $f \in I(\mathcal{Z})$.

DEF: Given an ideal $\mathcal{I} \subseteq k[\underline{x}]$, its radical

$$\sqrt{\mathcal{I}} = \{ f \in k[\underline{x}] \mid f^d \in \mathcal{I} \}.$$

In addition

\mathcal{I} is called radical if $\mathcal{I} = \sqrt{\mathcal{I}}$.

OBSERVE: $\sqrt{\sqrt{\mathcal{I}}} = \sqrt{\mathcal{I}}$, so $\sqrt{\mathcal{I}}$ is radical.

Let $Z = V(S)$.

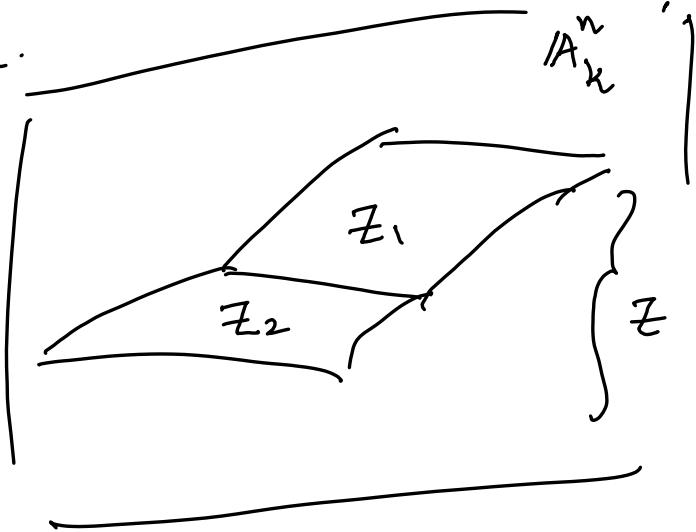
11

Denote $\mathcal{O}(Z)$ the coordinate ring $k[\Sigma]/\mathfrak{f}$.

PROPOSITION: $I(Z)$ is prime if and only if

Z is irreducible.

PROOF BY PICTURE



Pick f_1 vanishing on Z_1 , not Z_2 , and f_2 vanishing on Z_2 not Z_1 . Then $f_1 f_2$ vanishes on $Z_1 \cup Z_2 = Z$. Thus, $f_1 \notin I(Z)$ & $f_2 \notin I(Z)$ but $f_1 f_2 \in I(Z)$.

ACTUAL PROOF: Let $I_1 = I(Z_1)$ and $I_2 = I(Z_2)$.

with $Z = Z_1 \cup Z_2$, $Z_i \neq Z$.

such that $I(Z) = I_1 \cap I_2$. Choose

$f_1 \in I_1 \setminus I_2$ and $f_2 \in I_2 \setminus I_1$.

(since we have $I_1 \not\subseteq I_2 \not\subseteq I_1$, this is possible)

and observe $f_1 f_2 \in I(Z)$.

Conversely if Z is irreducible, we claim

for $f_1 f_2 \in I(Z)$, f_1 or $f_2 \in I(Z)$.

Indeed, if not, $Z_i = V(f_i) \cap Z$ and

observe that $Z = Z_1 \cup Z_2$ Why?

HILBERT's NULLSTELLENSATZ Let $k = \overline{k}$. Then \square .

$$I(V(S)) = \sqrt{S}$$

(say explicitly what this means).

So, affine varieties don't see the difference between $V(f) \subseteq V(f^2)$. Of course, one could remember it "by design", and think about the data: $(\mathbb{Z}, k[X]/_f) \leftarrow$ this is a scheme

Often convenient, but we won't get there till Part III. The real geometry is all in what we'll do though.

$k \cong k$ now unless otherwise stated

MORPHISMS | let $V \subseteq \mathbb{A}_k^n$ & $W \subseteq \mathbb{A}_k^m$. A

morphism is a map

$\phi: V \longrightarrow W$ st there exist

$f_1, \dots, f_m \in \mathcal{O}(V)$ with $\phi(p) = (f_1(p), \dots, f_m(p))$

What does this say?

The elements of $\mathcal{O}(V)$ are functions with values in k . with m of them we map to A_K^m so

$\phi = (f_1, \dots, f_m) : V \rightarrow A_K^m$. we want

these points to satisfy the equations of W .

RING THEORETIC PERSPECTIVES

I. Given any ring $A \cong k[x_1, \dots, x_n] / \mathfrak{g}$ (k -algebra)

a homomorphism

$k[x_1, \dots, x_n] \rightarrow A$ is equivalent to

the data of the images of x_1, \dots, x_n , so just m elements of A .

the condition that $f_1(p), \dots, f_m(p)$ satisfy the equations of W is equivalent to saying that

$$k[x_1, \dots, x_m] \xrightarrow{\quad} A = \mathcal{O}(V) \\ \searrow \quad \nearrow \\ \mathcal{O}(W)$$

extends.

THEOREM: The morphisms $\varphi: V \rightarrow W$ are in bijection with ring homomorphisms

$$\varphi^*: \mathcal{O}(W) \rightarrow \mathcal{O}(V)$$

given by $\varphi \longleftrightarrow \varphi^*$.

II. The functions (regular/polynomial/algebraic) on W are $W \xrightarrow{f} A_k^1$

If we had $v \xrightarrow{u} w$, we'd be able to produce a pullback

$$\begin{array}{ccc} V & \xrightarrow{u} & W & \xrightarrow{f} & \mathbb{A}^1_k \\ & & \searrow & & \\ & & & & \mathcal{O}_f^* \in \mathcal{O}(V) \end{array}$$

→ it must produce $\mathcal{O}^*: \mathcal{O}(w) \rightarrow \mathcal{O}(V)$

But \mathcal{O}^* determines \mathcal{O} by our previous discussion

CHECK!

So ultimately, affine varieties are equivalent

objects to rings of the form $k[x_1, \dots, x_n]$ and

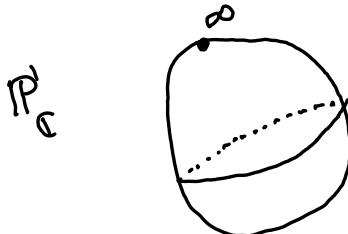
maps between them

FINITE TYPE k -ALGEBRAS

We nonetheless keep the geometric perspective to correctly GLOBALIZE to general varieties. Local-to-global transition is a little subtle compared to manifolds, so we start with a broad class of examples.

PROJECTIVE VARIETIES

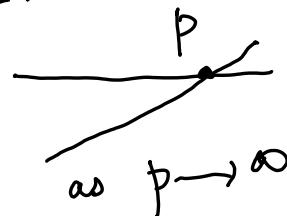
\mathbb{P}^1_k : "COMPACTIFYING" A^1_k , perhaps $k = \mathbb{C}$ for pictures.



A^2_k : Given lines l_1, l_2 , what is $\#l_1 \cap l_2$?

$0: 1 \text{ or } \infty \rightarrow$ But the answer should be 1.

is a limit
of



$$l_1 = V(x_1), \quad l_2(t) = V(x_1 + 1 + \frac{1}{t} \cdot x)$$

as $t \rightarrow \infty$ $l_1 \cap l_2(t)$ becomes empty.

"Lost" intersection point at \emptyset .

P_k^n will fix these "issues"

DEFINITION Given a k -vector space V (f-d)

define $P(V) = V \setminus \{\vec{0}\} / k^*$ acting by scaling.

In particular $P_k^n = P(k^{n+1})$

STANDARD CANON

- Homogeneous coordinates
- Affine patches
- Homogeneous polynomials
- Projective varieties.
- Homogenization of polynomials

and $A_k^n \subseteq P_k^n$

Let's explore \mathbb{P}_k^n

- Points are given by (z_0, \dots, z_n) not all zero with implicit ambiguity that $(z_0, \dots, z_n) \sim (\lambda z_0, \dots, \lambda z_n)$ for all $\lambda \in k^\times$ (Notation: $[z_0, \dots, z_n] = (z_0 : \dots : z_n) = [z_0 : \dots : z_n]$)
- Polynomials don't take on well-defined values i.e. $f(z_0, \dots, z_n)$ changes based on what representative of a point you plug in

covering \mathbb{P}_k^n : Homogeneous coordinates are

$(z_0 : \dots : z_n)$ but if we consider

$$\mathbb{P}_k^n \setminus \{z_0 = 0\} = \left\{ \left(1 : \frac{z_1}{z_0} : \dots : \frac{z_n}{z_0} \right) \right\}$$

$$z_i | z_0 \in k^\times$$

\mathbb{P}_k^n inherits a Zariski topology

Monday February 3

① $\mathcal{V}(I) = \emptyset \iff I \supseteq (\mathbb{Z}_0^m, \dots, \mathbb{Z}_n^m)$
 ② $\mathcal{V}(I)$ then $I^h(v) = I$

- Projective varieties
- Projective nullstellensatz
- Affine patches
 - Zariski topology
- Irreducible subvarieties, irreducible decomposition
- Projective closure
 - ↳ Key: Non-primality detected by hom. forms.

I LECTURED OFF THE CUFF - DON'T
 TAKE THESE NOTES TOO SERIOUSLY
 FOR THIS DAY

Zariski topology

• irreducible projective,

$$k(v) = \left\{ \frac{F}{G} \mid F, G \in k[\mathbb{Z}] \text{ hom. same degree} \right\} / \sim$$

$$G \in I^h(v)$$

$$\frac{F_1}{G_1} \sim \frac{F_2}{G_2} \iff F_1 G_2 = F_2 G_1$$

Transitive?

$\exists f$

$$F_1 G_2 = G_1 F_2 \quad \left. \right\}$$

$$F_2 G_3 = G_2 F_3$$

$$F_1 \underbrace{[G_2]}_{F_2} G_3 = G_1 \underbrace{F_2}_{[G_2]} \underbrace{[G_3]}_{F_3}$$

$$F_1 G_3 = G_1 F_3$$

closed subvariety, open subvariety.

Prop: $V \subseteq \mathbb{P}^n$ and $W \subseteq V$ proper closed,

then $V \setminus W$ is dense

pf: want to show, if f vanishes on $V \setminus W$ it vanishes on V .

Take such f . Since $V \neq W$, \exists

$g \in I^h(W) \setminus I^h(V)$ by Null.

Now, fg vanishes on V , but $I^h(V)$ prime and $g \in I^h(V)$ so $fg \in I^h(V)$.

MORAH:

smaller

| sketch

LEMMA: If $\bar{V} \subseteq \mathbb{P}^n$ is closure of $V \subseteq \mathbb{A}^n$ and $FF(k[V]) = k(\bar{V})$ then fg on V multiplies by z_0^m and g/z_0 is in $k(\bar{V})$.

Affine varieties $X \subseteq \mathbb{A}^n$ can be closed up in \mathbb{P}^n as follows.

How this works for $X = V(f)$, $f \in k[x_1, \dots, x_n]$

Let the total degree of f be d , then define a new (homogeneous!) polynomial

$$f(z_0, \dots, z_n) = z_0^d \cdot f\left(\frac{z_1}{z_0}, \dots, \frac{z_n}{z_0}\right)$$

In practice : Given $x_1^2 + 3x_2 + x_3^3$

want to make it homogeneous by

adding a variable:

$$z_0 z_1^2 + 3z_0^2 z_2 + z_3^3$$

If we set $z_0 = 1$ we recover the older polynomial

Ideals : we need a definition

DEF : An ideal is homogeneous if it is gen. by hom. elements

LEMMA : TFAE

(i) I is homogeneous

(ii) If $f \in I$ then the homogeneous parts $f_{(r)} \in I$.

PF : $\boxed{(i) \Rightarrow (ii)}$ | Say $I = \langle g_j \rangle$ of hom. degree d_j and let $f \in I$.

write $f = \sum h_j g_j$. Now split $h_j = \sum_r h_{j(r)}$ hom. degree \times pieces.

$f_{(r)} = \sum h_{j(r)} [d_j - r] g_j$ but $g_j \in I$, so $f_{(r)} \in I$.

$\boxed{ii \Rightarrow i}$ This is a triviality.

DEF: A projective variety is

$$V(I) \subseteq \mathbb{P}^n$$

$$\{'' p \in \mathbb{P}^n \mid f(p) = 0 \wedge p \in \mathbb{P}^n \} \\ \wedge f \in I.$$

where I is a homogeneous ideal.

TALK ABOUT $V(I) \cap A^n$ dehomogenization

If $I \supseteq (z_0^m, \dots, z_n^m)$ then

$$V(I) = \emptyset !$$

→ Irreducibility

PROPOSITION: Every proj. variety is a finite union

of irreducibles

. irreducible iff $I^n(V)$ is prime.

Proofs SAME AS AFFINE CASE

On \mathbb{P}^n we can change coordinates

by elements of $\text{PGL}(n+1, \mathbb{C})$, i.e. $(n+1) \times (n+1)$ matrices \nexists invertible, but up to scalar.

Let $\mathcal{O}_{\mathbb{P}^n}(d) = \{ f \in k[z_0, \dots, z_n] \mid f \text{ is homogeneous of degree } d \}$,

• Each $\mathcal{O}_{\mathbb{P}^n}(d)$ has the structure of a

vector space of dimension $\binom{n+d}{d}$ ← number of monomials

Let $f_d \in \mathcal{O}_{\mathbb{P}^n}(d)$. . . Terminology

$V(f_1)$ is a hyperplane, and $V(f_1) \cong \mathbb{P}^{n-1}$

$V(f_2)$ is a quadric hypersurface

$V(f_3)$ is a cubic

quartic

quintic

⋮

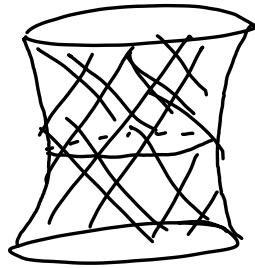
All hyperplanes are the same:

pf: change coordinates such that $f_1 = z_0$,

$$V(f_1) \cong V(f_0) \cong \mathbb{P}^{n-1}$$

Quadratics are not always the same!

One example: $V(z_0 z_3 - z_1 z_2)$ in \mathbb{P}^3 .

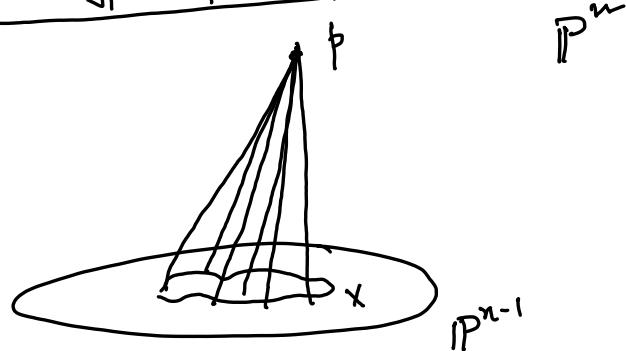


observe: This is the image of the map

$$\begin{array}{ccc} \mathbb{P}^1 \times \mathbb{P}^1 & \longrightarrow & \mathbb{P}^3 \\ ((x_0, x_1), (y_0, y_1)) & \longmapsto & (x_0 y_0, x_0 y_1, \\ & & x_1 y_0, x_1 y_1) \end{array}$$

There are other types of quadratics

Cones



we define the cone $\text{Cone}(X, p)$ for

$$X \subseteq \mathbb{P}^{n-1}$$

||

$$\bigcup_{q \in X} \text{line}(p, q)$$

why is this a projective variety?

Change coordinates such that $\mathbb{P}^{n-1} = \mathbb{V}(Z_n)$

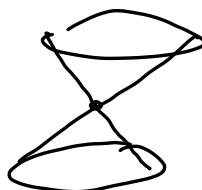
$$\text{e.g. } p = (0, \dots, 1)$$

$$\text{Then, if } X = \mathbb{V}(\{F_\alpha(z_0, \dots, z_n)\})$$

$$\text{then } \text{Cone}(X, p) = \mathbb{V}(\{F_\alpha(z_0, \dots, z_n)\})$$

thought of as
polynomials in n variables

FACT: The quadric first introduced is not a cone, there is a quadric cone



EXAMPLES $k = \bar{k}$

PROPOSITION: Let $C = V(F)$, with F irreducible in $k[z_0, z_1, z_2]$, hom. degree d . Then for

ℓ a line, $\# C \cap \ell \leq d$, and in fact

$\exists m_p(C, \ell)$ for $p \in \ell \cap C$ st

$$\sum_{p \in C \cap \ell} m_p(C, \ell) = d.$$

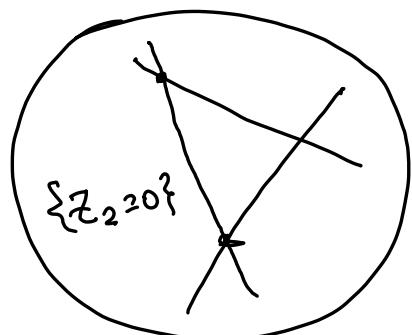
pf: Choose coordinates such that

$\ell = \{z_2 = 0\}$, $C = V(F)$

and since C doesn't contain a line, assume

$$(0:1:0) \notin C$$

thus, $C \cap \ell \subseteq \mathbb{P}^2 \setminus \{z_2 = 0\} \cong \mathbb{A}^2$



Pick coordinates $x = \frac{z_1}{z_0}$, $y = \frac{z_2}{z_0}$ in

$\mathbb{P}_k^2 \subseteq \mathbb{P}_k^2$. Then notice, $f(x, y) = F(1, x, y)$

has degree d in x since $(0:1:0) \notin C$.

Now, $\ln C = \{f(x, 0) = 0\}$ which is as expected.

Further comment: If $C_1 \notin C_2$ have degrees d_1 & d_2 , then $\sum m_p(C_1, C_2)$ 7)
 $\forall p \in C_1 \cap C_2$ st

$$\sum m_p(C_1, C_2) = d_1 d_2$$

Intersection multiplicities

Change of coordinates $\xrightarrow{\quad}$ Any collection of $n+2$

points in general position are projectively equiv.
 \hookrightarrow no $n+1$ contained in a hyperplane.

(For N points in \mathbb{P}^n , no $n+1$ or fewer
are dependent as vectors in $\mathbb{R}^{k^{n+1}}$)

Proof of \Leftarrow : Send p_1, \dots, p_{n+1} to

e_1, \dots, e_{n+1} by φ . Then by linear position
 p_{n+2} sent to a coordinate w point w)

All nonzero coordinates

→ After dilating by diagonal matrices,

we can take $\varphi(p_{n+1}) = (1, \dots, 1)$.

Thm: In \mathbb{P}^2 , there is a unique conic passing
through 5 points p_1, \dots, p_5 in general
position. It is irreducible.

LEMMA: Two conics intersect in at most 4 points in \mathbb{P}^2_k . Precisely, $F \& G$ coprime, $\deg \leq 2$, $\#V(G) \cap V(F) \leq \deg(F) \cdot \deg(G)$.

PF: Exercise involving conic sections & changing coordinates. Similar to $\ln C$ lemma

PF of them: If $C = V(F) \subseteq \mathbb{P}^2$ is a conic through p_1, \dots, p_5 , C is irreducible (why?)

If $C' = V(F')$ is another, then

$\# C \cap C' \geq 5$ which is impossible

unless $C = C'$.

To see why there is one, there are 6 coeff's

$$F = a_0 z_0^2 + a_1 z_1^2 + a_2 z_2^2 + a_3 z_0 z_1 + a_4 z_0 z_2 + a_5 z_1 z_2$$

with $a_i \in k$. $F(p_i) = 0$ is a linear condition in the a_i 's, so with 5 equations, there is a solution. \square

Rational Normal Curve

$$\varphi_n: \mathbb{P}^1 \longrightarrow \mathbb{P}^n$$

$$[x_0 : x_1] \longmapsto [x_0^n : x_0^{n-1}x_1 : \dots : x_1^n] \\ = [z_0 : \dots : z_n]$$

Image is called the rational normal curve

Let Id be the ideal of 2×2 minors

$$\text{of } \begin{bmatrix} z_0 & z_1 & \dots & z_{n-1} \\ z_1 & z_2 & \dots & z_n \end{bmatrix}$$

$$\boxed{\text{im}(\varphi_n) = \mathbb{V}(\text{Id})} \longrightarrow \text{Example sheet II.}$$

I'll do the $d=3$ case explicitly

$$\varphi_3: \mathbb{P}^1 \longrightarrow \mathbb{P}^3$$

$$[x_0 : x_1] \longmapsto [x_0^3 : x_0^2 x_1 : x_0 x_1^2 : x_1^3]$$

Consider the 3 quadrics given by

$$Q_0 = \mathbb{V}(z_0z_2 - z_1^2)$$

$$Q_1 = \mathbb{V}(z_0z_3 - z_1z_2) \quad \mathfrak{E}$$

$$Q_2 = \mathbb{V}(z_1z_3 - z_2^2)$$

Easy check = $\text{im}(\mathcal{D}_3) \subseteq Q_i + i$

Converse: Given $p = [z_0 : \dots : z_3]$ on $\cap Q_i$,

either z_0 or z_3 is nonzero. If

$$z_0 \neq 0, \text{ then } p = \mathcal{D}_3([z_0 : z_1])$$

$$\text{and if } z_3 \neq 0 \text{ then } p = \mathcal{D}_3([z_2 : z_3])$$

Note: $Q_i \cap Q_j \neq \mathbb{C}$, in fact

$$Q_i \cap Q_j = \mathbb{C} \cup \ell, \text{ where } \ell \subseteq \mathbb{P}^3$$

is a line.

This is called the Twisted Cubic

Segre surface $\hookrightarrow \mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^3$ as

$$([x_0:x_1], [y_0:y_1]) \mapsto [x_0y_0 : x_0y_1 : y_1x_0 : y_1x_1]$$

Given by $\mathcal{V}(z_0z_3 - z_1z_2)$

$\text{im}(\hookrightarrow)$ is $\Sigma_{1,1}$ the Segre surface.

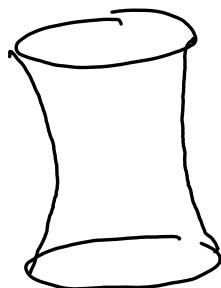
Observe: There exist two lines on $\Sigma_{1,1} \subset \mathbb{P}^3$

that are disjoint

. There exist two lines on $\Sigma_{1,1}$ that intersect

. In fact there are ∞ -many lines.

Parta :



Quadratic surface.

THINGS TO KNOW THAT WE CAN'T PROVE YET

33

Given $f_3(z_0, \dots, z_3) \in \mathcal{O}_{\mathbb{P}^3}(3)$, the choices of coefficients lie in \mathbb{C}^{20} . For a dense open set $U \subseteq \mathbb{C}^{20}$, if we take

$\mathbb{V}(f_3(z_0, \dots, z_3)) = S$ this surface has 27

lines.

If we take $f_d(z_0, \dots, z_3) \in \mathcal{O}_{\mathbb{P}^3}(d)$ for a dense set of coefficient choices in $\mathbb{C}^{\binom{d+3}{3}}$,

$\mathbb{V}(f_d)$ contains no lines.

Why this "dense set": For the first one, it's because these are manifolds [SMOOTHNESS]

The Grassmannian $G(k, n) = \{k\text{-dim subspaces of } \mathbb{K}^n\}$

is also a projective variety.

How?: Give $W \subseteq V \cong \mathbb{K}^n$ of dimension r
— associate any basis $\{v_1, \dots, v_r\}$. This association

is not unique. Given $M = [v_1 \dots v_r] \in M^r = [u_1 \dots u_r]$

which ~~size~~ tells us: $GL(r)$ acts on
 $\{k \times n \text{ matrices}\}$ by left multiplication

without changing row span

Now: there are $\binom{n}{r}$ minors of this matrix,

which are well-defined up to scaling.

so $\{k\text{-dim'l subspaces}\} \longrightarrow P(k^{\binom{n}{r}})$.

Lemma: This is injective \circ image is cut out by
polynomials.

Back to theory:

Morphisms: A rational map

$$\mathbb{P}^n \dashrightarrow \mathbb{P}^m$$

given f_0, \dots, f_m homogeneous degree d in variables z_0, \dots, z_n we obtain a

$$\text{map } \mathbb{P}^n \setminus \bigcap_j V(F_j) \longrightarrow \mathbb{P}^m$$

$$p = (z_0 : \dots : z_n) \longmapsto (F_0(p), \dots, F_m(p))$$

This intersection is called the base locus or locus of indeterminacy.

CREMONA

If $x \subseteq \mathbb{P}^n$ is $V(I)$, if $f_0, \dots, f_m \in k[\mathbb{Z}]$

not all in I , then they determine a rational map

$$X \setminus \bigcap_j (X \cap V(F_j)) \longrightarrow \mathbb{P}^m$$

regularity, morphisms.

Dominant rational map $\leftrightarrow \varphi: X \dashrightarrow Y$
 st. $\text{im}(\varphi)$ is dense

THEOREM: • Function field of projective closure
 • If $\varphi: X \dashrightarrow Y$ is birational
 the $k(X) \cong k(Y)$ as fields.

¶: Given $f \in k[z_1, \dots, z_n]$ we get a
 homogenization $F(z_0, \dots, z_n)$ given by

$$F := z_0^d \cdot f\left(\frac{z_1}{z_0}, \dots, \frac{z_n}{z_0}\right)$$

$\mathbb{V}(F)$ is the projective closure in the Zariski
 topology of $\mathbb{V}(f) \subseteq \mathbb{A}_k^n = \mathbb{P}^n \setminus \{z_0 = 0\}$.

Ex: Affine hyperbola $\mathbb{V}(z_1^2 - z_2^2 - 1) \subseteq \mathbb{A}_k^2$

then closure $\bar{X} = \mathbb{V}(z_1^2 - z_2^2 - z_0^2)$

Let I be an ideal in $k[z_1, \dots, z_n]$ then

$$I^h = \langle f^h \mid f \in I \rangle \subseteq k[z_0, \dots, z_n]$$

where f^h is the homogenization of f .

PROPOSITION: If $X = V(I)$, inside A_K^n then
 \bar{X} in P_K^n is $V(I^h)$

PF: $V(I^h)$ contains X and is closed.

Want to check it is the smallest such:

Say γ is closed & contains X . Then

$\gamma = V(J)$. Any $F \in J$ is given

by $x_0^d \cdot f^h$ for $f \in k[z_1, \dots, z_n]$

If $x_0^d f^h$ is zero and $\Rightarrow f=0$ on X

$\Rightarrow f \in I(X) = \sqrt{I}$, so $f^m \in I$, so

$$(f^m)^h = (f^h)^m \in I^h \text{ so } x_0^d f^h \in \sqrt{I^h}.$$

Therefore $J \subseteq \sqrt{I^h}$, which means

$\gamma_2 \nmid \mathbb{V}(\sqrt{I^h}) = \mathbb{V}(I^h)$ as required.

————— START OF 10/2 LECTURE

LEMMA:

Given $X \subseteq \mathbb{A}^n$ and \bar{X} the projective closure,

$$k(\bar{X}) \cong k(X).$$

PF Sketch: given

$$\frac{f(z_1, \dots, z_n)}{g(z_1, \dots, z_n)} \in k(X) \quad \text{let } m = \max \text{ degree}$$

80 $F = z_0^m f\left(\frac{z_1}{z_0}, \dots, \frac{z_n}{z_0}\right)$

$$G = z_0^m g\left(\frac{z_1}{z_0}, \dots, \frac{z_n}{z_0}\right)$$

$$F/G \in k(\bar{X}).$$

Conversely given $\frac{F}{G}$, $\frac{F(1, z_1, \dots, z_n)}{G(1, z_1, \dots, z_n)} \in k(X)$

Checking inverses is a pain but straightforward

39

Ex: If $X = \mathbb{P}^n$ $k(X) \cong k(z_1, \dots, z_n)$

MORPHISMS & RATIONAL MAPS: Let X be projective
varied.

• Rational functions $\phi \in k(X) = \mathbb{F} \subset [k(x)]$
" F/G " $\lambda(x)$

give $X \setminus V(G) \rightarrow k$

• Rational maps: Given $F_0, \dots, F_m \in \mathcal{O}_{\mathbb{P}^n}(d)$,
we get $\varphi: \mathbb{P}^n \setminus \bigcap V(F_i) \dashrightarrow \mathbb{P}^m$

$$[a_0: \dots : a_n] \mapsto [\dots : F_i(a_i) : \dots]$$

is well defined away from the base loci.

BROKEN ARROW: partially defined.

Given $X \subseteq \mathbb{P}^n$ and $\mathbb{P}^n \xrightarrow{\varphi} \mathbb{P}^m$

such that $\varphi(p)$ is well-defined $\forall p \in X$

this is called a morphism:

$$X \xrightarrow{\varphi} \mathbb{P}^n. \text{ If } \varphi(x) \subseteq Y$$

$Y \subseteq \mathbb{P}^m$ proj. then φ is a morphism

$$\boxed{X \xrightarrow{\varphi} Y} \quad \mathbb{P}^d \xrightarrow{\text{proj}} \mathbb{P}^m$$

Examples: . Veronese from

- Projection from a point : $\mathbb{P}^n \dashrightarrow \mathbb{P}^{n-1}$

$$\mathbb{P}^n \dashrightarrow \mathbb{P}^{n-1}$$

In coordinates: $\{z_n = 0\} = \mathbb{P}^{n-1}$; $\varphi = [0 : \dots : 1]$

Isomorphism definition

check if that $\mathbb{V}(x_1^2 - x_0 x_2) \cong \mathbb{P}^1$.

Domain of φ $(F_i) \in (G_j) : V \rightarrow \mathbb{P}^m$

are equivalent if $F_i g_j - F_j g_i \in I^{k(V)}$.

Domain: there exists a point w/ a regular $\varphi(p)$.

Dominant: $\varphi(\text{dom } \varphi)$ is dense.

Birational : $X - \xrightarrow{\varphi} Y$

\Downarrow $Y - \xrightarrow{\psi} X$ st

$\varphi \circ \psi \in \mathcal{L}$ and $\psi \circ \varphi$ are identity on an open dense.

Let X & Y be proj. irreducible.

THEOREM : $X \in Y$ birational \Leftrightarrow

$$k(X) = k(Y)$$

Sketch : One direction is obvious. Conversely,

given $k(X) \xrightarrow{\sim} k(Y)$ write
 $k(Y) \in k(Y)$ as functions fields of
complements of hypersurfaces

to reduce to the affine case.

$$k(X) = k(x_1, \dots, x_n) \quad x_i = x_i/x_0$$

$$k(Y) = k(y_1, \dots, y_n) \approx y_j = y_j/y_0$$

so clear denominators and write a
rational map. Invert.

□.

Finally: A (quasi-projective) variety is an open in a projective variety.

Theorem: A product of (quasi)-projective varieties remains quasi-projective

Proof is based on the fact that

$\mathbb{P}^n \times \mathbb{P}^m$ is projective:

$$g_{m,n}: \mathbb{P}^n \times \mathbb{P}^m \longrightarrow \mathbb{P}^{(n+1)(m+1)-1}$$

$$((x_i), (y_j)) \mapsto (\dots : x_i y_j : \dots)$$

Equations: $\{z_{ij} z_{kl} - z_{il} z_{kj} = 0\}$

z_{ij} are the coordinates on

$$\mathbb{P}^{(n+1)(m+1)}$$

Under this structure, $\mathbb{P}^n \times \mathbb{P}^m \longrightarrow \mathbb{P}^n$
is a morphism.

Equations / Map

• Map is clearly injective, as given

$c = [\dots : c_{ij} : \dots]$ and a, b st $b(a, b) = c$

w/ $a \in \mathbb{P}^m$ $b \in \mathbb{P}^m$

WLOG: take $c_{0,0} = a_0 = b_0 = 1$. This forces

$b_i = c_{0,i}$ and $a_j = c_{j,0}$

which uniquely determines a & b .

• Image is closed. If $c = [\dots : c_{ij} : \dots]$

solves the equations, take $c_{0,0} = 1$ and

for any $k, l \neq 0$, $z_{0,0} z_{k,l} - z_{k,0} z_{0,l}$

gives $\boxed{c_{k,l} = c_{k,0} c_{0,l}}$

Take $a_0 = b_0 = 1$, $a_k = c_{k,0}$ $b_l = c_{0,l}$

all done.

□.

SMOOTHNESS & TANGENT SPACES

$X = V(f) \subseteq \mathbb{A}_k^n$, f irreducible $P \in X$.

Line is $L = \{(a_1 + b_1 t, \dots, a_n + b_n t) \mid t \in k\}$
 $\underline{b} \in k^n \setminus \{0\}$

$X \cap L$: $f(a_1 + b_1 t, \dots, a_n + b_n t)$

$$= g(t) = \sum_{i=1}^n c_i t^i$$

$$c_0 = f(P) = 0, \quad c_1 = \sum b_i \cdot \frac{\partial f}{\partial z_i}(P)$$



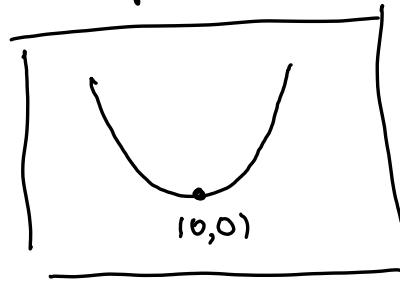
L is tangent iff L lies in, ($P = (a_1, \dots, a_n)$)

$$T_{X,P}^{\text{aff}} = V \left(\sum \frac{\partial f}{\partial z_i}(P) (z_i - a_i) \right)$$

we'll mostly use affine case
(Similar in projective case) either way
we get a linear subvariety of dim $n-1$ or n .

Ex: $\mathbb{V}(y - x^2)$

$$f = y - x^2$$



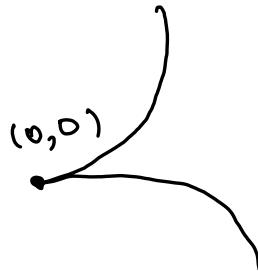
$$\frac{\partial f}{\partial x} = -2x$$

Tangent line: $y = 0$ \rightarrow

$$\frac{\partial f}{\partial y} = 1,$$

Ex: $\mathbb{V}(y^2 - x^3)$

$$f = y^2 - x^3$$



$$f_{\text{lin}} = 0 \quad \mathbb{V}(0) = A^2$$

smooth points are where tangent space has dim n.

PROPOSITION: Smooth points are dense

Pf: singular points solve $f \in f_{\text{lin}}$

PF: If $\frac{\partial f}{\partial z_i} = 0 \forall i$ then either

(1) f is constant in char $k = 0$

(2) $f = g^p$ for $g \in k[z_1^p, \dots, z_n^p]$.

For $X = \cup_{\substack{V \in I \\ V \subseteq A}} V$ in general, then for $P \in X$,

$$T_{X,P} = \left\{ \underline{v} \in k^n \mid \sum v_i \frac{\partial f}{\partial z_i}(P) = 0 \text{ for all } f \in I(X) \right\}$$

\uparrow
 $\subseteq k^n$

$$T_{X,P}^{\text{aff}} = \mathfrak{p} + T_{X,P}.$$

DEFINITIONS | Smoothness, dimension

PROPOSITION: Generic smoothness.

DEFINITION : Let $X = V(I) \subseteq \mathbb{A}_k^n$ be a variety

and let $P \in X$. Then

$$T_{X,P} = \left\{ v \in k^n \mid \sum v_i \frac{\partial f}{\partial z_i}(P) = 0 \ \forall f \in I(V) \right\} \subseteq k^n.$$

If $X \subseteq \mathbb{P}^n$ is quasi-projective, define $T_{X,P}$ by choosing $U \subseteq X$ affine and containing P .

Note : If X affine then $T_{X,P}^{\text{aff}} = T_{X,P} + P$

DEFINITION : Let X be an irreducible variety.

$$(1) \dim X = \min \{ \dim T_{X,P} \mid P \in X \}$$

(ii) Let $P \in X$. Then this point is smooth or non-singular if $\dim T_{X,P} = \dim X$

Dimension of X ~~non~~reducible is the maximum over the components.

THEOREM: The set of smooth points in X is nonempty and open.

Proof: Say $I(X) = \langle f_j \rangle$. Then if $P \in X$,

$$T_{X,P} = \left\{ v \in k^n \mid \langle v, f_j^*(P) \rangle = \sum v_i \frac{\partial f_j(P)}{\partial z_i} = 0 \right\}$$

and so $\dim T_{X,P} = n - \text{rank} \left(\frac{\partial f_j(P)}{\partial z_i} \right)$.

In particular, the locus where

the rank of a matrix is $\leq n-r$

for any r is a closed subvariety given by the vanishing of $(n-r) \times (n-r)$ minors

PROPOSITION: If X and Y are birational, then they have the same dimension.

Follows from the following lemma:

50

Given $x \xrightarrow{\varphi} y$ and $p \in \text{dom}(\varphi)$

we have a linearized

$d\varphi_p : T_{x,p} \rightarrow T_{y,\varphi(p)}$.

$$d\varphi_p(v) = \left(\sum_{i=1}^n v_i \frac{\partial \varphi}{\partial z_i}(p) \right)_j$$

where (f_1, \dots, f_m) are local expressions for φ regular at p .

PROPOSITION:

- $\overline{d\varphi_p(T_{x,p})} \subseteq T_{y,\varphi(p)}$
- $d\varphi_p$ is independent of representation
- Composition: $x \xrightarrow{\varphi} y \xrightarrow{\psi} z$

Corollary: Dimension is a birational invariant

Pf of Prop:

(1) Affine planes are sufficient

Let $g \in I(Y)$ and (f_1, \dots, f_m) the map.

Then $h(f_1, \dots, f_m)$ is regular at p

vanishing on X when regular

$$q = \psi(p)$$

Then (chain rule):

$$\frac{\partial h}{\partial z_i}(p) = \sum_j \frac{\partial g}{\partial w_i}(q) \frac{\partial f_j}{\partial z_i}(p)$$

so for $v \in T_{x,p}$ $dh(p)$ $dg(v) \in T_{Y,q}$.

- Given an irreducible variety X , its birational class is captured by $k(X)$

For example, $X = \mathbb{A}^2, \mathbb{P}^2, \text{Bl}_0 \mathbb{A}^2, \mathbb{P}^1 \times \mathbb{P}^1, \dots$

all have $k(X) \cong k(z_1, z_2)$

It's regularly mentioned, if $E = \mathbb{V}(y^2 - x(x-1)(x+1))$

then E is an (affine elliptic curve) so

$k(E) \not\cong k(\mathbb{P}^1)$

In general, what does the function field look like?

As a consequence of what will now follow:

THEOREM: Every variety X is birational to a hypersurface

TRANSCENDENTAL EXTENSIONS

Let K/k be a finitely generated field extension of k .

K/k is a pure transcendental extension if

$$K = k(x_1, \dots, x_n) \text{ for } x_1, \dots, x_n \in K$$

algebraically independent over k .

PROPOSITION: Let K/k be a finitely generated field extension. There exists a pure & transcendental extension $K_0 = k(x_1, \dots, x_n)$ st

K/K_0 is finite & separable. Moreover,

$$K = K_0(\gamma) \text{ for some } \gamma \in K.$$

Remark: This integer n is unique, called the transcendence degree. \leftarrow Dimension!

Proof in $\text{char}(k) = 0$

By finite generation, $K = k(x_1, \dots, x_n)$

There is a maximal subset $\{x_i\}$ that is algebraically independent. Reorder it so $\{x_1, \dots, x_n\}$ is independent

Now x_{n+1}, \dots, x_m are algebraic over

$K(x_1, \dots, x_n)$ so $K/K(x_1, \dots, x_n)$ is finite. When $\text{char}(k)=0$ separability is automatic. Finally, primitive element.

$\text{Char}(k)=p > 0$ this is still true but it requires a little bit more work. Not examinable

PROPOSITION: let $K = k(x_1, \dots, x_n)$ and pure transc.

and let x_{n+1} be algebraic over K . Then

$$I = \{g \in K[z_1, \dots, z_m] \mid g(x) = 0\}$$

is principal, ie (f) . If f contains z_i then

$\{x_1, \dots, x_i, \dots, x_{i+1}, \dots, x_{n+1}\}$ is indpdt.

$$k[x_1, \dots, x_n] = k[z_1, \dots, z_m]/I = (f).$$

Pf: $\{x_1, \dots, x_n\}$ are indpdt so $R = k[x_1, \dots, x_n]$ is isomorphic to $k[z_1, \dots, z_n]$, so is a UFD.

① Let $h \in K[T]$ be X^n 's minimal poly. 55
and b be the LCM of the coeff's. clear
denominators, so $\rightarrow \in k[x_1, \dots, x_n]$

② $h = f(x_1, \dots, x_n, T)$ for f
irreducible (by the Gauss' Lemma) \rightarrow **QED**

③ \sim
Let $g \in k[z_i]$. In $K[T]$, we know
 g is a multiple of h so by Gauss' Lemma
 g is a multiple of f , so I is principal
For last part, assume $\{x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n\}$ was
dependent. There exists $g \in I$ not involving z_i but
 g is a multiple of f \checkmark

□

Straightforward Corollary: If X is irreducible,

$$\text{tr.deg.}(k(X)/k) = \dim_k X$$

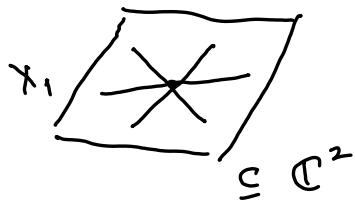
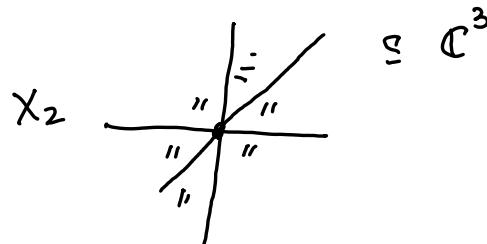
(Pf: Reduce to hypersurface case).

NICE EXAMPLE

56

Consider $X_1 = V(x \cdot y \cdot (x-y))$. and

$$X_2 = V(xy, yz, zx)$$



$X_1 \not\cong X_2$ because if they were

isomorphic, the tangent space dimension would be preserved.

AFFINE NULLSTELLENSATZ

THEOREM: (1) Every maximal ideal of $k[z_1, \dots, z_n]$ is of

the form $(z_1-a_1, \dots, z_n-a_n)$ for $a_i \in k$.

(2) If $I \subsetneq k[z]$ then $V(I) \neq \emptyset$.

Proof k uncountable (see Reid or ... for the general)

(1) Every ideal of this form is maximal.

Let $m \subseteq k[\underline{z}]$ be a maximal ideal, and 57

$$K = k[\underline{z}]_m \quad \text{and} \quad a_i = z_i + m \in K.$$

Then $K = k[a_1, \dots, a_n]$. If $K = k$ then $a_i \in k$, $z_i - a_i \in m$ and we're done.

Otherwise, let $t \in K \setminus k$. As $k = \bar{k}$, we have

$$k \subseteq k(t) \subseteq K \quad \text{and} \quad t \text{ is transcendental.}$$

Now, let V_m be the k -vs spanned by

$$\{a_1^{m_1} \dots a_n^{m_n}\} \quad \boxed{\sum m_i = m}$$

$$\dim V_m < \infty \quad \text{and} \quad K = \bigcup_m V_m. \quad \text{Now,}$$

$\frac{1}{t-c}$ for $c \in k$ are linearly independent over k . But that's a contradiction.

(ii) By ACC, every ideal is contained in a maximal ideal, so $W(I)$ contains (a_1, \dots, a_n) .

□

FOR THE REST OF THE COURSE

(minus digressions) 58

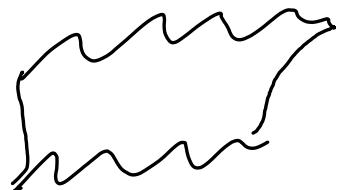
WE'LL STUDY CURVES.

DIGRESSION

Let $X \subseteq \mathbb{P}^3$ be a surface of degree

Ex. Assume X is smooth and the coefficients of f ($X = V(f)$, $f \in \mathcal{O}_{\mathbb{P}^3}(d)$) are chosen generically.

THEOREM: X contains no lines



PF: Needs the Grassmannian. ① The space of surfaces is $\mathbb{P}(\mathcal{O}_{\mathbb{P}^3}(d)) = \mathbb{P}^N$. ② Lines in \mathbb{P}^3 are planes in $\mathbb{P}^4 \cong G(2, 4) = \mathbb{G}$

$$\mathcal{Y} = \{(S, [l]) \mid S \text{ contains } l\} \subseteq \mathbb{G} \times \mathbb{P}^N$$

π_1

π_2

\mathbb{G}

\mathbb{P}^N

Dimension of \mathbb{G} is 4; $\dim \pi_1^{-1}(pt) \cong \mathbb{P}^{N-d-1}$

$\dim \mathcal{Y} = N+3-d$. Once $d \geq 4$, π_2 has small image. \square

RATIONALITY OF A CUBIC SURFACE

PROPOSITION: $S = \{(z_0^2 z_1 + z_1^2 z_2 + z_2^2 z_3 + z_3^2 z_0) \subseteq \mathbb{P}^3\}$

is rational

Proof: $\varphi: S \dashrightarrow \mathbb{P}^2; [z_i] \mapsto [z_0 z_3 : z_1 z_2 : z_2 z_3]$

$\psi: \mathbb{P}^2 \dashrightarrow S$
 $[x_0 : x_1 : x_2] \mapsto [x_0 x_2 (x_0 x_2 + x_1^2) : -x_1 (x_0 x_1 + x_2^3) : x_2^2 (x_0 x_2 + x_1^2) : -x_2 (x_0 x_1 + x_2^3)]$

Check everything by hand, no tricks

□

Let X be variety of dimension 1

PROPOSITION: If X is irreducible and $Z \subseteq X$ is a proper subvariety then Z is finite.

Proof: Enough to show for $X \subseteq \mathbb{A}_k^n$ an irreducible affine curve, enough also to assume $w \subseteq X$ is irreducible.

We have $I(X) \subsetneq I(W)$ by Nullstellensatz.

$w \xrightarrow{\iota} X$ induces $\iota^*: k[X] \rightarrow k[W] = \frac{k[\Xi]}{I(W)}$

If w is not a point then $k[W] \neq k$.

Take $t \in k[W] \setminus k$, transcendental over k .

Take 1. x in $k[X]$ w/ $\iota^*(x) = 0$

2. y in $k[X]$ w/ $\iota^*(y) = t$

CLAIM: x and y are algebraically independent.

because of their vanishing properties.

But $\text{tr.deg.}(k(x)/k) = 1$, which is a contradiction. \square

Let X be an irreducible curve

- Function field: $k(X)$; $k(X)/k(t)$ is finite.
- Local ring: $\mathcal{O}_{X,p} = \{ f/g \mid g(p) \neq 0\} \subseteq k(V)$
for $p \in X$. Also "a local ring"

Note: $m_p = \{ f \in \mathcal{O}_{X,p} \mid f(p) = 0\}$ this

is the unique maximal ideal. Because
the non-units form the unique maximal ideal.

THEOREM: If $p \in X$ is a smooth point then
 m_p is a principal ideal. *(Converse holds)*

PROOF: Assume $p \in X_0 \subseteq \mathbb{A}_k^n$ and $p = (0, \dots, 0)$

$$k[X_0] = k[z_1, \dots, z_n]/I(X_0) = k[x_1, \dots, x_n] \quad (\text{for } x_i \text{ the image of } z_i)$$

$$\mathcal{O}_{X,p} = \{ f/g \mid f, g \in k[X_0], g \in (x_1, \dots, x_n) \}$$

$$m_p = \{ f/g \mid f \in (x_1, \dots, x_n), g \notin (x_1, \dots, x_n) \} \quad 62$$

$$= x_1 \mathcal{O}_p + \dots + x_n \mathcal{O}_p$$

• Change of coordinates: $T_p^{\text{aff}} = \{ z_2 = \dots = z_n = 0 \}$

We will show $m_p = (x_1)$.

There exist $f_2, \dots, f_n \in \mathcal{I}(X_0)$ such that

$$f_j = z_j - h_j \quad (2 \leq j \leq n)$$

where h_j has no terms of degree ≤ 1 .

i.e. no linear part. So in \mathcal{O}_p we have

$$\begin{aligned} x_j &= h_j(x_1, \dots, x_n) \in (x_1^2, x_1 x_2, \dots, x_n^2) \\ &= m_p^2 \end{aligned}$$

thus, x_1 generates m_p/m_p^2 .

Does it generate m_p^2 .

Yes: Nakayama's lemma.

LEMMA (Nakayama) Let R be a local ring w/
maximal ideal m and let M be a fg module.

If $mM = M$ then $M \neq 0$ [+Wiki proof](#)

Corollary: If $t_1, \dots, t_n \in m$ generate m iff
their images generate m/m^2 as a R/m vect. space.

Proof: Let $n \subseteq m$ be $\{t_1, \dots, t_n\}$. If the

images of t_i generate m/m^2 then

$$m+m^2 = m+m^2 \Rightarrow m/m^2/n = m+m^2/n$$

$$\Rightarrow m(m/n) = m(n, \text{ so } m/n = 0 \text{ so } m = n)$$

Corollary: Let $p \in X$ be smooth. Then $\mathcal{O}_{X,p}$ is

a DVR, so there exists

$$\mathcal{D}_p: k(X)^* \longrightarrow \mathbb{Z} \text{ st}$$

$$\mathcal{O}_p = \{ f \mid \mathcal{D}_p(f) \geq 0 \}$$

$\mathcal{D}_p = \{ f \in \mathcal{D}_p(f) \geq 0 \}$. If $\epsilon \in k(X)^*$
and $\mathfrak{p} \in \pi_p \subset \text{local par.}$ $f = \pi_p^{\mathcal{D}_p(f)} \cdot u$, $u \in \mathcal{O}_p^+$

PROOF: we know $m_p = (\pi p)$ so $m_p^n = (\pi_p^n)$.

Consider $\mathcal{J} = \bigcap_n (\pi_p^n)$. Since $m_p \mathcal{J} = \mathcal{J}$,

so $\mathcal{J} = 0$.

This defines $\mathcal{N}_p(f)$ for $f \in \mathcal{O}_p$, $\mathcal{N}_p(f) = 0$.

If $f \in k(X) \setminus \mathcal{O}_p$, then $f^{-1} \in \mathcal{O}_p$, $\mathcal{N}_p(f^{-1}) = -\mathcal{N}_p(f)$

COROLLARIES

① If X is a nonsingular projective curve,

any $\phi: X \rightarrow \mathbb{P}^m$ extends to a morphism.

PROOF: Let $\phi = (\phi_0, \dots, \phi_m)$ and $p \in X$. Pick a local parameter t at p . Let

$n = \min \{ \text{ord}_p(\phi_i) \}$. Then

$$(t^n \phi_1(p), \dots, t^n \phi_m(p)) = (\phi_1, \dots, \phi_m)$$

is regular, hence ϕ is a morphism.

⑪ Any birational map $C_1 \xrightarrow{\text{smooth}} C_2$ of curves is an isomorphism. 65

THEOREM : The image of a projective variety under a morphism is Zariski closed.

Proof : Not given, not examinable.

FINDING LOCAL PARAMETERS | Key example: if an affine plane curve $\{f \in k[x, y] ; C = V(f)\}$, p smooth then $x - x(p)$ is a smooth local parameter iff

$$\frac{\partial f}{\partial y}(p) \neq 0.$$

Consequence of theorem : Any morphism of ~~affine~~ projective curves is either constant or surjective.

PROPOSITION (Morphisms) Let $\varphi: X \rightarrow Y$ be a
non-constant morphism of projective curves.

- φ is finite
- $\varphi^*: k(Y) \rightarrow k(X)$ is a finite extension

PROOF: . First statement is obvious.

- $\varphi(X)$ is infinite, hence dense, so φ^* is well-defined. $k(Y)$ sits inside $k(X)$, both with tr.deg equal to 1 as finite extensions of $k(t)$.

. The degree of φ $\deg(\varphi)$ is given by

$$\deg(\varphi) = [k(Y) : k(X)].$$

{ we think of this as the "generic" number of preimages.

Given φ and $p \in X$, the ramification $e_p = \partial_p^{-1}(\varphi^*\pi_q)$ for $q = \varphi(p)$.

THEOREM

- Let $\varphi: X \rightarrow Y$ be a morphism of projective curves

(i) φ is surjective

(ii) If X & Y are smooth then

$$\sum_{\substack{p \in X \\ p \mapsto q}} e_p = \deg(\varphi).$$

(iii) e_p is generically equal to 1

No proofs — some explanations.

CONSEQUENCES

Corollary: If X is smooth proj. irreducible and $f \in k(X)^*$ then f is regular ~~at~~ at all $p \in X$ implies that f is constant.

Consider $\phi: X \rightarrow \mathbb{P}^1$

$(1:f)$. Then $\iota(\phi) = \infty = (0:1)$

iff f is not regular at ϕ . But if $\iota(X)$ misses ∞ then ϕ is constant so f is also.

Corollary Given $f \in k(X)^*$ the set of points where $\iota_p(f) \neq 0$ is finite and $\sum_p \iota_p(f) = 0$

Proof: Assume non-constant. we have a morphism $\iota = (1:f): X \rightarrow \mathbb{P}^1$.

Near 0 , say t is a local parameter. So $\iota_p(f) = \iota_p(\iota^* t) = \iota_p(f)$

$$\therefore f(p) = 0 \Rightarrow \iota_p = \iota_p(\iota^* t) = \iota_p(f)$$

If $f(p) = 0$ $\frac{1}{t}$ is a parameter so

$$\iota_p = \iota_p(\iota^* \frac{1}{t}) = -\iota_p(f).$$

$\deg(\iota) = \sum \text{zeros} = \sum \text{poles}$

DIVISORS ON CURVES : the basics...

- Maps to projective space
- Rational functions with bounded poles
- Divisors associated to rational functions
- Equivalence of divisors. & hyperplane sections

Digression : Image is closed for projective varieties.

- $\varphi: X \rightarrow Y$, the graph Γ_φ is closed.
- X proj., $X \times Y \xrightarrow{\pi} Y$ is closed
 $\hookrightarrow X = \mathbb{P}^n$ is enough
 $Y = \mathbb{A}^m$
 $\hookrightarrow Z \subseteq \mathbb{P}^n \times \mathbb{A}^m$, then $y_0 \in \pi(Z)$ iff
 $\forall (f_1(x, y_0), \dots, f_k(x, y_0)) \neq 0$.

$$\pi(Z) = \bigcap_{s \in S} T_s \quad \text{where } T_s = \{y_0 \mid \min_{x \in Z} f_i(x, y_0)\}$$

Fix on s . Let $k_i = \deg(f_i(x, y_0))$.

\Rightarrow Every degree s monomial is

a lin. comb. of f_i^k 's. w/ hom. $\deg s - k$ coeffs.

so $S = \{f_i\}$ spans $V \subseteq \mathcal{O}(S)$.

If $\dim S < \dim V$ false.

Otherwise: write poly's of S as.

Linear comb. of monomials, we get
a matrix of $|S| \times |V|$.

Want: small rank $|V| \times |V|$ minors
should vanish.

GOAL: Understand maps from curves to \mathbb{P}_k^n 70

Given a curve X ($\subseteq \mathbb{P}_k^n$) and a morphism

$X \longrightarrow \mathbb{P}_k^n$ we obtain interesting

functions on open sets of X :

Pick a linear function $F \in \mathcal{O}_{\mathbb{P}^n}(1)$ and

consider $\mathbb{P}^n \setminus V(F) \xrightarrow{\sim} A' \xrightarrow{\cong} A'$

φ \uparrow
 X or rational functions

Where are these defined?

• Away from $\varphi^{-1}(V(F) = H)$ away from a hyperplane.

• Let the points be $p_1, \dots, p_m \in X \cap H$.

How does this work again? $X \xrightarrow{\varphi} \mathbb{P}^n$

$\varphi = [\varphi_0, \dots, \varphi_r]$. Away from, say, $\varphi_r = 0$

we have $\left(\frac{a_0}{q_1}, \frac{a_1}{q_2}, \dots, \frac{a_{r-1}}{q_r}, 1 \right)$

$\varphi : X \setminus \{p_1, \dots, p_r\} \rightarrow A^r$. But there is something

more.

If we have $\overline{f \in k(X)}$ w/ $\text{ord}_p(f) < 0$
 we'll say f has a pole at p or order
 $-\text{ord}_p(f)$

Each of $\left\{ \frac{a_i}{q_i} \right\}$ are rational functions with
 poles on $\{p_1, \dots, p_m\}$ and regular away.

Keep track of orders $\sum a_i p_i = D$ is a

divisor. This organizes $k(X)$ into manageable
 pieces $L(D) \cap_{X(D)}$ of rational functions with
 poles bounded by D

DEFINITION : A divisor on X in an

element of $\bigoplus_{p \in X} \mathbb{Z}_p$, i.e. a finite \mathbb{Z}
 linear combination of points of X . $\boxed{\text{Div}(X)}$

We have a degree homomorphism

$\text{Div}(X) \longrightarrow \mathbb{Z}$ whose kernel
 is degree 0.

How do degree 0 divisors arise?

Let $f \in k(X)^*$, then $\text{div}(f) = \sum \text{ord}_p(f)p$

These form the principal divisors

$$\text{Pic}(X) = \text{Cl}(X) = \frac{\text{Div}(X)}{\text{Prin}(X)}.$$

$D \in D'$ st $D - D'$ is principal are linearly
equivalent

PROPOSITION: Principal divisors are degree zero.

Proof: Given $f \in k(x)^*$ take

$\varphi: x \xrightarrow{(1-f)} \mathbb{P}^1$. Take a local par.

t near 0, then the zeroes are finite

$$\text{and } \sum_{p \mapsto 0} e_p = \deg(\varphi)$$

$$= \sum_{p \mapsto \infty} -e_p \quad \text{using } 1/t.$$

Everywhere else, f doesn't vanish.

PROPOSITION (Exercise): Every divisor on \mathbb{P}^1 is principal.

Let $H = V(L) \subseteq \mathbb{P}^n$ and $X \hookrightarrow \mathbb{P}^n$.

$\text{div}(L) := \sum n_p p$, take $z_i(p) \neq 0$ and

$$n_p := \omega_p(L|z_i)$$

Similarly, hypersurface sections in higher degree

74

What is linear equivalence? Two hyperplane sections in the same embedding-

DEF : Degree of $X \subseteq \mathbb{P}^n$ is the degree of any hyperplane section.

- Given $F \in \mathcal{O}_{\mathbb{P}^2}(d)$, $V(F) \cap X$ is linearly equivalent to $V(L)$ for L a product of linear forms.

Consequence: Bezout's Theorem

Two distinct irreducible plane curves intersect in (\leq) $c \cdot d$ points where $c \leq d$ are the degrees.

$$L(D) = \{f \in k(X)^* \mid f = 0 \text{ or } \text{div}(f) + D \geq 0\}$$

PROPOSITION: Let $\ell(D) = \dim_k L(D)$

(i) If degree $D < 0$ $\ell(D) = 0$ (ii) For any $\phi \in X$,

$$\ell(D) \leq \ell(D - \phi) + 1 \quad (\text{iii}) \quad \deg(D) \geq 0, \quad \ell(D) \leq d + 1 - 1$$

PROOF: Let $D \in \text{Div}(X)$ be a divisor and

$$l(D) = \dim L(D) = \#\{f \in k(X) \mid \text{div}(f) + D \geq 0\}$$

(i) Suppose $f \in L(D)$ nonzero. Then

$\text{div}(f) + D \geq 0$. But degree of D is

negative and $\deg(\text{div}(f)) = 0$

(ii) Let $p \in X$ and $n = [D]_p$ (coefficient)

Define $d: L(D) \rightarrow k$

$f \mapsto \pi_p^n \cdot f$. the kernel

has a pole of smaller order, so dim drops by 1

(iii) Apply (ii) repeatedly

□

Remark: For $D \geq E$, $L(D) \xrightarrow[\text{``g''}]{\sim} L(E)$

where $D - E = \text{div}(g)$.

What do these look like? If we take $D = n \cdot \text{log}$

on \mathbb{P}^1 for $x = z_1/z_0$, $L(D)$ is spanned by $1, x, x^2, \dots, x^m$ so $l(D) = m+1$

How does $l(D)$ behave?

$\left\{ \begin{array}{l} \text{INTERVAL E} \\ 75\frac{1}{2} \end{array} \right\}$

For $D = m \cdot (\infty)$ on \mathbb{P}^1 $l(D) = m+1$ as we saw

last time.

In fact, for m points p_1, \dots, p_m $\boxed{\sum p_i = P}$ $l(D)$ is still $m+1$.

Let $E = \overline{V(y^2 - f(x))}$ where $f(x)$ is a cubic, projective closure in \mathbb{P}_k^2 . Take $E \xrightarrow{\psi} \mathbb{P}^1$ given by $[1:x]$. Take $\psi^{-1}(\infty) = D$, a degree 2 divisor (Why?). At least one non-constant rational function, so

$$l(D) \geq 2.$$

If $p \in E$ then $L(p) = \{\infty\}$. Why? If we had

$f \in L(p)$ non-constant, we would have

$$E \xrightarrow{\psi} \mathbb{P}^1 \text{ st } \psi^{-1}(\infty) = p. \text{ So}$$

in fact, every $p \in E$ has a unique preimage, this would force $E \cong \mathbb{P}^1$ but it is not (Ex Sh III).

Fact: If $\deg(D) \geq 2$ $\boxed{l(D) = d}$ $\left\{ \begin{array}{l} \text{Theory of elliptic} \\ \text{functions} \end{array} \right\}$

.. (A word about the sum of residues being 0) 76

DIFFERENTIALS

Let K/k be a field extension

Informally, a differential is a finite sum of expression $f dx$, $x, f \in K$

DEFINITION The space of Kähler differentials is

the quotient M/N where

$M = \{k\text{-vector space generated by symbols}$
 $\delta_x, x \in K\}$

$$N = \{ \text{subspace: } \begin{aligned} \delta(x+iy) &= \delta(x) + \delta(y) \\ \delta(xy) &= \delta(x)y - \delta(y)x \\ \delta(\lambda) &= 0 \text{ for } \lambda \in k \end{aligned} \}$$

$$\Omega_{K/k} = \Omega_K = M/N$$

The map $K \rightarrow \Omega_K \}$
 $f \mapsto df$

EXTERIOR DIFFERENTIATION

DEFINITION A derivation over k is any map

of vector spaces $D: K \rightarrow U$, U is a k -vector space satisfying the product rule.

TAUTOLOGY for any k -derivation $D: K \rightarrow U$ then
there is a factorization

$$\Omega_K \xrightarrow{\lambda} U \quad \text{and there are all of}$$

$$\begin{array}{ccc} \Omega_K & \xrightarrow{\lambda} & U \\ d \swarrow & \uparrow & \searrow D \\ & K & \end{array}$$

them.

Proof : Exercise.

How to span Ω ?

□

LEMMA : • If $f = g(h \in k(x_1, \dots, x_n))$ then
for $y = f(x_1, \dots, x_n) \in K$ then $dy = \sum \frac{\partial f}{\partial x_i}(x_1, \dots, x_n) dx_i$
• If $K = k(x_1, \dots, x_n)$ then $\{dx_i\}$ spans Ω_K .

Proof : (i) Calculus (ii) Immediate

□

LEMMA : Let $K/k(t)$ be finite and separable
and t is transcendental, then Ω_K spanned by dt .

PROOF : If $K = k(t)$ $\dim \Omega_K \leq 1$, so it suffices to exhibit a derivation that is nonzero.

$$\text{Take } D = \frac{d}{dt}.$$

If not, then $K_0 = k(t)$, $K = K_0(\alpha)$ by primitive element. Let $h \in K_0[X]$ be the min. polynomial spanning by $dt, d\alpha$ is easy. Also:

$$0 = d(h(\alpha)) = D_t h(\alpha) dt + h'(\alpha) d\alpha$$

so dt is enough.

To show dimension is nonzero, build an extension from K_0 to K of $\frac{d}{dt}$

$$\text{Define : } D : K_0[X] \longrightarrow K \cong K_0[X]/h$$

$$\bullet \quad D(f) = D_t(f) \text{ for } f \in K_0$$

$$\bullet \quad D(X) = -\frac{D_t h(\alpha)}{h'(\alpha)} \quad . \quad D(X^n) = n \alpha^{n-1} D(X)$$

Check this vanishes on h , so this gives nonzero D

Given $p \in X$, we can take

$\Omega_{X,p} \subseteq \Omega_K$ as those $\omega = \sum f_i dg_i$

$f_i, g_i \in \mathcal{O}_{X,p}$.

THEOREM: The module $\Omega_{X,p}$ is free over $\mathcal{O}_{X,p}$,
 ↪ generated by $d\pi$ for π a local parameter

why? We get divisors out of this!

Given $\omega \in \Omega_{K(X)}$ and $p \in X$, let

$$\begin{aligned} \mathcal{D}_p(\omega) &= \mathcal{D}_p(f) \text{ for } \omega = f d\pi \\ \rightsquigarrow \mathcal{D}_p(\omega) &= \text{div}(w) \end{aligned}$$

Proof of theorem • Ω is finitely generated by formal calculus. Now apply Nakayama's Lemma. □

EXAMPLE $X = \mathbb{P}^1$ with $\omega = dt$. Then

$$\begin{aligned} \mathcal{D}_p(dt) &= 0. \quad \mathcal{D}_\infty(dt) \rightsquigarrow dt = -t^2 d(1/t) \\ &\quad \parallel \\ &\quad -2 [00] \end{aligned}$$

MAJOR DEFINITIONS) • $\text{div}(w) = K_X$ is the canonical divisor of X .

- the genus of X is $g(X) := l(K_X)$.

Topology and the genus Remarks on number of holes

over C , curvature

Next time: If $X \subseteq \mathbb{P}^2$ is a plane curve we will calculate K_X explicitly as $(\deg(X) - 3) \cdot H$

THE MAIN THEOREMS

• (Degree-genus formula): If $X \subseteq \mathbb{P}^2$ is a smooth degree d curve, then $g(X) = \frac{(d-1)(d-2)}{2}$

* question of Ex II

• (Riemann-Roch): For $D \in \text{Div}(X)$ with $g = g(X)$ $d = \deg(D)$, we have
$$l(D) - l(K - D) = d - g + 1$$

→ $\deg(K) = 2g - 2$, for $D \neq 0$ $l(D) = d - g + 1, \dots$

OTHER FACTS

For any genus g , there exists a curve X with $g(X)=g$ such that there exists a degree 2 divisor D on X with

$$l(D) = 2. \quad \boxed{\text{HYPERELLIPTIC CURVES}}$$

AN EXPLICIT CALCULATION

(good for health!)

Let $C = \sqrt{y^2 - (x-e_1)(x-e_2)(x-e_3)}$. Take the rational function y on X and we claim y has a pole of order 3 at $[0:1:0]$. and zeroes at $x \in [e_i:0:1] = P_i$

To see the pole and its order homog. to

$$z_1^2 z_2 = (z_0 - e_1 z_2)(z_0 - e_2 z_2) (z_0 - e_3 z_2)$$

and set $z_1 = 1$ to get $z_1^2 z_2 = z_0^3 + \bar{a} z_0^2 z_2^3$

$$\boxed{u = v^3 + a v^2 v + v^3}$$

the point is now $(0,0)$. what does the curve look like? well v is a local parameter and u has a triple zero,

Relate the two: $\boxed{u = v^3 + av^7 + \dots}$

Now, $y = \frac{1}{u}$ and $x = \frac{v}{u}$.

Calculate $\text{div}(x - e_i)$ or $y^2 = (x - e_1)(x - e_2)(x - e_3)$

PROPOSITION: Let $X = V(F) \subseteq \mathbb{P}^2$ be a curve of

degree $d \geq 1$. Then $K_X = (d-3) \cdot H$. A basis

for $L(K_X)$ is given by $\left\{ \frac{x^r y^s}{\partial^r x \partial^s y} dx \mid 0 \leq r+s \leq d-3 \right\}$

for $\{f = 0\}$ an affine equation.

Proof:

STEP 1: Affine patch calculation Choose coordinates

such that $[0:1:0] \notin X$. Dehomogenize away

from $\{Z_0 = 0\}$, and set

$$\boxed{x = \frac{Z_1}{Z_0} \quad \text{and} \quad y = \frac{Z_2}{Z_0}}$$

These are rational functions on X . They 83

are related: $f(x,y) = 0$ where $f(T_1, T_2) = F(1, T_1, T_2)$

Equation in Ω_X : $\frac{\partial f}{\partial T_1}(x,y) dx + \frac{\partial f}{\partial T_2}(x,y) dy = 0$

Write a differential:

$$\omega = \frac{dx}{(\partial f / \partial T_2)(x,y)} = \frac{-dy}{(\partial f / \partial T_2)(x,y)}$$

Claim:

$$\boxed{\text{div}(\omega) = (d-3) H_\infty \quad H_\infty = \{z_2 = 0\}}$$

finding local parameters away from ∞ .

STEP 2

If $\frac{\partial f}{\partial T_2}(P) \neq 0$ then $x - x(P)$ is a local parameter. Otherwise $y - y(P)$ is a local parameter.

CONCLUSION $\omega_p(\omega) = 0$ for all $p \in X \cap \{z_2 \neq 0\}$.

STEP 3

The calculation at ∞ . Any point at ∞ , is contained in the piece $\{z_2 = 0\}$

The equation is : $g(z, w) = 0$ where

$$g(S_1, S_2) = F(S_1, S_2, 1) \quad \text{and}$$

$$z = \frac{z_0}{z_2} \quad \text{and} \quad w = \frac{z_1}{z_2} = \frac{x}{y}$$

Take a (different) form

$$\gamma = \frac{dz}{(\partial g / \partial s_2)(z, w)} = \frac{-dw}{(\partial g / \partial s_1)(z, w)}$$

The preceding argument shows $\mathbb{D}p(y) = 0$

RELATE ω and η } Use the rules of calculus
 and homogenization to show

$$\boxed{w = \frac{d-3}{2} \cdot n} \quad T_2^d g\left(\frac{1}{T_2}, \frac{T_1}{T_2}\right) = f(T_1, T_2)$$

$$\mathcal{W}_p(a \circ b) = \mathcal{W}_p(a) + \mathcal{W}_p(b)$$

$$\text{so } \operatorname{div}(\omega) = 3 \cdot \operatorname{div}(z_0)$$

BASICS WITH GENUS

- Calculation from before, on \mathbb{P}^1 we have

$$\text{div}(dt) = -2 \cdot [\infty]. \text{ In particular}$$

$$L(K_{\mathbb{P}^1}) = 0$$

- Let $x = V(F)$ nonsingular $F \in \mathbb{D}_{\mathbb{P}^2}(3)$. Say say affine equation is $y^2 - g(x)$ with

$$g(x) = (x - \lambda_1)(x - \lambda_2)(x - \lambda_3). \text{ Observe}$$

$$2y \cdot dy = g'(x) dx \quad \text{Take } w = \frac{dx}{y}$$

$$\text{Then } \mathbb{D}_p(w) = 0 \text{ so } g(x) = 1.$$

How? 3 types of points to check. If $y(p) \neq 0$ then $x - x(p)$ is a local parameter. If $y(p) = 0$ then $x(p) = \lambda_i$, then $\text{div}(x(p)) \neq 0$ so y is a loc. par.

- If $p = [0:0:1]$ change coordinates and use calc.

1. $d_1, d_2 \in \mathbb{Z}_{>0}$ and F be a bihomogeneous poly.
of degree (d_1, d_2) and $X = V(F) \subseteq \mathbb{P}^1 \times \mathbb{P}^1$ a
smooth curve.

PROPOSITION : $K_X = (d_1 - 2)H_1 + (d_2 - 2)H_2$ where
 H_1 and H_2 are divisors of the two fibers
of projections

GENUS FORMULAE

- Degree of plane curve has genus $\binom{d-1}{2}$.
- Bidegree (d_1, d_2) has genus $(d_1 - 1)(d_2 - 1)$

Note to self : put on
Ex. Sh. IV.

GROUP LAW ON THE ELLIPTIC CURVE:

$P, Q, P_0 \in E$, $\lambda(P+Q-P_0) = 1$ so
 $P+Q-P_0 \sim R$. Set $\boxed{P+Q=R}$

THEOREM : The addition operation turns E into an
abelian group (variety). The map $E \rightarrow \text{Pic}^0(E)$
given by $p \mapsto [p - P_0]$ is an isomorphism

PROOF: Let $AJ: E \rightarrow \text{Pic}^0(E)$ be the map sending p to $[p - p_0]$.

Injectivity: $AJ(p) = AJ(q)$ means $p - p_0 \sim q - p_0$ so $p \sim q$. But then $p - q = \text{div}(f)$

But there is a unique (up to scalar) function w/ a pole at p so $\boxed{p = q}$ since $l(p) = 1$.

Surjectivity: Let $D \in \text{Div}^0(E)$. Then $D + p_0$ has degree 1 so $l(D + p_0) = 1$. Therefore, $D + p_0$ is equivalent to an effective divisor.

so $p \sim D + p_0$. But then $[D + p_0] = [p]$

$$[D] = AJ(p).$$

Homomorphism property is apparent by inspection.

ASIDE ON ABEL-JACOBI DIDN'T GO EXACTLY LIKE THIS IN LECTURE \square

Fact: $\text{Jac}(X)$ is a projective variety w/ an abelian group structure. AJ always embeds the curve. More generally $X^n \rightarrow \text{Jac}(X)$.

We have

$$X^n \xrightarrow{\quad} \text{Sym}^n(X) \xrightarrow{\quad \text{AJ} \quad} \text{Jac}(X)$$

$$X^n / S_n$$

$$(\mathbb{P}_1, \dots, \mathbb{P}_n) \longmapsto \sum \mathbb{P}_i - n \mathbb{P}_0.$$

$$\text{AJ}^{-1}([\mathcal{D}])$$

$$\{ E \in \text{Sym}^n(X) \mid D \sim E \}$$

Once $n \geq 0$, i.e. $n \geq 2g-2$, the fibers of AJ

$$\text{are } \mathbb{P}(L(D)) = \mathbb{P}_{k+g}^{n-g}$$

FANCY SPEAK

$\text{Sym}^n(X)$ is a projective bundle over

$\text{Jac}(X)$. For small n , different fibers have different dimensions.

OTHER GEOMETRY

$\text{Jac}(X)$ is smooth of dimension g .

Natural divisor on $\text{Jac}(X)$ is $\mathbb{H} = \text{im}(\text{Sym}^{g-1}(X))$

THEOREM: Let $E \subseteq \mathbb{P}$ be the plane cubic

$$V(F), \quad F = z_0 z_1 z_2 - \prod_{i=1}^3 (z_i - \lambda_i z_0), \quad \lambda_i \neq \lambda_j$$

Take $O_E = [0:0:1]$. The group on E is given

by $P +_E Q +_E R = O_E \Leftrightarrow P, Q, R \text{ are collinear.}$

PROOF:

$$P +_E Q +_E R = O_E \text{ iff } P + Q + R \sim 3P_0 \text{ which}$$

$$\text{holds iff } \text{div}(f) = P + Q + R - 3P_0, \text{ with } f \in k(E).$$

Now, $\lambda(3P_0) = 3$ and why?

$$\boxed{L(3P_0) = \langle 1, x, y \rangle = \left\langle 1, \frac{z_1}{z_0}, \frac{z_2}{z_0} \right\rangle}.$$

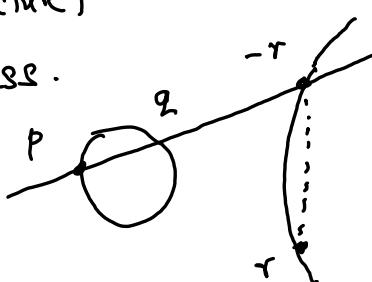
then f must be of the form $\frac{G}{z_0}$ for $G \in \mathcal{O}_{\mathbb{P}^2}(1)$

and $\text{div}(G) = P + Q + R$

PICTURE (Didn't draw in lecture) □.

The "chord-and-tangent" process.

$$P + Q = R$$



Let $\phi: X \rightarrow Y$ be a finite morphism of curves

let $\omega = f dt \in \Omega_{Y/k}$ with $k(Y)/k(t)$ finite -

then $k(X)/\phi^* k(t)$ is also finite so generated by $\frac{dt}{\phi^* dt}$ (Proof from last week).

DEFINE:

$$\phi^*(f dt) := \phi^* d(\phi^*(t))$$

Makes sense?

(GENERAL)

Goal: Compare $g(X) \in g(Y)$. To get there, compare $\mathcal{D}_p(\phi^*(\omega))$ and $\mathcal{D}_{\phi(p)}(\omega)$.

LEMMA: Let e_p the the ramification index near p .

$$\text{then } \mathcal{D}_p(\phi^*\omega) = e_p \cdot \mathcal{D}_{\phi(p)}(\omega) + e-1$$

Proof: Omitted; basic point is that if $q = \phi(p)$,

$$\text{then } d(\phi^* \pi_q) = d(\pi_p^e) = e \cdot \pi_p^{e-1} \cdot d\pi_p.$$

Apply this to local expressions for ω .

THEOREM (Riemann-Hurwitz) Let $\varphi: X \rightarrow Y$ have

degree d . Then

$$2g(X) - 2 = d(g(Y) - 2) + \sum_{p \in X} (e_p - 1)$$

Proof: $2g(X) - 2 = \deg(\text{div}(\varphi^* \omega))$

$$= \sum_{p \in X} \text{div}_p(\varphi^* \omega)$$

$$= \sum_{q \in Y} \sum_{p \mapsto q} \text{div}_p(\varphi^* \omega)$$

$$= \sum_{q \in Y} \sum_{p \mapsto q} (e_p \text{div}_q(\omega) + e_p - 1)$$

$$= \sum_{q \in Y} \left(d \cdot \text{div}_q(\omega) + \sum_{p \mapsto q} (e_p - 1) \right)$$

$$= d(2g(Y) - 2) + \sum e_p - 1$$

□

ALSO: Topological proof via triangulations - choose a triangulation with vertices on the ramification points.

ALSO: In $\text{char}(k) = p$, need φ to be separable,
 otherwise $\varphi^p = 0$. Proof holds in the
 "tame case", i.e. $\nmid p$ for all p -Modified
 statement in general

Enumerative Geometry (aside)

Let $\alpha + \beta = 3d + g - 1$. How many irreducible degree d genus g
 curves in \mathbb{P}^2 pass through α points and β lines in
 general position?

If $\beta = 0$, these numbers all known via physics
 formulae (Gromov-Witten theory)

- Ex: $\left. \begin{array}{l} d=1, g=0, \text{ line through 2 points} \\ d=4, g=3 \text{ (smooth)}, \alpha=0, \beta=14, \boxed{23011191144} \\ d=5 \text{ open - (Dhruv's failed} \\ \text{thesis problem)} \end{array} \right\}$

Note to self:

→ Don't forget basis for $\omega_X \otimes \mathbb{P}^2 \langle x^i y^j \frac{\partial}{\partial x} \rangle$
 didn't have time to state

THEOREM (Lüroth) Let $k \subseteq L \subseteq k(t)$ be a tower with $k = \overline{k}$. Then k is purely transcendental.

LEMMA: Let X be a curve

(i) If $f, g \in X$ st $f \sim g$ then $X \cong \mathbb{P}^1$.

(ii) If $g(X) = 0$ then $X \cong \mathbb{P}^1$.

(iii) If $X \rightarrow Y$ is finite $g(X) \cong g(Y)$.

Proofs: (i) Take $f \in h(p-q)$ with $X \rightarrow \mathbb{P}^1$ given by

$[1:f]$. This is b rational \Rightarrow Apply (i) and Riemann-Roch

(iii) Apply Riemann-Roch.

PROOF OF LÜROTH | Assume $L \neq k$ so $\text{tr.deg}(k) = 1$.

There exists a curve X st $k(X) = L$ | (why?)

then $L \hookrightarrow k(t)$, after clearing denominators

gives $\mathbb{P}^1 \rightarrow X$ so $X \cong \mathbb{P}^1$, so $k(X)$ is pure transcendental.

FERMAT'S LAST THEOREM FOR POLYNOMIALS

THEOREM: Let $k = \bar{k}$ with $\text{char}(k) = 0$. If $f, g, h \in k[x]$
 st
$$\boxed{f^n + g^n = h^n}$$
 non-constant and homogeneous

then $n \leq 2$.

Proof = The genus of $V(z_0^n + z_1^n - z_2^n)$ is γ
 $\frac{1}{2}(n-1)(n-2)$ so if we had such
 f, g, h we'd get a map $P^1 \rightarrow \gamma$ so
 $g(\gamma) = 0$. i.e. $n = 1$ or 2 .

]

Exercise: Calculate the genus via Riemann-Hurwitz

Take $\gamma \rightarrow P^1$
 $[z_0, z_1, z_2] \mapsto [z_0, z_1]$. fixing two of
 those, find n preimages (when $z_0^n + z_1^n = 0$)
 we get n points with ramification n .

Final topics: • Canonical morphism & embedding criteria • Equations for a genus 1 curve • Canonical is an embedding for non-hyperelliptic curves

- Let $l: X \hookrightarrow \mathbb{P}^n$ be an embedded projective curve of degree d not contained in any hyperplane.

Given $H = V(z_0)$ (or any hyperplane) consider the divisor $H \cap X := \text{div}(z_0)$ generically this is just $\sum_{p \in H \cap X} [p]$.

Let $D = \text{divisor } H \cap X$

we have a morphism

$$\iota^*: \mathcal{O}_{\mathbb{P}^n}(1) \longrightarrow L(D)$$

$$f = \sum \lambda_i z_i \longmapsto f/x_0$$

why injective?

CONVERSELY

Given a basis $\{e_0, \dots, e_r\} \in L(D)$ we'd obtain

$$\iota_D: X \longrightarrow \mathbb{P}^r \quad (\text{How?})$$

Note: How does $D \cap D'$ affect $L(D')$?

How to tell if φ is an embedding?

96

That is $\text{im}(\varphi) \cong X$?

Two observations

- Given $p, q \in X$ distinct, there exist linear $F \in \mathcal{L}$ st $F(p) \neq 0 \wedge G(p) = 0, G(q) \neq 0$.

Thus, $\begin{cases} L^*(F) \in L(D) \setminus L(D-p) \\ L^*(G) \in L(D-p) \setminus L(D-p-q) \end{cases}$

Therefore $L(D-p-q) \leq L(D) - 2$

But every point drops the dim $L(D)$ by at most 1. so $\boxed{L(D-p-q) = L(D) - 2}$

As p is smooth it has a tangent line T_p and there exists F st $F(p) = 0$ but $T_p \notin \mathcal{L}(F)$.

Therefore the multiplicity of p in $\text{div}(F) = 1$ so $L^*(F) \in L(D-p) \setminus L(D-2p)$

Embedding criterion

For any $p, q \in X$ we have

$$l(D-p-q) = l(D) - 2 \quad (*)$$

"separates points and tangent vectors".

THEOREM: ψ_D is an embedding if and only if
 $\underline{(*)}$ is satisfied. i.e. if D is very ample.

Proof: One side is obvious, other side is omitted;

Remark: over \mathbb{P} , this gives an embedding.

$\psi_D(X)$ is a curve. By $\underline{(*)}$ it is smooth

so $k(X) = k(\psi_D(X))$ and we're done \square

COROLLARY: If $g \circ D \geq 2g$ then ψ_D embeds.

COROLLARY: If X is a curve of $g(X) \geq 3$ then

$D = 2 \cdot K_X$ is an embedding.

Terminology: If mD is very ample for some $m \geq 1$
 $\underline{\text{then}}$ D is ample.

Let $K = K_X$ be the canonical. $L(K)$ is the vector space of holomorphic (= regular) differential forms. 98

Definition of a hyperelliptic curve: $g(X) \geq 2$ and either

- ① $\exists \pi: X \rightarrow \mathbb{P}^1$ degree 2
- ② $\exists \text{DEFIN}(X)$ st $\ell(D) = \deg(D) = 2$

THEOREM: If X is non-hyperelliptic then $\varphi_K: X \rightarrow \mathbb{P}^{g-1}$ is an embedding.

Proof: If φ_K is not an embedding there exist $p, q \in X$ st $\ell(K - p - q) \geq g - 1$. Apply Riemann-Roch to $D = p + q$.

$$\ell(D) = \ell(K - D) + 1 - g + \deg(D)$$

$$\ell(D) = \ell(K - p - q) + 1 - g + 1 = 2 - g + 1 = 3 - g$$

$g \geq 2$ so $\ell(D) \geq 2$. Take $f_0, f_1 \in h^0(D)$ to obtain $X \rightarrow \mathbb{P}^1$ of degree 2. □

how genus, hyperelliptic

If $g = 0$, $D = n \cdot p$, then $\mathbb{P}^1 \rightarrow \mathbb{P}^n$ is the n^{th} Veronese.

If $g=1$ take (E, p_0) . Consider $D = 3p_0$

$l(np) = n$ by Riemann-Roch ($n \geq 1$). So

$$l(p_0) = k \subset L(2p_0) = \langle 1, x \rangle, \quad \omega_{p_0}(x) = -2$$

$$L(3p_0) = \langle 1, x, y \rangle, \quad \omega_{p_0}(y) = -3.$$

Then $L(4p_0) = L(3p_0) \oplus k \cdot x^2$

$$L(5p_0) = L(4p_0) \oplus k \cdot y^2$$

But $x^3 \in y^2$ have val. -6 so lie in $L(6p_0) \setminus L(5p_0)$. Thus,

there is a linear. dependence in

$$\{1, x, x^2, x^3, y, y^2, xy\}$$

Take $f(x, y) \in k[x, y]$. Let $E = \overline{\mathcal{V}(f)}$ in \mathbb{P}^2 .

Now, $\ell_3 p_0 : X \rightarrow \mathbb{P}^2$ and its image lies in

$\mathcal{V}(F)$ where $F(1, x, y) = y^2 + a_1 xy + a_3 y - (x^2 + a_2 x^2 + a_4 x + a_6)$.

so $p_0 = [0:0:1]$.

Weierstrass

As $g(X) = 1$, the image must be $\mathcal{V}(F)$, nonsingular. \square .

THEOREM: Every hyperelliptic curve can be embedded in a quadric surface. \star in bidegree $(2, g+1)$

Hyperelliptic curve: $X \rightarrow \mathbb{P}^1$: Riemann-Hurwitz says there are exactly $2g+2$ branch/ramification points.

FINAL LECTURE: • One structure (a scheme) • one space worth studying (M_g) • one formula $\chi(M_g) = \frac{\{1-2g\}}{2-2g}$.

