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Introduction

Algebraic geometry is a story about a duality:

{Systems of Polynomial Equations} ↔ {Geometry of their Solution Sets}

If we are given a polynomial system, we can form:

V = {f1 = . . . = fr = 0},

with coefficients in a field k, and we obtain a subset V ⊂ kn. A solution set of this form is called an
affine algebraic variety. An algebraic variety will be a class of objects that locally look like such subsets.
These include many familiar objects from elementary geometry. We also obtain an ideal

I := (f1, · · · , fr) ⊂ k[X1, . . . Xn].

in the polynomial ring. The duality central to the subject is about the geometry of V and the algebra of
the ring k[X]/I.

A word about the field k.

(i) The vast majority of the results in this course are only true when k is an algebraically closed field.
Modifications when k is not closed exist, but will take us too far afield.

(ii) A smaller subset of results in the course depend on k having characteristic zero, for example C or
Q. By deep results in logic, if one fixes the cardinality of a field and the characteristic, there is only
one field, so these are basically the only two examples.

(iii) Throughout these lectures, I will assume something stronger, namely that k is C. The reason for
this is to occasionally, though certainly not exclusively, use the ordinary Euclidean metric on C as
a tool to study the geometric objects that will arise.

In comparison with standard courses, (ii) is a standard assumption but (iii) is slightly strong. In partic-
ular, your textbooks and other references will not assume this.

With this assumption, our duality is now between:

R := C[X1, . . . , Xn]/I ↔ V ⊂ Cn.

Our duality suggests basic questions that we will try to understand in this course:

(i) Is it possible to recover R directly from V ?

(ii) Can we detect when V is a manifold, i.e. every point p in V has a Euclidean neighborhood in V
homeomorphic to a ball, based only on the ring theory of R?

(iii) What is the right notion of dimension for sets such as V and what property of R does it reflect?

(iv) Is V compact as a topological space? The answer will depend on the topology, and we will discuss
the different choices of topology. In the subspace topology of Cn, with the usual metric, V will
usually not be compact. One can ask: is it possible to find natural compactifications V such that
V is locally an affine algebraic variety?

I’ll give away the punchlines.
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(i) The set V does not determine R but it gets close; this is known as Hilbert’s Nullstellensatz.

(ii) It is possible to detect whether V is a manifold, and there is always a dense subset U ⊂ V such
that U is a manifold.

(iii) The dimension of V can be accessed via tangent spaces, a clever topology called the Zariski topology,
or via Galois theory. The approaches will turn out to be equivalent.

(iv) We will produce compact topological spaces by using projective space and its geometry.

This should already give you a sense of what makes the subject both challenging and rewarding. We will
steal ideas from topology, manifold theory, complex analysis, Galois theory, and most fundamentally, the
theory of rings. However, will only ever use the simplest parts of these: nothing like a Cantor set or
topolgists’ sine curve will show up, the complex analysis will have no essential singularities or exponential
functions but only polynomials, etc.

Algebraic geometry is full of rich examples. One of the primary motivations to study algebraic varieties is
that it is a source of topological spaces, including interesting manifolds, that one can study. For examples:

(i) “Smooth” varieties of dimension 1 are all Riemann surfaces which connects algebraic geometry to
complex analysis,

(ii) The geometry of surfaces inside 3-space are a classical object of study, just like surfaces in R3.
However, everything will be complex and the 3-space will be a slightly more complicated object
called P3.

(iii) The standard matrix groups, such as GL(n,C), are naturally algebraic varieties, and are a rich
source of examples.

These are among many other examples.

Learning Algebraic Geometry The subject is often considered challenging, but this is due to the
interweaving nature of the mathematics above; it is likely the first time you will have encountered a
situation where ideas from so many different areas have to be used in parallel. But it has pretty much
always been challenging for everyone that ever learned it. It will be a course where I will need to state
theorems that we will need to use but cannot prove; we will often rely on intuition based on topological
ideas to try algebraic arguments; and geometry always requires a certain amount of leap before you learn.
But the mathematics we are accessing has stood the test of time, and I genuinely believe it is worth the
climb!
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1 Affine space and affine varieties

Any algebraically closed field will work in what follows, but as noted above, we will always work over C.

Definition 1.1. Affine n-space over C is the set

An = Cn.

Its elements will be referred to as points and denoted by P = (a) = (a1, . . . , an). An affine subspace of
An: any subset of the form v + U , v ∈ kn, U ⊂ kn a vector subspace.

The space An is the set on which C[X1, . . . , Xn] is naturally a ring of functions. I will often use the
shorthand C[X] = C[X1, . . . , Xn] when the number n is clear. Given an element f in C[X], we obtain a
function:

An → C.

The subset C ⊂ C[X] are referred to as the constant functions. We will be interested in the vanishing locus
or zero set of functions of this form. It will be useful to have some basic facts about the ring at hand.

Proposition 1.2. The polynomial ring satisifes the following properties.

(i) The ring C[X] is a unique factorization domain.

(ii) Every ideal I ⊂ C[X] is finitely generated.

Remarks on the Proposition. The proof of the first statement is essentially identical to the proof of Gauss’s
Lemma.2. The second statement is called the Noetherian property of a ring. In fact, every module over
the polynomial ring is also finitely generated. Moreover, if R is any quotient of the polynomial ring by
an ideal, and J is an ideal in R, then J is also finitely generated.

We come to the main objects of interest.

Definition 1.3. Let S ⊂ C[X] be any subset. The vanishing locus of S is given by

V(S) = {P ∈ An | ∀f ∈ S, f(P ) = 0}

An affine variety or affine algebraic subset of An is any set of the form V(S), for some S as above.

Warning. The definition of variety and affine variety are not consistent in the literature. Several authors
impose a further condition called irreducibility, which we will encounter shortly. There are good reasons
for both conventions, but the main point is simply to be wary when you read textbooks.

Example 1.4. Let us record numerous examples of algebraic varieties.

(i) If n = 1 and f ∈ C[X] is nonzero, then V(f) = {zeros of f}, a finite subset of A1. Conversely, if
V ⊂ A1 is finite then V = V(f) with

f =
∏
a∈V

(X − a).

Observe that several polynomials can have the same vanishing set; for example (X−a) and (X−a)2

vanish on the same subset. This will be important shortly.

2A well-written explanation of both may be found here http://math.stanford.edu/~conrad/121Page/handouts/

gausslemma.pdf
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(ii) A hypersurface is a variety of the form V(f) ⊂ An where f is any non-constant polynomial. These
encompass a large class of examples within them. if V ⊂ An is an affine subspace of dimension
n− 1, namely it is a translate of a linear subspace of dimension n− 1, then by linear algebra it is
a hypersurface.

(iii) It is often convenient to describe varieties parametrically. The affine twisted cubic is given by

C = {(t, t2, t3) : t ∈ C} ⊂ A3.

It is the vanishing set
{X1 −X2

2 = X1 −X3
3 = 0} ⊂ A3.

(iv) As we will shortly see, a finite union of algebraic varieties is an algebraic variety. For example, in
A3, take V to be the union of the three axes:

V = {X0 = X1 = 0} ∪ {X1 = X2 = 0} ∪ {X0 = X2 = 0}.

Find an explicit set of polynomials S such that V(S) is equal to V . This is called the spatial triple point.

(v) Consider the polynomial
f(X) = X2

1 + · · ·+X2
n+1,

and consider the function
f : An+1 → C.

The level sets of this functions are all varieties. The vanishing locus of f , i.e. the preimage of 0, is
called the ordinary double point. Although it may not seem believable right now, this is one of the
richest and most informative examples in all of geometry!

Visualizing Algebraic Varieties. I have told you that we will assume the field over which we work
is always algebraically closed, and in fact, I will always assume it is C. Nevertheless, significant – but
dangerous! – intuition is gained from looking at the pictures over R. In order to help visualize varieties,
I often use a computer or WolframAlpha. When n is 2 draw the real locus of the ordinary double point.
Using a computer system, graph the affine twisted cubic.

Let us begin to explore how the ring theory interacts with these varieties.

Theorem 1.5. Let V be the affine variety given by V(S) where S is any subset of the ring C[X].

(i) Let I denote the ideal generated by S. Then V(I) = V(S).

(ii) There exists a finite set {fj} ⊂ S of polynomials such that V(S) = V({fj}).

Proof. For the statement (i), suppose P ∈ An. Then then f(P ) = 0 for all f ∈ S and only if f(P ) = 0
for all f ∈ I by basic properties of ideals.

For the statement (ii), we already have the equality

V(S) = V(I)

by (i). We now apply the Hilbert basis theorem, and find {h1, . . . , hr} generators for I. The generators
may not lie in S, but we can find a finite subset {f1, . . . , fm} ⊂ S and gij ∈ k[X] such that

hi =

m∑
j=1

gijfj

. Therefore {fj} are also a set of generators for I, so V(S) = V({fj}) as demanded.
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A fundamental property about the relationship between the ideal I and its vanishing locus is that it is
“order reversing”: roughly speaking, as the ideal gets larger, the set of points where all its functions
vanish gets smaller. These properties are formally spelled out in the next proposition.

Proposition 1.6. Let S and T be subset of the polynomial ring C[X]. Then

(i) If S ⊂ T then V(T ) ⊂ V(S).

(ii) There is an equality V(0) = An; and V(C[X]) = ∅ = V(λ) for any non-zero λ in C.

(iii) There is an equality
⋂
j V(Ij) = V(

∑
j Ij) for any family of ideals Ij.

(iv) There is an equality V(I) ∪ V(J) = V(I ∩ J)

Proof. The first two statements are trivial. For the statement (iii) we have
⋂
V(Ij) = V(

⋃
Ij) by

definition. To conclude, apply Theorem 1.1(i) above. For the statement (iv), we have already observed
that

V(I) ∪ V(J) ⊂ V(I ∩ J).

For the reverse containment, suppose P lies in V(I ∩ J), and suppose P /∈ V(I). Then there exists g ∈ I
with g(P ) 6= 0. Moreover, for all elements f ∈ J , the product fg ∈ I ∩ J so (fg)(P ) = 0. Therefore
f(P ) = 0 or in other words, P ∈ V(J).

As a consequence, some varieties are unions of other varieties. It is useful to identify the “atomic” pieces
of a variety.

Definition 1.7. A variety V is called irreducible if for every expression of V as a union

V = V1 ∪ V2

either V1 or V2 is equal to V . A variety is reducible if it is not irreducible.

Example 1.8. The variety V(X1X2) = 0 ⊂ A2 is reducible as it is the union of two varieties, namely
the set where X1 = 0 and the set where X2 = 0.

On the other hand, showing that a variety is irreducible seems somewhat more difficult. We will come to
this quite soon, but before that, let us justify why this is the right notion of “atomic”.

Proposition 1.9. Every affine variety V is a finite union of irreducible varieties.

Proof. The proof technique is sometimes referred to as a “bisection” argument. If V is irreducible there
is nothing to prove. If V is not irreducible, we can nontrivially write V = V1 ∪ V ′1 . If both of V1, V ′1
are finite unions of irreducible varieties then again, there is nothing. It follows that V1 can be written
nontrivially as a union V2 ∪ V ′2 . Continuing in this fashion, we are left with a chain

V = V0 ) V1 ) V2 ) . . . .

This infinite descending chain supposedly never stabilizes. However, the chain of varieties gives rise to
an infinite ascending chain of ideals. Precisely, define

W =
⋂
j

Vj = V
(∑

Ij

)
.

The ideal
∑
Ij is finitely generated since the polynomial ring is Noetherian. It follows that I =

∑
j≤N Ij

for some sufficiently large N , since the chain of ideals stabilizes. As a consequence, W =
⋂
j≤N Vj and

by a little basic set theory we see that chain terminates.
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In fact, the decomposition into irreducible pieces is essentially unique.

Proposition 1.10. Let V be a variety. A minimal3 decomposition V = ∪Vi into a finite union of distinct
irreducible varieties is unique up to ordering.

Minimal here has the meaning that if V = ∪Vi is a decomposition, no Vi should be contained in Vj for i
not equal to j.

Proof. The proof is left as an exercise. The basic idea is to compare two decompositions by the following
trick: take an irreducible component in the first decomposition and intersect it with each piece of the
second decomposition. By using the irreducibility of this chosen component, one is quickly led to the
conclusion of the proposition.

Given this uniqueness, we can refer to the irreducible subvarieties Vi that occur in a decomposition of V
as the irreducible components of V .

2 An interlude: the two topologies on a variety

The arguments of the previous section, especially involving intersections, unions, and irreducibility have
a distinctly topological feel to them. It is convenient to formalize it.

We recall that a topology on a set X is a collection of subsets of X – “the topology” – which are declared
to be open sets. The collection should not be arbitrary: (i) the empty set and X itself should be open;
(ii) arbitrary unions of opens should be open; and (iii) finite intersections of opens should be open. By
declaring a closed set to be the complement of an open set, one can equivalently specify a topology by
describing its closed sets.

Definition 2.1. The Zariski topology on An is the topology whose closed sets are affine varieties in An.
If V ⊂ An is an affine variety, the Zariski topology on V is defined as the subspace topology for the
Zariski topology on Ab.

Proposition 1.6 shows that this is indeed a topology. Since we are working over C, we have another
option.

Definition 2.2. The Euclidean topology or analytic topology on An is the topology induced by the
identification of An with Cn, where the latter is given the metric topology for the standard metric on Cn.
If V ⊂ An the Euclidean topology on V is defined as the subspace topology for the Euclidean topology
on An.

Let us make a few basic observations to get a sense for how different these two topologies are.

Proposition 2.3. The Zariski topology on A1 coincides with the cofinite topology. Affine space A1 is not
Hausdorff in the Zariski topology, and non-compact in the Euclidean topology. Note that A1 is Hausdorff
in the Euclidean topology; in the Zariski topology A1 every open cover of A1 has a finite subcover4.

The following statements hold for any affine variety V ⊂ An.

(i) Every Zariski closed subset of V is Euclidean closed; the converse does not hold.

3The minimality condition was incorrectly dropped in lecture.
4We are being cagey here because the literature is inconsistent about what compact actually means: several authors

include Hausdorff in the definition of compact, and instead use the term quasi-compact for general spaces having the finite
subcover property.
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(ii) Every Zariski open5 dense subset is dense in the Euclidean topology.

(iii) A polynomial function f gives rise to a map

f : V → A1.

The map is continuous in both Zariski and Euclidean topologies6.

Proofs are not included, as these are statements to tune your intuition. The proofs may be considered
non-examinable.

The topologies are both very useful: the Euclidean topology is where geometric intuition comes from,
including all the pictures that algebraic geometers draw. The Zariski topology is a useful way to import
general results from topology.

Important Warning Although set theoretically we can identify A2 and A1 × A1, the Zariski topology
on A2 is not the product topology for the Zariski topology on A1. For example, the set V(X1−X2) ⊂ A2

is Zariski closed, but not closed in the product Zariski topology.

3 Ideals from zero sets

In the discussion so far, varieties have been built from ideals in the polynomial ring. We now discuss the
converse: how can we recover an ideal from only the data of an algebraic variety? The simplest version of
this question considers the simplest variety, namely the empty set. We therefore must understand, what
ideals I have the property that their vanishing set is empty.

Theorem 3.1 (Hilbert’s Weak Nullstellensatz). Let I ( C[X] be a proper ideal. Then the vanishing
locus V(I) is nonempty.

In particular, the only ideal that could possibly give rise to the empty set as a variety is the unit ideal.
More generally, we want to understand, given two ideals I, J in C[X], if

V(I) = V(J)

what can be said about the relationship between I and J? Note that the answer cannot be entirely
straightforward: if I = (f) and J = (f2), then their vanishing loci certainly coincide.

Let V ⊂ An be an affine variety. Consider the ideal

I(V ) = {f ∈ C[X] | for all P ∈ V f(P ) = 0}.

Proposition 3.2. Let V ⊂ An be a variety as above.

(i) If V = V(S) for some set S ⊂ C[X], then S ⊂ I(V ). In particular, I(V ) is the largest ideal of
functions that vanish on V .

(ii) There is an equality V = V(I(V )).

(iii) Two varieties V and W are equal if and only if the ideal I(V ) and I(W ) are equal.

Proof. The statements follow immediately from the definitions.

5The world open was dropped in lecture. The statement is false without this hypotheses. A counterexample is an infinite
collection of points in A1, which is automatically Zariski dense.

6Precisely, place one of the two topologies on both source and target of f ; for fun you can try to think about what
happens when you mix and match different topologies on source and target, but there’s not much to gain from this.
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As a consequence, we obtain an injective map:

{Affine varieties in An} ↪→ {Ideals in C[X]}

obtained by sending V to I(V ). Since the V(−) construction is a left inverse by the proposition above,
the map is injective.

The injection behaves well with respect to inclusions.

Proposition 3.3. The containment V ⊂W holds if and only if I(V ) ⊃ I(W ).

Proof. The forward implication is obvious. If V is not contained in W we can choose P in V \W . Since
P is not in V(I(W )), there exists f in I(W ) such that f(P ) is nonzero. In other words, f is not contained
in I(V ).

The injection also detects irreducibility.

Proposition 3.4. A variety V ⊂ An is irreducible if and only if I(V ) is a prime ideal.

Proof. We have seen that I(V1 ∪ V2) = I(V1) ∩ I(V2). Now suppose that V were reducible and we write
V = V1 ∪ V2, as a nontrivial union. In particular,

V1 6⊂ V2 6⊂ V1.

Let Ij be the ideal I(Vj). Then I(V ) = I1 ∩ I2 and by the previous proposition, I1 6⊂ I2 6⊂ I1. We can
therefore find

f1 ∈ I1 \ I2, f2 ∈ I2 \ I1.

Then fi /∈ I(V ) but
f1f2 ∈ I1 ∩ I2 = I(V ),

so I(V ) not prime.

Conversely, suppose f1f2 ∈ I(V ) with neither f1 nor f2 contained in I(V ). Then we define

Vi = V ∩ V (fi) = {P ∈ V | fi(P ) = 0}.

Since fi is not contained in I(V ), Vi 6= V . Then

P ∈ V =⇒ f1(P )f2(P ) = 0 =⇒ P ∈ V1 ∪ V2

hence V = V1 ∪ V2.

Given a function f ∈ C[X], we can restrict the resulting function, initially defining

An → A1

to a variety V ⊂ An. However, two functions f and g restrict to the same function on V if f − g vanishes
on V , i.e. if f − g is contained in I(V ).

Definition 3.5. The coordinate ring or the ring of regular functions of V is defined as the quotient
C[X]/I(V ). It is denoted O(V ) or C[V ].

The notation C[V ] is more common when discussing the traditional theory of varieties, but it leads to a
peculiar notational confusion if we were to use X to denote a variety.
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Remark 3.6. Let V ⊂ An be a variety, fix a point P on it, and choose an element f in C[X]. There is a
nice interpretation of the value of the function value f(P ). The point P can be written as (a) and there
is an associated ideal

mP = 〈X1 − a1, . . . , Xn − an〉 ⊂ C[X].

There is a quotient
C[X]→ C[X]/mP = C.

The elements f lies in the domain. The function value f(P ) is precisely the image of f in this quotient;
indeed, in practice, the quotient means “plug in ai for each Xi”. Note that mP contains I(V ) so in fact,
by the correspondence theorem in ring theory mP also determines an ideal in the coordinate ring C[V ].

We can translate the link between primality and irreducibility into the language of coordinate rings.

Corollary 3.7. A variety V ⊂ An irreducible iff C[V ] is an integral domain.

Remark 3.8. The ring C[V ] does not remember the ideal I(V ) exactly. In order to recover I(V ) we also
need the quotient homomorphism

C[X]→ C[V ].

We can recover I(V ) as the kernel. However, a given ring C[V ] can be presented as a quotient in many
different ways. For example, the ring C[X] can be presented as C[X,Y ]/(Y ). As you might imagine, it is
essentially harmless to forget this data. In fact, this extra information is often more of a hindrance than
anything else.

The weak form of the Nullstellensatz tells us that there is some chance that the variety V(I) contains a
lot of information about I, in particular, it distinguishes I from the unit. The strong Nullstellensatz goes
a step further.

Definition 3.9. Let I ⊂ C[X1, . . . , Xn]. Define the radical of I by

√
I := {f ∈ C[X] | there exists an integer m > 0 such that fm ∈ I}.

It is easy to see that this is also an ideal. An immediate observation is that for any ideal I

V(I) = V(
√
I).

The strong form of the Nullstellensatz states that this is the only ambiguity.

Theorem 3.10 (Hilbert’s Strong Nullstellensatz). Let I ⊂ C[X] and let V = V(I). Then f lies in I(V )
if and only if f is contained in

√
I. That is,

I(V ) =
√
I.

Corollary 3.11. If ideals I and J have the same zero set then their radicals coincide.

Remark 3.12. If I is not equal to its radical, then the quotient R = C[X]/I contains nilpotent elements,
i.e. nonzero elements r such that rm is zero. From a function theory viewpoint this poses some intuitive
confusion: at any point P of V , we have f(P )m = 0. But f(P ) is an element in C so these functions take
value zero everywhere, but they are not the zero functions. This is the reason we pass to the radical ideal
before taking the quotient: we want7 C[X]/I to be a “ring of functions on V ”.

7In the interest of honesty, this is a pretty old fashioned viewpoint. Modern algebraic geometry takes these nipotents
very seriously. But there is a huge technical burden in absorbing them into a geometric setup, called “scheme theory”: the
subject of the Part III course on this subject.
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4 Maps between affine varieties

Let V ⊂ An, W ⊂ Am. We want to understand an appropriate class of maps from V to W . There are
two ways to look at this, both of which lead to the same conclusion. (i) Maps to W should be built out
of functions on V , and therefore given by an m-tuple of elements in the coordinate ring of V that lands
V inside W . (ii) Maps to W should be set theoretic maps from V to W that have the property that any
polynomial on W induces a polynomial on V by precomposition (or “pullback”).

Definition 4.1. A regular map or morphism from V to W is a map

ϕ : V →W

such that there exist elements f1, . . . , fm in C[V ] such that

ϕ(P ) = (f1(P ), . . . , fm(P ))

for all points P in V . The set of morphisms from V to W are denoted Mor(V,W ).

Notice that a morphism is therefore just a set theoretic map from V to W that happens to arise in a nice
way via polynomials. It is exactly paralle to how a variety is a set theoretic object that happens to arise
in a nice way via polynomials. The key example to keep in mind is that the set of morphisms from V to
A1 is precisely the coordinate ring C[V ]. We give some further examples of the kind of morphisms that
arise in practice.

Example 4.2. (i) A linear projection An → Am is a morphism, as is any linear or affine transforma-
tion.

(ii) If V ⊂W ⊂ An are two affine varieties, the inclusion

V ↪→W

is a morphism.

(iii) The affine d-Veronese from A1 is the morphism A1 → Ad given by

t 7→ (t, t2, . . . , td).

Proposition 4.3. If ϕ : V →W is a morphism and ψ : W → Z is a morphism, then the composite map
V → Z is also a morphism.

Proof. Composition of polynomial functions is polynomial.

Given this, we see that an isomorphism is a morphism with a 2-sided inverse.

The data of a morphism is in fact, purely ring theory data. If g is an element of C[W ], and ϕ : V → W
is any morphism, define the pullback ϕ∗g = g ◦ ϕ which is an element of C[V ]. It is straightforward to
see that

ϕ? : C[W ]→ C[V ]

is a ring homomorphism that restricts to the identity on C. This is called a C-algebra homomorphism.

Theorem 4.4. V ⊂ An, W ⊂ Am. Then ϕ 7→ ϕ∗ defines a bijection

Mor(V,W ) ∼−→ {C-algebra homomorphisms C[W ]→ C[V ] }
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Proof. Let x1, . . . xn be the coordinate functions on V , namely the restrictions of the standard linear
coordinate functions on An. Similarly, let y1, . . . , ym be the coordinate functions on W .

We first show injectivity of the association above. What has to be shown is that if we are given two
set theoretic maps from V to W that happen to be morphisms, and if the corresponding algebra maps
coincide, the set theoretic maps coincide. Suppose P lies on V . Then ϕ(P ) can be expressed as a tuple

ϕ(P ) = (y1(ϕ(P ), . . . , ym(ϕ(P )) = (ϕ?y1(P ), . . . , ϕ?ym(P )).

Therefore, given two morphisms ϕ and ψ, if the corresponding algebra maps ϕ? and ψ? are equal, then
ϕ(P ) and ψ(P ) are equal for all P in V .

We now prove surjectivity. Let λ : C[W ] → C[V ] be homomorphism. Each coordinate function yi
determines an element of C[V ] via:

fj = λ(yj).

Assemble these together to get
ϕ := (f1, . . . fm) : V → Am.

We must now show that the image of V is contained in W , i.e. every polynomial in I(W ) vanishes on
ϕ(P ) for all points P in W . Let g be a polynomial with m input variables. Since λ is a homomorphism
we see that

g(f1, . . . , fm) = g(λ(y1), . . . , λ(ym)) = λ(g).

It follows by plugging in at P , that if the polynomial g is contained in I(W ), then g(f1(P ), . . . , fm(P ))
vanishes. Equivalently, the point ϕ(P ) lies inside W . It is straightforward to check that λ coincides with
ϕ?, so we obtain the required surjectivity.

This gives us a way to quickly determine if there is an isomorphism between two varieties. For example,
we see that the affine twisted cubic from earlier, the image

C = {(t, t2, t3) : t ∈ C} ⊂ A3

is isomorphic as a variety to A1 by explicitly calculating the coordinate rings.

Here is a harder example that exhibits something very important.

Example 4.5. Let V be the variety obtained by the union of three lines through the origin in A2: for
concreteness, take them to be the two axes and the diagonal. Let W be the variety obtained by the union
of the three axes in A3. In the Euclidean topology, these two varieties are homeomorphic. However, they
are not isomorphic as affine varieties, because their coordinate rings are not isomorphic! This is the first
sign that things are less flexible in algebraic geometry. There are a few ways to show this, but it will be
easier once we introduce tangent spaces in a few lectures time.

In various aspects of geometry and topology, we are often interested in functions that are only defined
on some open set, but that may be undefined outside of that set. A typical example is the function 1

z in
one complex variable, but “is infinite” at 0.

Definition 4.6. Let V ⊂ An be an irreducible affine variety. Its function field or field of rational functions
or field of meromorphic functions is the fraction field

C(V ) := FF (C[V ]).

Its elements will be called rational functions or meromorphic functions. Let ϕ be a rational function. A
point P of V is called regular if ϕ can be expressed as a ratio f/g with g(P ) nonzero.
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A couple of notes about the notation and terminology. First, the notation is once again slightly dangerous
when the variety is denoted X. Second, the word meromorphic here is used only in analogy. There may
be more meromorphic functions in the sense of complex analysis, but it evokes the right intuition.

If a rational function ϕ can be expressed as f/g, then there is a partially defined function on the (open!)
complement of V(g):

ϕ : V \ V(g)→ C.

It is useful to keep in mind that if V is irreducible, then every nonempty open subset is actually dense in
the Zariski topology.

Example 4.7. In A1, consider the rational function X2
1/X2. This is a function on the complement of

the X1-axis.

Remark 4.8. Informally, we think of rational functions as being pairs (f, U) where f is a function and
U is a nonempty open set in V subject to an equivalence relation. The equivalence relation states that
two pairs (f, U) and (f ′, U ′) are the same if the functions agree on some smaller non-empty open set
contained in both. In pithy terms: “functions defined on some open set”.

Definition 4.9. Let V be an irreducible affine variety. The local ring at point P in V is

OV,P = {f ∈ C(V ) | f regular at P}.

It is clear that this is a ring, but it is a very simple type of ring known as a local ring. A local ring is one
that has a unique maximal ideal.

Proposition 4.10. Let V and P be as above. The ring OV,P has a unique maximal ideal given by

mV,P = {f ∈ OV,P | f(P ) = 0} = ker(f 7→ f(P )).

Furthermore, the invertible elements in OV,P are precisely those elements f such that f(P ) is nonzero.

The proof follows from the following lemma.

Lemma 4.11. A ring R is a local ring if and only if R \R∗ is an ideal. If so then R \R∗ is the maximal
ideal of R.

Proof. Recall that in any ring, if A ⊂ R is an ideal, then then A is a proper ideal if and only if A contains
no units. Now suppose m = R \ R∗ is an ideal. By the previous sentence it is a maximal ideal and
contains every proper ideal of R. It is therefore the unique maximal ideal of R.

Conversely, let (R,m) be a local ring. Then m ⊂ R \ R∗, and if x ∈ R \ R∗ then (x) 6= R so (x) ⊂ m by
uniqueness. Therefore m = R \R∗. We conclude.

4.12 A quick review of the affine variety package

We have built a “local” geometric object with a good function theory. Our next task will be to build a
“global” object. Exactly what is local and what is global only becomes clear with a bit of experience,
but the manifold analogy is useful: locally we do linear algebra, and globally we have manifolds.

An affine variety V ⊂ An has a naturally associated ring of functions C[V ]. In fact, assuming V is
irreducible, if we fix any open subset U ⊂ V we have a larger ring RU :

C[V ] ⊂ RU ⊂ C(V )

14



consisting of all the rational functions on V that are regular at all points of U . If U ⊂ U ′ are open, then
the functions in RU ′ can be restricted to RU . This is good and should feel “geometric”.8 is a good sign
for what we’ll do next.

The next step will be to stitch together affine varieties to something larger.

5 Projective space

We will now introduce projective space Pn, which will serve as a replacement for affine space An. First, a
word about why we would like this. The following are examples of statements that are true in projective
geometry but fail in affine geometry.

(i) Every pair of distinct lines in P2 meet at a single point.

(ii) Let V be a projective variety in P2 defined by a polynomial of degree d. If V is a manifold, then V
is an orientable surface of genus

(
d−1

2

)
.

(iii) More generally, Let V and V ′ be projective varieties in Pn defined by polynomials of the same degree.
If V and V ′ are both manifolds, then V and V ′ are homeomorphic in the Euclidean topology.

(iv) Perhaps the most fundamental of these though: projective space in the Euclidean topology is a
compact manifold, and every projective variety is a compact topological space in the Euclidean
topology.

The statements about the Euclidean topology are not well-reflected in the Zariski topology, but if one
also examines the ring theory side, there are versions of these facts that become visible. However, the
additional sophistication required to do this honestly is significant.

We now begin in earnest, first with the set theoretic structure. Let U be a finite dimensional vector space
over C.

Definition 5.1. The projectivization of U is defined as

P(U) = {lines in U through 0} .

Define projective n-space to be

Pn = P(Cn+1).

It is typical to index the coordinates on Cn+1 by indices 0, . . . , n. A line in Cn+1 is given by

{(a0t, a1t, . . . , ant) | t ∈ C}.

We will write (a0 : a1 : . . . : an) for corresponding element of Pn. Thus

Pn = {(a0 : · · · : an) | ai ∈ k, not all 0}/ ∼ .

where (ai) ∼ (bi) if and only if the tuples are non-zero scalar multiples of each other. In practice, the
point here is that to name a point in Pn, we must give n+ 1 complex numbers, not all zero, and be aware
that there is ambiguity. The tuples (1 : 1 : −1) and (2 : 2 : −2) are actually the same point.

8This “association” can be dressed up in some fancy language. Precisely, we have attached a ring to every open set in such
a way that inclusions of open sets give maps of rings. This is formalized by the notion of a sheaf and we have just defined
the structure sheaf: it is precisely the data of this network of rings. We will not discuss further, despite the instructor’s
desire to.
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A few elementary observations. We can decompose

P1 = {(a0 : a1) | a0 6= 0} t {(a0 : a1) | a0 6= 0} = A1 ∪ {pt}.

The second equality follows because in the first set of the decomposition, we are allowed to divide out by
a0 to assume that it is equal to 1, and the only information left is a1

a0
. As a consequence, we think of P1

as being A1 with a point at infinity. More generally, we can write

Pn = {(a0 : · · · : an) | a0 6= 0} t {(a0 : · · · : an) | a0 = 0} = An ∪ Pn−1.

Inductively, we get a decomposition

Pn = An t An−1 t . . . t A1 t {pt}.

We now place our two topologies on Pn.

Definition 5.2. The Zariski (resp. Euclidean) topology on Pn is obtained as the quotient topology, for
the subspace topology on Cn+1 \ {0}, for the Zariski (resp. Euclidean) topology on Cn+1.

The fact about projective space that underlies its nice properties, though we will never use it in this form,
is the following. It provides important intuition.

Proposition 5.3. Projective space Pn is compact for all n in the Euclidean topology.

Proof. Notice that the unit sphere in Cn+1 has a continuous surjective map onto Pn. Since the image of
a compact set is compact, the space is compact.

Projective space Pn contains lots of “copies” of affine space An inside of it. There are infinitely many
copies in fact, but we single out n+ 1 standard affine patches in terms of coordinates. Let

Hj = {(ai) ∈ Pn | aj = 0}.

and
Uj = Pn \Hj = {(ai) ∈ Pn | aj 6= 0}.

There is a natural set theoretic bijection:

(a0 : . . . : an) 7→ (a0/aj , . . . , aj−1/aj , aj+1/aj , . . . an/aj) = (a0/aj , . . . , âj/aj , . . . an/aj)

where the hat symbol tells us to omit an entry. In the other direction

(b1, . . . , bn) 7→ (b1, . . . , bi, 1, bi+1, . . . , bn)

This reduces to the standard covering of the Riemann sphere P1 by two copies of A1. The projective
plane P2 is often visualized as a triangle of lines in a big blob.

6 Projective varieties

If one views Pn as a replacement for An, a projective variety should be the vanishing set of a collection
of polynomial functions. However, this is delicate. The function theory of Pn is more subtle than it is in
affine space. A polynomial in C[X] is not a well-defined function. As an example, consider the polynomial
X0 + 1; it does not determine a function on P1, because the value depends on the chosen representative.

We begin by recording some basic terminology carefully.
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Definition 6.1. A monomial is an element in C[X] of the form Xd0
0 Xd1

1 · · ·Xdn
n , for di ≥ 0. A term is

a nonzero multiple of a monomial. The degree of a term c · Xd0
0 Xd1

1 · · ·Xdn
n is defined to be

∑
di. A

homogeneous polynomial is a sum of terms of degree d. It has a well-defined degree, equal to the degree
of any of its constituent terms.

Every polynomial has a unique decomposition as a sum of homogeneous parts,

f =
∑
i

f[i]

with f[i] homogeneous of degree i.

Lemma 6.2. Let f be a homogeneous polynomial in C[X0, . . . , Xn]. Suppose that a = (a0, . . . , an) is a
tuple of complex numbers such that f(a) = 0. Then

f(λa0, . . . , λan) = 0

for any nonzero complex numbers λ.

Proof. If f is homogeneous of degree d, then

f(λX0, . . . , λXn) = λdf(X0, . . . , Xn).

The lemma is an immediate consequence.

Corollary 6.3. Let f be homogeneous of degree d. The set

V(f) = {p ∈ Pn : f(a) = 0, where a is any representative of p} ⊂ Pn

is well-defined.

In simple terms: the function value of f at a point of Pn is not well-defined, but the set where the function
value is 0 is well-defined. The next step is to go from the vanishing of a single polynomial to the vanishing
of an ideal. We need a definition.

Definition 6.4. An ideal I ⊂ C[X] is homogeneous if it is generated by homogeneous polynomials,
possibly of different degrees.

Homogeneous ideals are characterized by the following

Lemma 6.5. I ⊂ C[X]. The following are equivalent.

(i) The ideal I is homogeneous;

(ii) If f is any polynomial that is contained in I, then the homogeneous parts f[r] are contained in I for
all r.

Proof. For (i) =⇒ (ii): Let gj be generators of I, homogeneous of degrees dj . If

f =
∑

hjgj ∈ I

then we can split each hj into homogenous pieces hj[r]. Now we see that hj[r]gj ∈ I, so f =
∑
f[r] with

f[r] =
∑
j

hj[r−dj ]gj ∈ I

homogeneous of degree r.

(ii) =⇒ (i): This follows immediately from decomposing the generators of I.
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We can now confidently define the vanishing locus of a homogeneous ideal.

Definition 6.6. Let I be a homogeneous ideal. Define the vanishing locus of I to be

V(I) = {P = (ai) ∈ Pn | f((ai) = 0 ∀f ∈ I} .

A projective variety is a a subset V ⊂ Pn is the vanishing locus of a homogeneous ideal.

A couple of remarks on this definition. By the lemma, V(I) is the same if we add the condition “f
homogeneous” into the definition above. Note also that if f1, . . . , fm is a set of homogeneous generators
for I then V (I) is the set of simultaneous zeros of the fi.

The geometry of linear subspaces already provides interesting geometry.

Example 6.7. (i) Let U ⊂ Cn+1 be a vector subspace, then P(U) ⊂ Pn. If

U =

{
v ∈ Cn+1 |

n∑
i=0

a
(j)
i vi = 0 ∀j

}

fo a subset {a(j) = (a
(j)
0 , . . . , a

(j)
n } ⊂ Cn+1 then P(U) = V(I) where I is the (homogeneous) ideal

generated by the linear forms Fj =
∑

i a
(j)
i Xi. Conversely, any projective variety defined by linear

homogeneous polynomials has this form. Note that P(U ∩ V ) = P(U) ∩ P(V ). As terminology, a
projective linear space is the vanishing locus of an ideal generated by linear homogeneous polynomi-
als.

(ii) By the discussion above, the set of projective linear spaces of Pn is in bijection with the set of linear
subspaces in Cn+1. Moreover, the group GL(n + 1,C) acts on Pn in the natural way. The normal
subgroup of scalar matrices C? ⊂ GL(n+ 1,C) acts trivially. The quotient is denoted

PGL(n+ 1,C) = GL(n+ 1,C)/C?

and acts on Pn (very transitively).

The next most interesting class of examples comes from hypersurfaces; as in the affine, a projective
hypersurface is a variety V ⊂ Pn defined by the vanishing of a single non-zero homogeneous polynomial
equation.

Example 6.8. The Segre surface in P3 is the hypersurface

S11 = V(X0X3 −X1X2) ⊂ P3.

In fact, S is built out of familiar objects. Consider the set theoretic map

σ11 :P1 × P1 → P3

((a0 : a1), (b0 : b1)) 7→ (a0b0 : a0b1 : a1b0 : a1b1).

A nice interpretation is as follows. First consider the map

C2 × C2 → C2×2,

sending a pair of column vectors (v, w) to the matrix vwT . The image is precise the set of rank 1 matrices9.
By linear algebra, it follows that the map σ11 is injective with image exactly S.

9The instructor must record that they find this construction and the identification as the space of rank 1 matrices
absolutely beautiful!
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Important foreshadowing. Crucially, this gives us a way to construct products of projective spaces, and
therefore products of projective varieties. This will be done carefully later on via the general form of the
Segre embedding.

Just as Pn has n+ 1 copies of affine spaces U0, . . . , Un, if V ⊂ Pn is a projective variety, it can be covered
be affine pieces. Precisely, let V = V(I) ⊂ Pn. Let

I0 = {f = F (1, Y1, . . . , Yn) | F ∈ I homogeneous} ⊂ C[Y1, . . . , Yn]

which is an ideal. Let V0 ⊂ An be the affine variety defined by I0. Then V0 = V ∩ An thinking of An as
U0 ⊂ Pn, with coordinate functions Y1, . . . , Yn.

Likewise, setting Xj = 1 defines an ideal Ij whose associated affine variety is V ∩ Uj .
Let V ⊂ An be an affine variety. We may identify

An = U0 ⊂ Pn.

Now view V ⊂ Pn. Note that this subset is almost certainly not a projective variety, as it is typically not
even Zariski closed. However, we can calculate its Zariski closure. There is a very concrete description
of this.

Definition 6.9. Fix f ∈ C[Y1, . . . , Yn] of total degree d. Define the homogenization to be

F (X0, . . . , Xn) := Xd
0f(X1/X0, . . . , Xn/X0) ∈ C[X]

is a homogeneous polynomial of degree d, not divisible by X0, and F (1, Y1, . . . , Yn) = f . Consider the
homogeneous ideal I∗ generated by all such F as f runs over I(V ). It is the ideal of a projective variety
V ∗ ⊂ Pn with V ∗ ∩ An = V , called the projective closure of V .

Therefore a projective variety V has the property that every point has a Zariski open neighborhood that
can be identified with an affine variety10.

Let us look at a quick example on homogenization and dehomogenization.

Example 6.10. Consider the projective variety V ⊂ P2 given by V(X0X1−X2
2 ). The three affine varieties

that cover it are V0 ⊂ U0 given by
V(Y1 − Y 2

2 ) ⊂ A2.

This is a standard parabola. The second patch V1 ⊂ U1 looks essentially the same. However, the third
patch is given by

V(Z0Z1 − 1) ⊂ A2

which is a rectangular hyperbola. Therefore the parabola and hyperbola are simply different affine patches
of the same projective curve!

In fact, the linear algebra of quadratic forms gives complete control over quadratic hypersurfaces.

Theorem 6.11. Let Q ⊂ Pn be a hypersurface V(f) where f is a homogeneous quadratic polynomial, i.e.
a quadratic form. After a change of coordinates by an element of PGL(n+ 1,C), the hypersurface Q is
isomorphic to a a hypersurface of the form

V(X2
0 + · · ·+X2

r ) ⊂ Pn

where r is the rank of the qudratic form determined by f .
10In the world of manifolds, one can quickly define an abstract manifold as a topological space together with the property

that locally it looks like a vector space. The ambient space quickly becomes unnecessary. In algebraic geometry, this is
much trickier: one wants to define an abstract variety as a space that locally looks like an affine variety, but this is not
straightforward. In fact, if one works hard enough to do this, one may as well do something significantly more general:
define a scheme, a concept introduced by Alexander Grothendieck and his colleagues in the 1960s. This is the subject of the
Part III course. However, the most beautiful and rich examples still tend to come from studying varieties!
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Proof. The proof follows immediately from the theorem on diagonalization of quadratic and symmetric
bilinear forms, treated in Part IB Linear Algebra.

Note that the intersection and union properties seen for affine varieties continue to hold here. An
intersection of projective varieties is cut out by the sum of the corresponding ideals, and a union of
projective varieties is cut out by the intersection of the corresponding ideals. You should verify that
these operations preserve the homogeneous property. The proofs are identical.

Let V be a projective variety and define Ih(V ) to be the ideal generated by all homogeneous polys
vanishing on V . Then we have

Theorem 6.12 (Projective Nullstellensatz). (i) If V(I) = ∅ then I ⊃ (Xm
0 , . . . , X

m
n ) for some m > 0.

(ii) If V = V(I) 6= ∅ then Ih(V ) =
√
I.

Proof. We explain how to reduce to the affine case, which also gives a route to thinking about projective
varieties in general. Let I be a homogeneous ideal. Let

V a = V(I) ⊂ An+1, V = V(I) ⊂ Pn

be the affine and projective vanishing sets of I. Note that 0 is always a point of V a. There is a natural
quotient map

V a \ {0} → V

obtained by restricting the projection from Cn+1 \ {0} to Pn. Therefore, V is empty if and only if V a is a
subset of 0. Therefore its radical must contain (X0, . . . Xn). The second statement follows similarly.

The affine case will be proved later in these lectures.

Let V ⊂ Pn be a projective variety. If W ⊂ Pn is a projective variety with W ⊂ V we say that W is a
closed subvariety of V , and that the complement V \W is an open subvariety of V . These satisfy same
properties as open and closed sets in topology, parallel to the affine case.

Again, we say V is irreducible if V 6= V1 ∪ V2 for proper closed subvarieties V1 and V2. The following
basic proposition carries over again.

Proposition 6.13. (i) Every projective variety is a finite union of irreducible projective varieties.

(ii) V irreducible iff Ih(V ) is prime.

Proof. The first statement follows from an identical argument as the affine case. For the second, first
notice the following key fact. If I is a homogeneous ideal which is not prime, can find homogeneous
elements F , G not contained in I whose product FG is contained in I. Given this, the affine argument
once again works.

In both the projective and affine cases, it is good to get used to the idea that open sets are very large.
Precisely, a subset S ⊂ V is Zariski dense in V if, for f ∈ C[X] homogeneous, if f vanishes on S then f
vanishes on all of V . This is merely spelling out density in the Zariski topology.

Proposition 6.14. Let V ⊂ Pn be irreducible and W ⊂ V a proper closed subvariety. Then V \W is
dense in V .

Proof. Let f ∈ C[X] be homogeneous, vanishing on V \W . As W 6= V there exists g ∈ Ih(W ) \ Ih(V ).
This follows from the projective Nullstellensatz. Then fg vanishes on all of V . As g is not contained in
Ih(V ) which is a prime ideal, f is contained in Ih(V ).
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7 Function theory on projective varieties

The function theory on a projective variety is subtle, as we have already seen. Arbitrary polynomials do
not give us functions on Pn. Homogeneous polynomials have well-defined zero loci, but they too do not
give functions: their value is only well-defined up to scalar multiplication.

The key to function theory on projective varieties is that a ratio of homogeneous polynomials of the same
degree does have a well-defined value at a point, provided it has any value at all!

Definition 7.1. Let V ⊂ Pn be an irreducible variety. The function field or field of rational functions of
V is defined as

C(V ) = {F/G | F,G ∈ C[X] homogeneous of same degree, G /∈ Ih(V )}/ ∼

where F1/G1 ∼ F2/G2 if and only if F1G2 − F2G1 is contained in the homogeneous ideal Ih(V ).

The fact that this relation is an equivalence relation is easy, but it uses the primality of the ideal!

Lemma 7.2. The relation defined above is an equivalence relation.

Proof. The reflexive and symmetric properties are clear. Now suppose that we have F1/G1, F2/G2, and
F3/G3 with the Gi not vanishing on V and

F1G2 − F2G1, F2G3 − F3G2.

are both contained in the homogeneous ideal I(V ). Now consider the expression F1G3 −F3G1. Multiply
it by G2 to get

F1G2G3 − F3G1G2.

Since G2 is not in the ideal Ih(V ) and this ideal is prime, it will suffice to prove that that this expression
is contained in I(V ). Equivalently, we can show that the expression is 0 in the quotient C[X]/I(V ). In
the quotient, we have

F1G2 = F2G1, F2G3 = F3G2.

By substitution of these expressions into the equation written above, we see that in the quotient

F1G2G3 − F3G1G2 = F2G1G3 − F2G1G3 = 0 in C[X]/Ih(V ).

It is essentially immediate that the quotient above is a field, and therefore deserves this name.

Remark 7.3. Although we will not use it quite yet, there is more structure lurking here than one initially
sees. The definition above examines homogeneous rational functions of total degree 0. For any integer d,
one could examine a set C(V, d) of homogeneous rational functions of degree d. An object of this form
would not be a field though, as it doesn’t make sense to multiply two such! If f and g have degree d, then
fg has degree 2d. However, it does make sense to multiply a rational function of degree d by a rational
function of degree 0, i.e. an element of C(V ). In other words, the set C(V, d) of degree d is a vector space
(or module) over C(V )!

Proposition 7.4. The field C(V ) is a finitely-generated field extension of C.

The reader is warned that finitely generated as a field extension is not the same as finite generation as
an algebra, since the former allows more operations, crucially, taking reciprocals. For example, C(x) is
finitely generated as a field but not as a C vector space. In the proof that follows, it will be useful to
remember that the subfield generated by a collection of elements is the smallest field containing those
elements.
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Proof. Assuming V is nonempty, there is some coordinate Xi that does not vanish on V . We can assume
it is X0 by reordering the coordinates. Then we claim that elements of the form Xi/X0 generate C(V ).
Explicitly, this means that we must write degree 0 ratios of the form F/G in terms of these simple elements
Xi/X0. We immediately reduce to the case where F is a monomial, since if we can generate these, we
can generate everything. But since fields contain reciprocals, it suffices to write a ratio of monomials of
total degree 0 in terms of these Xi/X0. The statement is now obvious.

As a consequence, the calculation of the function field of a projective variety is no more difficult than the
calculation of the function field of an affine variety.

Corollary 7.5. Let V ⊂ Pn be an irreducible projective variety not contained in {X0 = 0}. Let V0 be the
variety defined by the equations

F (1, Y1, . . . , Yn) = 0

where F ranges over homogeneous elements in Ih(V ). We view it as a subset of the affine space U0. Then

C(V ) = C(V0).

The proof is a good exercise in tracking definitions, and is left to the diligent reader.

In the affine case we can think of rational functions as partially defined functions on the regular locus.
In the projective case this continues to hold. The symbol V continues to denote an irreducible projective
variety.

Definition 7.6. Let ϕ be an element of C(V ) and P be a point of V . Then ϕ is regular at P if and only
if ϕ can be expressed as F/G, with G(P ) nonzero. In this case, there is a partially defined function

V \ {P : ϕ is not regular at P} → C.

The local ring OV,P of V at P defined the same way as for affine varieties: it is the subring of C(V )
consisting of those rational functions that are regular at P .

Proposition 7.7. Assume V ⊂ Pn is a projective irreducible variety not contained in {X0 = 0}. Let P
be a point on V that is contained in the open subset V0. Then there is an identification of local rings

OV,P = OV0,P

induced by the isomorphism
C(V ) = C(V0).

Proof. Exercise in the definitions; omitted.

Remark 7.8. A slogan worth keeping in mind is that projective varieties do not have any interesting
(non-constant) functions that are regular everywhere. In order to study them, these partially defined
rational functions become much more important than in the affine case. The “reason” for this is clear: a
projective variety is compact, and rational functions are polynomial ratios, and are therefore holomorphic
whenever defined. If defined everywhere, we would get a holomorphic function on a compact domain,
and therefore a bounded holomorphic function. By an extension of Liouville’s theorem from complex
analysis, there should not be any such. The honest proof of this requires more effort.

22



8 Rational maps between projective varieties

Just as we went from functions to partially defined functions, we can go from morphisms to partially
defined morphisms, or rational maps. These will be denoted by a broken arrow, for example:

Pn −−→ Pm.

Let F0, . . . Fm ∈ C[X] be homogeneous of same degree d. We may consider the map

F = (F0, . . . , Fm) : Cn+1 → Cm+1

Proposition 8.1. The map F descends to a map

ϕ : Pn \
⋂
j

V(Fj)→ Pm,

with ϕ(P ) defined by choosing a representative a = (a0, . . . , an) for P and mapping it to the tuple
(F0(a) : · · · :Fm(a)).

Proof. Note that all the Fj have the same degree d, so if we choose two representatives a and a′ that
are related by uniformly scaling by a complex number λ, then F (a) and F (a′) are related by uniformly
scaling by λd.

In order to avoid overcrowding notation, we denote these by

ϕ = (Fi) : Pn −−→ Pm.

The broken arrow indicates that the map is only partially-defined on its domain.

Let G be a nonzero homogeneous polynomial in X0, . . . Xn, and we are given F0, . . . , Fm as above, then
there is a map

GF : Pn −−→ Pm.

This map is essentially the same, but the locus where it is undefined is potentially larger. On the common
locus of definition, the map above agrees with ϕ defined previously. We will typically view these as the
same rational map.

Since C[X] is a unique factorization domain, there is a best representative for ϕ obtained by canceling
all common factors out. However, this is is not a property we want to impose in general, so I will not
stress this here.

We can now define rational maps from an irreducible projective variety V ⊂ Pn. Let F0, . . . , Fm be
elements in C[X] that are not all contained in Ih(V ). They determine a set theoretic mapping

V \ ∩jV(Fj)→ Pm.

Two such pairs (Fj) and (Gj) are said to determine the same rational map if FjGj − FjGi is contained

in Ih(V ). A rational map is an equivalence class of mappings determined by polynomials as above.

Definition 8.2. A point P ∈ V is said to be a regular point of a rational map ϕ : V −−→ Pm if there
exists a representation of ϕ (G0, . . . , Gm) such that Gi(P ) is nonzero for some index i. The domain of a
rational map is the set of regular points. A rational map is a morphism if all points are contained in the
domain.
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Again, we stress that on an arbitrary V , different representatives may need to be used at different points
and there may not be a “best possible” representation of the map. We see an explicit example of this
below.

If W ⊂ Pm then a rational map ϕ : V −−→ W is a rational map ϕ : V −−→ Pm such that the domain of
ϕ is sent to W .

If every point of a rational map ϕ is regular, it is called a morphism and is written with the regular arrow
rather than the broken arrow. It is an isomorphism if there is a morphism ψ : W → V such that ϕ ◦ ψ
and ψ ◦ ϕ are the identity morphisms on W and V respectively.

Example 8.3. A linear map is given by

ϕ : Pn −−→ Pm

is given by any (m+ 1)× (n+ 1) matrix (aij). Concretely, ϕ is given by a tuple (Fj) with

Fj =
∑
i

aijXi.

If the matrix has rank n+ 1 ≤ m+ 1 then ϕ is a morphism.

A rational map ϕ is a good source of m̆orphisms, via restricting. The following is a nice example.

Example 8.4 (Projection from a point). Consider the point P = (0 : 0 : 1) in P2. A rational map
projection from P

π : P2 −−→ P1

is given by sending (a0 : a1 : a2) to the pair (a0 : a1). The map is not defined at P . Now let C ⊂ P2 be
the variety V(fd) where fd has degree d, and assume that P does not lie on C. By restriction, we get

$ : C → P1.

This is a morphism, since it is defined everywhere. In order to understand this morphism well, fix a point
q on P1 and describe the preimage (or fiber) of q in terms of fd. Convince yourself that for almost all
choices of q, the set $−1(q) has size d.

Important Warning: If we restrict a rational map to a subvariety V that is entirely contained in its
domain, we do indeed get a morphism on V . However, it is possible to restrict a rational map to a
subvariety that has nonempty intersection with the domain and still end up with a morphism! We will
see an example now.

Example 8.5 (Absolutely crucial!). Let C be the conic

V(X0X2 −X2
1 ) ⊂ P2.

Consider the projection from the point (0 : 0 : 1), which we notice lies on the curve C, to obtain

π : C −−→ P1

sending (a0 : a1 : a2) to (a0 : a1). The map is determined by (X0, X1). At first sight, it appears that
(0 : 0 : 1) is not in the domain of π, but this is an illusion. We must look for other pairs (F0, F1)
that determine the same rational map as (X0, X1). If (F0, F1) is equivalent to (X0, X1) then we
must have

F0X1 − F1X0 ∈ I(C)h.
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The ideal is generated by X0X2−X2
1 and therefore, it makes sense to take (F0, F1) = (X1, X2), since this

is equivalent to (X0, X1). The latter pair of polynomials determines a rational map on which (0 : 0 : 1) is
clearly contained in the domain. It follows that

π : C → P1

is in fact a morphism.

In fact, there is a strong statement that we can derive from this.

Proposition 8.6. Let C ⊂ P2 be the vanishing locus V(f) where f is homogeneous of degree 2. If f is
irreducible, then C is isomorphic to P1.

Proof. We have seen that by changing coordinates, since f is irreducible, that we can assume f =
X0X2 −X2

1 . By projection from the point (0 : 0 : 1) we have a morphism

C → P1.

For the inverse, consider the map
P1 → P2

given by (Y 2
0 :Y0Y1 :Y 2

1 ). It is straightforward to check that these are inverses.

Aside from the technical definition of a rational map, in practice, it the important thing is that rational
maps are set theoretic maps on dense open sets that arise via homogeneous polynomials.

We take a moment to record three Italian examples of rational maps and morphisms.

Example 8.7 (Cremona transformation). Consider the rational map P2 −−→ P2 determined by

κ : (X0 :X1 :X2) 7→ (X1X2 :X0X2 :X0X1)

This can be thought of as the coordinate-wise reciprocal map. The Cremona map “sends lines to conics”.
Choose a line ` that is not given by the vanishing of any Xi. Consider the subset

κ(domκ ∩ `) ⊂ P2.

This is the rational analogue of the “image”. A simple and direct calculation shows that the closure of
this set is a conic!

A classical construction of a morphism on Pn is the Veronese.

Example 8.8 (Veronese embeddings). Let F0, . . . , Fm be the list of degree d monomials in variables
X0, . . . , Xn. The number m is

(
n+d
d

)
− 1. There is a natural morphism

νd : Pn → Pm

sending (a) to the tuple (F0(a) : · · · :Fm(a)). A straightforward but tedious calculation shows that the
Veronese map is set theoretically injective and in fact νd(Pn) is a projective variety isomorphic to Pn.

The product of affine varieties is an affine variety, since Am × An ' Am+n and if V ⊂ Am, W ⊂ An are
varieties then

V ×W = V (I) ⊂ Am+n,

where I is the ideal generated by polynomials f(X1, . . . , Xm) for f ∈ I(V ) and g(Xm+1, . . . , Xm+n) for
g ∈ I(W ).

Critically, this does not extend to an isomorphism between Pm×Pn and Pm+n. We have seen earlier how
to view P1 × P1 inside P3 as a projective variety. This generalizes as follows.
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Example 8.9 (Segre embeddings). The Segre embedding is the map

σmn : Pm × Pn → Pmn+m+n

((xi), (yj)) 7→ (xiyj)

where the (m+ 1)(n+ 1) variables in Pmn+m+n are labelled Zij, 0 ≤ i ≤ m, 0 ≤ j ≤ n. Note this is just
a map of sets at the moment, though there is more that can be said. The nice geometry here is that, for
each fixed Q, the map sending P to σmn(P,Q) is a linear morphism Pm ↪−→Pmn+m+n, and similarly for
each fixed P .

The discussion when m = n = 1 involved the identification of the image as the set of rank 1 matrices of
size 2 × 2. The interpretation there also generalizes, but requires the notion of a tensor product, which
we do not assume. For those who are familiar with tensor products of vector spaces, we briefly indicate
what is going on. It can be considered non-examinable. There is a natural map

U × U ′ → U ⊗ U ′,

sending a pair (u, u′) to u⊗ u′. The map is not linear, but it is bilinear, i.e. when a vector in a factor is
fixed, the map is linear in the other factor. Passing to projective spaces gives the Segre map.

The image of the Segre embedding is a projective variety.

Theorem 8.10. The map σmn is a bijection between Pm × Pn and the projective variety V = V (I) ⊂
Pmn+m+n, where I is the homogeneous ideal generated by polynomials

ZijZpq − ZiqZpj , i, p ∈ {0, . . . ,m}, j, q ∈ {0, . . . , n}, i 6= p, j 6= q.

Moreover the projective variety V is irreducible.

Proof. Clearly σmn(Pm × Pn) ⊂ V . Consider the affine piece

V00 = V ∩ {Z00 6= 0} ⊂ Amn+m+n.

The inhomogeneous ideal I00 defining V00 is, after setting Yij = Zij/Z00, generated by the polynomials

Yij − Yi0Yj0, 1 ≤ i ≤ m, 1 ≤ j ≤ n

which contains automatically all the other elements YijYpq − YiqYpj . It follows that σmn defines an
isomorphism Am × An ∼−→ V (I00) with inverse

(Yij) 7→ ((Y10, . . . , Ym0), (Y01, . . . , Y0n)) .

Since affine space is irreducible, it follows that V (I00) is also irreducible. Repeating this for the other
affine pieces {Zij 6= 0} gives the result.

As a consequence of the partial definedness of rational maps, composition of rational maps is a slightly
subtle issue. Suppose ϕ : V −−→ W , ψ : W −−→ Z are rational maps. The composite ψ ◦ ϕ isn’t always
defined. The reason is simple: the image of ϕ could consist entirely of points at which ψ is not regular.

Definition 8.11. A rational map ϕ is dominant if ϕ(domϕ) ⊂W is dense in W .

If ϕ is dominant, then ψ ◦ϕ is defined for any rational map ψ. Indeed, let U denote a dense open subset
in the domain of ϕ and let U ′ be an open subset in the domain of ψ. Then take U ′′ to be the intersection
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U ∩ ψ−1U ′. This is open in V and the composite is well-defined here. Since compositions of polynomials
are polynomials, this partially defined composition is the identity.

If ψ : W −−→ V is such that ψ ◦ ϕ, ϕ ◦ ψ are defined and equal the identity maps of V , W respectively,
then we say ϕ is birational (or a birational equivalence or birational isomorphism).

Obviously every isomorphism is a birational map, but there are a number of other important examples.
The Cremona transformation is a more nontrivial example of a rational map.

Recall that rational functions are merely rational maps to A1, or to C, so given a dominant map ϕ : V −
−→W , the composition above gives rise to

ϕ? : C(W )→ C(V ),

sending a rational function f : W −−→ C to the composition f ◦ ϕ : V −−→ C. A birational map gives
rise to an isomorphism of function fields. In fact, we have the following theorem.

Theorem 8.12. Let W , V be irreducible varieties. Then W , V are birationally isomorphic and only if
there is an isomorphism of fields C(W ) ' C(V ).

This gives a direct connection between algebraic geometry and the algebra of fields. Algebraic varieties
up to birational equivalence is merely field theory; that doesn’t mean it is simple though!

Proof. We provide only an outline, leaving the relatively tedious by straightforward algebra to the reader.
The proof can be considered non-examinable. Let V ⊂ Pn not contained in {X0 = 0}, and W ⊂ Pm not
contained in {Y0 = 0}. Then we have seen that C(V ) = C(x1, . . . , xn), where xi = Xi/X0. Similarly,
C(W ) = k = C(y1, . . . , ym), yj = Yj/Y0. An isomorphism C(V ) ' C(W ) identifies yj with fj(x), for
some rational functions fj in n variables. Clear demoninators, and homogenize with respect to X0, and
we now obtain m+ 1 homogenenous polynomials Fj ∈ C[X] with

fj(X1/X0, . . . , Xn/X0) =
Fj(X0, . . . , Xn)

F0(X0, . . . , Xn)

and (F0 : · · · :Fm) therefore determines a rational map V −−→W . By writing the xi variables in terms of
{yj} using the given isomorphism, we obtain a rational map in the other direction. It is straightforward
to check that these are mutually inverses.

9 Singularities and tangent spaces

We now import the notion of tangent spaces from classical geometry. We begin with the basic notions in
the case of hypersurfaces only. Let V = V(f) ⊂ An affine hypersurface, with f an irreducible polynomial.
Choose a point P = (ai) on V . An affine line through P has the following form:

L = {(a1 + tb1, . . . , an + tbn) | t ∈ C}, 0 6= b ∈ Cn

The intersection V ∩ L is then given by the set of points on this line on which f vanishes. Symbolically,
we calculate:

0 = f(a1 + tb1, . . . , an + tbn) = g(t) =
∑
r

crt
r.

The constant term is c0 = f(a) = 0, and the linear term is c1 =
∑

i bi(∂f/∂Xi)(a). Certainly the
polynomial g(t) vanishes at t = 0 because P lies on V ∩ L. The polynomial g has a zero of order larger
than 1 at t = 0, i.e. L is tangent to V at P , if and only if the line L is contained in the affine subspace

T aff
V,P = V(g) ⊂ An, g =

n∑
i=1

(∂f/∂Xi)(P )(Xi − ai).
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Definition 9.1. The affine subspace T aff
V,P is the affine tangent space of V at P .

Therefore the subspace T aff
V,P is either an affine space of dimension n − 1 or the entire space of An. The

point P is smooth or nonsingular in the first case, and is singular otherwise.

Example 9.2 (Nodal and cuspidal cubics). The first two classical examples of singular points occur for
degree 3 curves in A2. The nodal cubic is an affine variety isomorphic to

C = V(Y 2 −X2(X + 1)).

The point (0, 0) is singular by direct calculation. The cuspidal cubic or cusp is an affine variety isomorphic
to

C ′ = V(Y 2 −X3).

The calculation is essentially identical. The topological spaces of the real and complex parts can be useful
to visualize.

There is also a projective version of course. Let V = V(F ) ⊂ Pn, for F ∈ C[X0, . . . , Xn] homogeneous
and irreducible.

Definition 9.3. The projective tangent space of V at P = (a0 : . . . : an) is defined to be

T proj
V,P = V (G) ⊂ Pn, G =

n∑
i=0

Xi(∂F/∂Xi)(a)

Two remarks are in order. First, though not absolutely immediate, the set T proj
V,P is a linear projective

subspace that contains the point P . To see the containment, notice that we have a simple equality by
elementary differentiation:

F (X) = deg(F )G(X),

which is sometimes called Euler’s formula. Second, there is a compatibility between tangent spaces
and passing to affine patches of projective varieties. Specifically, assume V 6⊂ {X0 = 0} and examine
V0 = V ∩ An ⊂ An be given by the given by f(X1, . . . , Xn) where

F (X0, . . . , Xn) = XdegF
0 f(X1/X0, . . . , Xn/X0).

By computing ∂F/∂Xi it follows that if P ∈ V0 then T proj
V,P ∩ An = T aff

V0,P
.

The notions of smooth and singular point are made exactly as in the case of affine hypersurfaces. Uni-
formly, we can make the definition as follows.

Definition 9.4. A point P is a singular point if and only if all the partial derivatives ∂f/∂Xi, 1 ≤ i ≤ n,
in the affine case, or ∂F/∂Xi, 0 ≤ i ≤ n, in the projective case, vanish at P . A point that is not singular
is smooth. A hypersurface is smooth if all its points are smooth and a hypersurface is singular if it is not
smooth.

The set of singular points is “small”.

Proposition 9.5. The set of smooth points of an irreducible hypersurface, i.e. the vanishing of a non-
constant polynomial, is a nonempty Zariski open subset.

Proof. The set of singular points is exactly V ∩
⋂
iV(∂F/∂Xi) which is a closed subvariety of V . If it were

all of V then by Nullstellensatz, for each i the derivative ∂F/∂Xi would be contained in the ideal Ih(V )
which is principal and generated by (F ). Since ∂F/∂Xi is homogeneous of degree smaller than degF ,
would then have ∂F/∂Xi = 0 for all i. This implies that F is constant, which is a contradiction.
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In simple terms, the set of smooth points is Zariski dense. There is a “meta” statement that the discussion
above implies which we phrase as an example.

Example 9.6 (The variety parameterizing hypersurfaces). A hypersurface of degree d in Pn is given by
the vanishing set of a non-zero homogeneous polynomial of degree d in n+1 variables. There are precisely
N =

(
n+d
d

)
monomials. A choice of N coefficients determines such a polynomial subject to (i) not all

coefficients can be 0, and (ii) two equations determine the same hypersurface if and only if they are scalar
multiples of each other.

Therefore, there is a natural bijection

{Hypersurfaces of degree d in Pn} ↔ PN−1.

For examples, lines in P2 are in bijection with points of P2, while conics in P2 are in bijection with points
of P5.

There is a very interesting subset:

{Singular hypersurfaces of degree d in Pn} ⊂ {Hypersurfaces of degree d in Pn}.

Identifying the right hand side with PN−1, the set of singular hypersurfaces is the set of coefficients in
PN−1 such that, on the hypersurface determined by the coefficients, there is a common vanishing point
for all the partial derivatives of that polynomial (again determined by those coefficients). As a challenge,
can you prove that the set of singular hypersurfaces is a proper closed subset?

We now treat the case of a general variety. It is clearest to treat the tangent space as a vector space
rather than an affine or projective space. In the case of affine hypersurfaces, we take the affine space and
translate to the origin.

Definition 9.7. Let V ⊂ An be an affine variety, and let P be a point lying on V . We define the
tangent space to V at P as

TV,P =

{
v ∈ Cn |

n∑
i=1

vi
∂f

∂Xi
(P ) = 0 ∀f ∈ I(V )

}
⊂ Cn

Let V ⊂ Pn a projective variety and P a point of V . Suppose Vj = V ∩ {Xj 6= 0} is an affine piece of V
containing P . Define TV,P = TVj ,P as above.

There is a minor issue worth flagging. The way we have defined things, a point P in projective variety
has a tangent space for each choice of affine neighborhood Vj containing it. However, these are naturally
isomorphic, and this is clarified in the remark following the next proposition. We will momentarily take
this on faith, as the issue will become clarified in its appropriate context below.

We have obtained the tangent space at P by linearizing polynomials at P . We can do the same for maps
between varieties. In what follows we abuse notation slightly in the following common manner. Recall
that Pn is covered by affine spaces U0, . . . , Un which are each natural identified with An. Every point P
in Pn is therefore contained in some Ui; when the precise index is unimportant, we write An ⊂ Pn for an
affine patch, rather than Ui ⊂ Pn.

Let V ⊂ Pn, W ⊂ Pm be projective varieties, and fix a rational map

ϕ : V −−→W,

and P in the domain dom(ϕ). We will define a linear map dϕP : TV,P → TW,ϕ(P ) as follows. Assume that

P ∈ V ∩ An, ϕ(P ) = Q ∈W ∩ Am

29



and that ϕ = (F0 : . . . :Fm) for homogeneous Fj ∈ C[X]. As noted above, we have abused the notation
slightly, and written An and Am for affine patches inside Pn and Pm respectively.

Write
(Fj/F0)(1, X1, . . . , Xn) = fj ∈ C(X1, . . . , Xn),

which represents a rational function on V , regular at P . We now define the derivative of ϕ or linearization of ϕ
at P by the formula

dϕP : TV,P → Cm

v 7→

(
n∑
i=1

vi
∂fj
∂Xi

(P )

)
j

The map is evidently linear. The derivative has all the expected properties from geometry.

Proposition 9.8. We maintain the notation above.

(i) The derivative of a rational map sends the tangent space at P to the tangent space of ϕ(P ), i.e.
dϕP (TV,P ) ⊂ TW,ϕ(P ).

(ii) The linear map dϕP depends only of ϕ, not on the polynomials (Fi) representing it.

(iii) If ψ : W −−→ Z is a rational map with ϕ(P ) ∈ dom(ψ) then d(ψ ◦ ϕ)P = dψϕ(P ) ◦ dϕP .

(iv) If ϕ is birational and ϕ−1 is regular at ϕ(P ) then dϕP is an isomorphism.

Proof. (i) In order to verify the statement, we may replace V and W by the affine pieces V ∩ An and
W ∩ Am. The tangent space to W at ϕ(P ) is cut out by the linearizations of the polynomials cutting
out W . Therefore, consider a polynomual g in I(W ). Applying the map on function fields, we write
h = g(f1, . . . , fm) ∈ C(X) a rational function regular on V that is regular at P , and it vanishes on those
points of V where it is regular. Then by the chain rule, we have the equality

∂h

∂Xi
(P ) =

∑
j

∂g

∂Yj
(Q)

∂fj
∂Xi

(P )

so if v ∈ TV,P , we see that dϕP (v) ∈ TW,Q.

(ii) If we take another representation (F ′j) for ϕ then the corresponding rational functions f ′j ∈ C(X)
will have the property that f ′j − fj vanishes on V wherever defined, so we have f ′j − fj = pj/qj where
pj ∈ I(V ) and qj ∈ C[X], with qj(P ) 6= 0. Then by applying the quotient rule and the fact that pj lies
in I(V )

∂(f ′j − fj)
∂Xi

(P ) =
1

qj(P )

∂pj
∂Xi

(P ).

Let v ∈ TV,P . Then the last equation shows that for every j

n∑
i=1

vi
∂(f ′j − fj)

∂Xi
(P ) = 0

so the map dϕP is independent of the representation of ϕ.

(iii) This is now reduced to the statement of the chain rule from multivariable calculus.

(iv) The statement follows from (iii).
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Remark 9.9. We can now clarify the flagged point about the definition of the tangent space on a projective
variety. First, given a point P in Pn contained in two different affine patches Ui and Uj , there is a natural
birational map

Ui −−→ Uj

which is the identity on Ui∩Uj and defined at P . Therefore, there is a natural isomorphism between TP,Pn

on these two different affine patches, i.e. between TUi,P and TUj ,P . Now, given an irreducible variety V
and a point P in V with Vi = V ∩Ui and Vj = V ∩Uj , the tangent space TVi,P is mapped isomorphically
to TVj ,P under the natural isomorphism above between TUi,P and TUj ,P .

Definition 9.10. Let V be an affine or projective variety.

(i) If V irreducible define dimV = min{dimTV,P | P ∈ V }

(ii) If P lies on V and V is irreducible, we say P is smooth or non-singular if dimTV,P = dimV , and is
singular otherwise

(iii) For potentially reducible varieties, define dimV to be the maximum of the dimension of irreducible
components of V .

Remark 9.11. The notion of dimension for varieties whose components have different dimensions is a
very coarse invariant. For this reason, we have not defined the notion of smooth and singular points on
varieties that are not irreducible. An ad-hoc definition that typically gives good answers is to declare
any point that lies on multiple components to be singular, and then to treat the remainder of the points,
which lie on a unique irreducible component, via the discussion for irreducible varieties. The reason that
this is the right notion will take us on a detour without significant reward, so we omit it.

The set of singular points is always a “small set”. We already saw this in the case of hypersurfaces.

Theorem 9.12. The set of smooth points of V is a non-empty open subvariety.

Proof. The non-emptiness is immediate from the definition. We can assume that V ⊂ An is affine; if V
is projective, one may treat each affine pieces of V in turn, We further assume that I(V ) is generated by
polynomials fj . Then if P ∈ V ,

TV,P =

{
v ∈ Cn |

∑
i

vi(∂fj/∂Xi)(P ) = 0

}

and so

dimTV,P = n− rank

(
∂fj
∂Xi

(P )

)
and for any r ∈ N,

{P ∈ V | dimTV,P ≥ r} = {P | rank((∂fj/∂Xi)(P )) ≤ n− r}

is the closed subvariety of V given by the (n−r)×(n−r) minors of the matrix of polynomials (∂fj/∂Xi).

Since the locus where the minimum dimension is achieved is open and therefore dense we have the
following corollary.

Corollary 9.13. Birational irreducible varieties have the same dimension.
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10 Examples of theorems in algebraic geometry

We have now developed sufficient technology to state a number of interesting theorems in algebraic
geometry. Many of these theorems has been important corner stones in the subject. We will see some of
them in the course, and will see shadows of some others. The section can be ignored for the purposes of
an exam, but it should give you a sense of what questions are interesting in the subject.

Theorem 10.1. A smooth and irreducible projective variety of dimension 1 is uniquely determined by
its function field.

The statement is false for surfaces. For example, P2 and P1 × P1 are birational, which you will prove on
the second example sheet, but not isomorphic, though we haven’t quite proved this.

There is much to say about the theory of algebraic curves. The most studied algebraic curves are the
elliptic curves, which are the topic of the following theorem.

Theorem 10.2. Let C ⊂ P2 be a smooth and irreducible variety cut out by a degree 3 polynomial. Then
C admits a natural group structure:

⊕ : C × C → C.

This is the “group law on the elliptic curve”, and we will see this in the final lectures of the course.
If the polynomial defining C has Q coefficients, then the set of Q-points on C is a finitely generated
abelian group by a remarkable theorem of Mordell. It is the starting point of the Birch–Swinnerton-Dyer
conjecture

The study of the the class of birational “models” of a fixed variety of dimension 2 is a classical subject.
The study in dimension 3 and larger is much more difficult, and of contemporary interest. The following
will give you some intuition for how to think about birationality.

Theorem 10.3. Every irreducible variety is birational to a projective hypersurface.

The result is rather striking and beautiful, but surprisingly easy. It is the geometric incarnation of the
primitive element theorem in Galois theory. The following similar sounding result is much more difficult.

Theorem 10.4. Let V be an irreducible projective variety. There exists a smooth and irreducible projec-
tive variety Ṽ and a birational morphism

Ṽ → V.

In particular, every irreducible variety is birational to a smooth and projective variety.

The theorem above was proved by Hironaka in the 1960s and is one of the most frequently used theorems
in algebraic geometry. In algebraic geometry over fields of positive characteristic, the analogous result
remains unavailable to this day.

A basic question in algebraic geometry is to determine a birational type of hypersurfaces. A variety is
called rational if it is birational to projective space of some dimension. In Example Sheet II you will
prove that all irreducible quadric hypersurfaces are rational. Rataionality of cubics is one of the most
elementary, central, and challenging questions in algebraic geometry.

Theorem 10.5. A smooth cubic hypersurface (i.e. surface) in P3 is rational. A surface of degree d ≥ 4
in P3 is never rational. A smooth cubic hypersurface in P4 (i.e. a cubic threefold) is never rational.
There exist smooth cubic hypersurfaces in P5, i.e. cubic fourfolds, that are rational.

It is expected that there exist smooth cubic fourfolds that are not rational.

Another beautiful direction of study is the topology of complex algebraic varieties. The following result
is within reach of the methods in the Part III course in algebraic geometry.
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Theorem 10.6. Let V ⊂ Pn be a smooth hypersurface with n ≥ 3. Then V is simply connected in the
Euclidean topology, i.e. π1(V ) = 0.

As a very concrete consequence, this means that if C ⊂ P2 is a smooth projective variety cut out by an
equation of degree d ≥ 3, then C × C cannot be a hypersurface.

The following result from the 1950s uses Morse theory.

Theorem 10.7. Let V be a smooth affine variety of dimension n. Then in the Euclidean topology the
homology groups Hi(V ;Z) are 0 for i > n.

Note that a smooth affine variety of dimension n has real dimension 2n, so the result is surprising! In
fact, the space V is homotopy equivalent to a simplicial complex of real dimension at most n.

Even simpler than simple connectedness are connectedness theorems. The following result is remarkable,
and is due to Fulton–Hansen.

Theorem 10.8. Let V and W be irreducible projective varieties in Pn. If the inequality

dimV + dimW > n

holds, then the intersection V ∩W is connected.

Another direction of study is enumerative geometry. The starting point is one of the most famous results
in the subject.

Theorem 10.9. A smooth cubic surface in P3 contains precisely 27 straight lines. A general smooth
quintic threefold in P4 contains 2875 straight lines and 609250 degree 2 curves.

The result on cubic surfaces is provable using techniques we will have by the end of the course. The other
two results are each significantly harder. The number of degree d curves on the quintic threefold above
is known for all d. via mirror symmetry/string theory.

11 Geometry from the function field

We begin with some terminology. Let K be a finitely generated field extension of C. A field of this form
always arises by taking C[X]/p for a prime ideal p and then passing to its function field.

Recall that if K ⊂ L are fields and α is an element of L, then α is transcendental over K if α is not the
root of a nontrivial polynomial with coefficients in K. More generally if S ⊂ L is a set of elements, then
the elements of S are algebraically independent over K if they do not satisfy a non-trivial polynomial
equation with coefficients in K.

The field K/C is a pure transcendental extension if K = C(x1, . . . , xn) for x1, . . . , xn algebraically inde-
pendent over C. In other words, it is the fraction field of a polynomial ring.

Proposition 11.1. Let K/C be a finitely generated field extension. Then there exists a pure transcen-
dental sub-extension K0 = C(x1, . . . , xn) ⊂ K such that K/K0 is finite. Moreover K = K0(y) for some
y ∈ K.

We will soon see that the integer n is unique. It will be referred to as the transcendence degree of K over
C.
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Proof. The final statement is the primitive element theorem from Galois theory. We prove the first
statement. Suppose K is generated by x1, . . . , xm. There is a maximal algebraically independent subset
{xi}. After relabeling it, we may write this set as {x1, . . . , xn}. Then each of xn+1, . . . , xm is algebraic
over C(x1, . . . , xn) so K/C(x1, . . . , xn) is finite.

Proposition 11.2. Let K = C(x1, . . . , xn) with (x1, . . . , xn) algebraically independent, and let xn+1 be
algebraic over K. Then

I = {g ∈ C[X1, . . . , Xn+1] | g(x) = 0}

is a principal ideal (f) generated by an irreducible f ∈ C[X]. Moreover if f contains the variable Xi then
{x1, . . . , xi−1, xi+1, . . . , xn+1} is algebraically independent.

In other words, C[x1, . . . , xn+1] = C[X]/I = C[X]/(f).

Proof. As x1, . . . , xn are algebraically independent, the ring R = C[x1, . . . xn] ⊂ K is isomorphic to the
polynomial ring C[X1, . . . , Xn] so is a UFD. There exist polynomials in the ring K[T ] which have xn+1

as a root, and they form an ideal. Since K[T ] is a principal ideal domain, there is a unique generator
h(T ) of this ideal whose leading coefficient is 1; it is the minimal polynomial from Galois theory.

Let b be the least common denominator of the coefficients of h(T ), which is an element in R. We know
that bh is irreducible in R[T ] by Gauss’s Lemma. Therefore bh = f(x1, . . . , xn, T ) for some irreducible
f ∈ C[X1, . . . , Xn+1].

We claim that this f generates the ideal in the proposition. Indeed, let g be an element of C[X] such that
g(x) is 0. Therefore in the ring K[T ], the polynomial g(x1, . . . , xn, T ) is divisible by h. By once again
applying Gauss’s Lemma, we see that in fact f divides g. Therefore f must generate the ideal

For the last part, suppose {x1, . . . , xi−1, xi+1, . . . , xn+1} is not algebraically independent. Then there
exists a polynomial g in the ideal I which does not involve Xi. However, we have shown that g is a
nonzero multiple of f , so this is impossible.

Corollary 11.3. Let V be an irreducible variety. Then V is birational to a hypersurface.

Proof. Let K be the function field C(V ). By the discussion above we see that K is generated by elements
x1, . . . , xn+1, where x1, . . . , xn are algebraically independent, but xn+1 is algebraic over the pure tran-
scendental C(x1, . . . , xn). The field K is the fraction field of the subring in K of polynomial expressions
in x1, . . . , xn. By the discussion above, we see that we can write this subring as

K ⊃ C[x1, . . . , xn+1] = C[X1, . . . , Xn+1]/(f),

where f is an irreducible polynomial; we remind the reader of the standard warning that C[x1, . . . , xn+1]
is notation . Therefore K is the function field of V(f) and the result follows.

We have already seen that birational varieties have the same dimension. We therefore have the following
corollary.

Corollary 11.4. Let W be an irreducible variety and let V ⊂ An be an affine hypersurface birational to
W , with V = V(f) for f nonconstant. The dimension of W is equal to n− 1.

In the language of field theory, the dimension of W is the transcendence degree of the field C(W ).
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12 Hilbert’s Nullstellensatz

In this section we record the proof of Hilbert’s Nullstellensatz in the case of affine varieties. The reduction
of the projective statement to the affine statement has already been given.

We begin with the weak form of the result.

Theorem 12.1. Every maximal ideal of C[X] is of the form (X1−a1, . . . , Xn−an) for ai ∈ C. Moreover,
If I is a non-unit ideal in C[X] then V(I) is non-empty.

The most general form of the statement holds for polynomial rings over arbitrary algebraically closed
fields. The uncountability of C offers a very slick proof, which we now outline. It is important for the
proof to recognize if R is a quotient of the polynomial ring by an ideal, every element of R can be written
as a C-linear combination of monomial expressions in a1, . . . , an, where ai is the image of Xi in R under
the quotient. In more sophisticated language, the ring R is finitely generated as a C-algebra.

Proof. It is clear that every ideal of the given form is maximal, since the quotient is automatically the
field C. Now let m ⊂ C[X] be a maximal ideal, and consider the field K given by C[X]/m. Denote the
coset Xi+m by ai. Then K is a field and every element of K can be obtained as a polynomial expression
in the terms ai with coefficients in C. Now, if K is C, then ai must be in C. In turn Xi − ai lie in m and
we conclude.

Otherwise, the containment C ⊂ K is strict. We can find t ∈ K \ C. However since C is algebraically
closed, the element t is transcendental over C. Now let Um ⊂ K be the C-vector subspace spanned by
the products {ar11 · · · arnn } with

∑
ri ≤ m. Clearly the dimension of Um is finite and and K is the union⋃

Um. Now {1/(t− c) | c ∈ C} are linearly independent over C (exercise!), so only finitely many of them
can lie in each Um. Therefore the number belonging to K =

⋃
Um is countable. As K is uncountable,

we have a contradiction.

(ii) By the ascending chain condition for ideals, there exists a maximal ideal m containing I. By the
previous part, V(m) is a point of An, and therefore this point is contained in V(I). It follows that the
vanishing set is nonempty.

By the correspondence theorem in ring theory between ideals of quotients R/I and ideals of R that
contain I we have the following corollary.

Corollary 12.2. Let V ⊂ An be an affine variety and C[V ] its coordinate ring. The maximal ideals of
C[V ] are in bijection with the points of V . If p is a point of V and mp is its associated maximal ideal,
then evaluation at p gives a map

C[V ]→ C

which is naturally identified with the quotient

C[V ]→ C[V ]/mp.

Remark 12.3. The corollary is conceptually clean, but in fact, it is more important than it initially seems.
If you ask yourself the question, “what is the role of the prime ideals, rather than merely the maximal
ideals?” you are led inevitably to the notion of a scheme.

The strong Nullstellensatz follows easily from the weak one, using a trick. The proof is non-examinable
and will not be discussed in lecture, but is included for completeness.

Theorem 12.4. Let V be an affine variety given by V(I). Then the ideal I(V ) coincides with the radical
ideal of I.
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Proof. Let f be an element in I(V ). Consider the ideal J ⊂ C[X1, . . . , Xn, T ] generated by the following
elements:

(i) The elements if I under the obvious inclusion from I(V ) into C[X1, . . . , Xn, T ].

(ii) The polynomial 1− fT .

Suppose we have a point P = (a1, . . . , an+1) in V(J). Then f(a1, . . . , an) = 0 since f is contained in I.
However, additionally, we would have 1− an+1f(a) = 0, which means there could not exist such a point.
Therefore V (J) is empty and by the Nullstellensatz above, J is the unit ideal C[X,T ]. We can write the
element 1 using the generators of the ideal J :

1 =
m∑
r=0

T rhr + (1− fT )g

for some hr ∈ I and g ∈ C[X,T ]. Now without any loss of generality, we can assume that m is at least
the T -degree of g. Multiplying by fm we have

fm =
m∑
r=0

fmT rhr + (1− fT )fmg(X,T ) =

m∑
r=0

fm−rhr(fT )r + (1− fT )g1(X, fT )

for some polynomial g1. We now set T = 1/f in this expression and therefore fm =
∑m

r=0 f
m−rhr,

i.e. fm ∈ I.

13 Algebraic curves and their local structure

The basic theory of projective varieties has now been developed, and the next task is to see what this
theory gives in the first case: algebraic varieties of dimension 1. By the discussion we have had, the
dimension 1 can be interpreted as (i) the dimension of the tangent space at some (or by smoothness,
every) point is 1, or (ii) that the function field is finite extension of the field C(t) of rational functions in
1 variable.

Important Convention on Terminology: Most frequently, we will discuss smooth, projective, irre-
ducible curves. Therefore we adopt the convention that a curve is smooth, projective and irreducible of
dimension 1 unless it is explicitly stated that the curve is singular, affine, or reducible.

Important Convention on Ambient Space: A projective curve by our definition comes as a subset
C ⊂ Pn. The ambient space will always be there, but note that it is certainly possible for C ⊂ Pn and
C ′ ⊂ Pm to be isomorphic. The choice of ambient space will essentially never be important for us, so we
will drop it from the notation.

Example 13.1. We have a large supply of curves: take fd to be a homogeneous degree d polynomial in
X,Y, Z. If the coefficients are chosen generically, V(fd) will be a smooth projective curve in P2. We
will see that for distinct degrees d, d′ ≥ 2, smooth curves V(fd) and V(fd′) will never be isomorphic.
Therefore, even the geometry of P2 gives us infinitely many non-isomorphic curves. In fact, even if d and
d′ coincide, we can get non-isomorphic curves but this is not easy to show.

We begin in earnest by understanding subvarieties of curves. Note that subvarieties are merely Zariski
closed subsets.

Proposition 13.2. Let C be a smooth projective irreducible curve and let D ⊂ C be a proper closed
subvariety. Then D is a finite union of points.
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Proof. It suffices to prove that if V ⊂ An is an irreducible affine curve, and if W ⊂ V is a proper and
irreducible subvariety, the W is a single point. We have a strict containment of I(V )inside I(W ) by the
Nullstellensatz. Since W ↪→ V is a morphism, we have a homomorphism

ϕ∗ : C[V ] = C[X]/I(V )→ C[W ] = C[X]/I(W )

obtained by restricting functions. If W is not a point, then C[W ] 6= C. Now if t lies in C[W ] \ C then
t is transcendental over C. Now let x be a nonzero element of C[V ] such that with ϕ∗(x) = 0, and let
y ∈ C[V ] with ϕ∗(y) = t. Then easy to see that x, y are algebraically independent. But this contradicts
the fact that dimV = 1.

So now let V ⊂ Pn be an irreducible, possibly singular curve. We have the following basic structures
associated to V . First, we have the function field C(V ) of V . By the dimension 1 hypothesis on V , we
know there exists t ∈ C(V ) such that C(V )/C(t) is a finite extension. The second structure we have is
the local ring

OV,P = OP = {f/g | g(P ) 6= 0} ⊂ C(V )

at a point P in V . The unique maximal ideal mP is the set of elements on OV,P that vanish at P .

Theorem 13.3. If P is a smooth point of V then mP ⊂ OP is a principal ideal.

Any πP such that mP = (πP ) is called a local parameter at P .

Proof. Assume P lies in an affine piece V0 ⊂ An of V and change coordinates to assume that P =
(0, . . . , 0). Then

C[V0] = C[X1, . . . , Xn]/I(V0) = C[x1, . . . , xn] where xi = image of Xi

OP =

{
f

g
| f, g ∈ C[V0], g /∈ (x1, . . . , xn)

}
mP =

{
f

g
| f ∈ (x1, . . . , xn), g /∈ (x1, . . . , xn)

}
= x1OP + · · ·+ xnOP

More generally, let J ⊂ OP be any ideal, observe that a fraction f/g lies in J if and only if f lies in J .
Indeed, in the ring OP the element g is a unit. Therefore, we can write J in the form

J =

{
f

g
| f ∈ J ∩ C[V0], g ∈ C[V0], g(P ) 6= 0

}
and observe in particular that it is finitely generated by the Hilbert basis theorem.

As P is smooth, after change of coordinates we may identify

TP = {X2 = · · · = Xn = 0}.

The main idea in the proof is to now show mP = (x1). Since TP is cut out by linearizations of polynomials
in I(V0), and X2, . . . , Xn are such linearizations, it means there exist f2, . . . , fn ∈ I(V0) such that

fj = Xj − hj (2 ≤ j ≤ n)

where hj has no terms of degree < 2. So in OP we have

xj = hj(x1, . . . , xn) ∈ (x2
1, x1x2, . . . , x

2
n) = m2

P , (2 ≤ j ≤ n)

Thus

mP =
n∑
j=1

xiOP = x1OP + m2
P .

We now need to hope that this implies mP = (x1).
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Remark 13.4. The hope is reasonable geometrically: it is asking for a form of the inverse function theorem
to hold. A form of the inverse function theorem does hold, and it is called Nakayama’s Lemma. The
statement will seem almost completely absurd at first, and may continue to do so for a long time. It is
only after using the lemma a dozen times that one understands how and where to look for its use.

Lemma 13.5 (Nakayama’s Lemma). Let R be a ring, let M a finitely generated R-module, and let J ⊂ R
be an ideal. Then:

(i) If JM = M the there exists an element r in J such that (1 + r)M = 0.

(ii) If N ⊂M be a submodule such that JM+N = M , then there exists r in J such that (1+r)M ⊂ N .

The result is belongs to commutative algebra, as does its proof. The proof will not be lectured and can
be considered non-examinable. It is included for completeness in the notes.

Proof. (i) By the finite generation hypothesis, we have that M = y1R + · · · + ynR, for elements yi in
M = JM . Then yi =

∑n
j=1 xijyj with xij ∈ J . Let X = (xij), then have matrix equation (In−X)y = 0.

Multiply by adjugate of (In−X) and we obtain det(In−X)fi = 0 ∀i. Therefore det(In−X) = 1 + z for
some z ∈ J as claimed.

(ii) For this, simply apply (i) to the R-module M/N and use the correspondence theorems between
submodules of modules and of their quotients.

Returning to the proof of the theorem, we need now simply apply (ii) with

R = OP ⊃ J = mP = M ⊃ N = (x1).

The local parameter at a smooth point is not unique, but if πP is one every other is of the form uπP ,
u ∈ O∗P a unit.

The proof gives a simple construction of local parameters in the situation of plane curves.

Proposition 13.6. Let V be the affine plane curve V(f) ⊂ A2 where f lies in C[X,Y ]. Let P be a
smooth point on C. Then the function

V → C

sending Q to X(Q)−X(P ) is a local parameter at P if and only if (∂f/∂Y )(P ) 6= 0.

Proof. Simply run through the proof of the theorem above again; the X(P ) comes from the shift to the
origin that happens at the start of the proof.

The existence of local coordinates gives the crucial piece of structure that is the engine behind nearly
every theorem on the geometry of curves. We think of this integer as the order of vanishing at the point
P .

Corollary 13.7. Let P be a smooth point of a (possibly singular but irreducible) curve V . Then there
exists a surjective homomorphism νP : C(V )? → Z (called the valuation at P ) such that

OP = {0} ∪ {f ∈ C(V )? | νP (f) ≥ 0}
mP = {0} ∪ {f ∈ C(V )? | νP (f) > 0}.

and if f ∈ C(V )? then for any local parameter πP at P , we can write f = π
νP (f)
P u for some u ∈ O?P .
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What is really going on here is that the ideals generated by πnP over all n filter the ring, and we’re asking
what the largest power is that contains a given element.

Proof. We know mP is principally generated and therefore is (πP ) for some local parameter. Therefore
we also know that mn

P = (πnP ). Now consider

J =
⋂
n

mn
P .

As we saw in the previous proof, since J ⊂ OP is an ideal it is finitely generated, and therefore we can
see that

mPJ = πPJ = J.

By applying Nakayama’s Lemma again, we conclude that J = 0. Now for every f in OP \{0} there exists
unique n ≥ 0 such that f ∈ mn

P \ m
n+1
P . Set νP (f) = n. If f lies in C(V ) \ OP then we claim that f−1

lies in OP . Indeed, writing f as a ratio g/h, by the discussion above we can write g and h respectively
as πkPu and π`Pu

′ where u and u′ are units. Since f does not lie in OP , it follows that k < `. Now take
reciprocals. Given this claim, we can now define νP (f) = −νP (f−1). From the local ring property, we
have OP \ mP = O∗P every nonzero element can be written as has f = uπnP , n = νP (f), where u ∈ O∗P .
We have constructed the desired surjective homomorphism νP .

By convention we write νP (0) =∞, so νP (f) is now defined for all rational functions. The construction is
an instance of a general notion that arises everywhere in algebra and geometry. A discrete valuation ring
or DVR is an integral domain with an element t 6= 0 such that every 0 6= x ∈ R has a unique expression
utn. A discrete valuation ring is a local principal ideal domain.

The local algebraic structure of curves has very concrete and useful consequences for geometry.

Corollary 13.8. Let V be an irreducible curve, and let f ∈ C(V ). If P is a smooth point of V , then one
of f and f−1 is regular at P .

Proof. An element f is regular at P if and only if its order of vanishing νP (f) is nonnegative.

Corollary 13.9. Let V be a projective nonsingular curve. Then any rational map ϕ : V −−→ Pm is a
morphism.

Proof. By reordering coordinates, we can assume that the image of ϕ isn’t contained in {X0 = 0}. Then
we may write

ϕ = (G0 : . . . :Gm) = (1 : g1 : . . . : gm)

with gi = Gi/G0 in C(V ). If all gi ∈ OP then ϕ is regular at P . Otherwise let t = min{νP (gi) | 1 ≤ i ≤ m}.
This number is negative, but if we multiply through by a rational function the map is unchanged. Noticing
that min{νP (π−tP gi)} = 0, we conclude that ϕ = (π−tP :π−tP g1 : · · · : π−tP gm) is regular at P .

14 Maps between curves

Now study morphisms between curves in more detail. They are extremely well-behaved, and easily
accessible via field theory. Before beginning, let us record a couple of examples:

Example 14.1. (i) Let Cd ⊂ P2 be a degree d smooth plane curve. Let P be a point in P2, either on
or off Cd. Then projection from P gives rise to a morphism:

Cd → P1.
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Note that what is a priori only a rational map is actually a morphism, due to the smoothness
hypothesis and the results at the end of the previous section.

(ii) Consider the ring R = C[t2, t3] ⊂ C[t]. We can write R in the form C[X]/I where I is some ideal.
Therefore R determines an affine variety, and in fact a singular affine curve, up to isomorphism
which we call C. In fact, we’ve seen this curve before; it’s the cuspidal cubic. The map of rings
R→ C[t] then determines a morphism

A1 → C.

Visually, this is the map that takes the cusp and “pulls it taught” at the singular point. It is an
example of a morphism that is actually injective and surjective but is not an isomorphism.

Proposition 14.2. Let ϕ : V →W be a nonconstant morphism of irreducible, possibly singular curves.

(i) For all Q ∈W the set ϕ−1(Q) is finite;

(ii) The map ϕ induces an inclusion of function fields ϕ∗ : C(W ) ↪−→C(V ) which makes C(V ) a finite
extension of C(W ).

Proof. (i) ϕ−1(Q) is a closed subvariety of V , and therefore it is either V itself, or a finite set of points.
Since the map is non-constant, it must be the latter.

(ii) The set V is infinite, since the dimension is positive. Now by (i) ϕ(V ) is infinite, therefore dense
in W . Therefore ϕ is dominant and so ϕ∗ : C(W ) → C(V ) is defined and automatically injective. Let
t ∈ C(W ) \ C, with x = ϕ∗(t). Then since C(V )/C is finitely generated and is finite over the degree 1
transcendental extension C(x), it is also finite over the intermediate extension ϕ∗C(W ).

The most important numerical invariant of a morphism of curves is its degree.

Definition 14.3. Let ϕ : V → W be a non-constant morphism of irreducible curves. The degree of the
field extension [C(V ) : ϕ∗C(W )] is the degree deg(ϕ) of the morphism ϕ.

Remark 14.4. It is not immediate from our discussion, but we will soon see that the degree of a morphism
can be calculated by choosing a sufficiently generic point on the target curve W and counting the elements
in the preimage. This simple geometric idea motivates many of the statements and theorems, but the
field extension provides a more flexible formalism.

Suppose P ∈ V and Q = ϕ(P ) ∈ W are smooth points. We define the ramification degree of ϕ at P to
be

eP = e(ϕ, P ) = νP (ϕ∗πQ)

for any local parameter πQ on W at Q — note that this doesn’t depend on the choice of local parameter.
Let’s see how this works in a simple example.

Example 14.5. Consider the map ϕ : A1 → A1 given on rings by the homomorphism

ϕ? : C[X]→ C[X], X 7→ Xd.

The local parameter near 0 on the target is X, and therefore the ramification degree is just d.

The next theorem is key to the study of curves.

Theorem 14.6. (i) Let ϕ : V →W be a morphism of projective possibly singular but irreducible curves.
Then ϕ is surjective.
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(ii) If in addition V and W are smooth curves, then for any Q ∈W ,∑
P∈V, ϕ(P )=Q

eP = deg(ϕ).

(iii) For all but finitely points P in V , we have eP = 1.

The theorem is difficult, and we will not be able to prove it. We make several remarks on the proof
though. First, we make the following definition.

Definition 14.7. A quasi-projective variety is a Zariski open subset U of a projective variety V ⊂ Pn.

If U ⊂ Pn is an irreducible quasiprojective variety11, rational functions and rational maps of quasi-
projective varieties are defined in identical fashion to projective varieties. Indeed, if V is Zariski closure
of U , then V is an irreducible projective variety. A rational map

U −−→ Pm

is a rational map V −−→ Pm such that every point on U is in the domain. A good example of a quasi-
projective variety are products Pn×Am, where the latter is given the topology as a subspace of Pn×Pm,
which in turn is give by the Segre embedding.

We return to the discussion of the theorem. Recall that a map of topological spaces is closed if the image
of every closed set is closed. We will take the following fact on trust; its proof is not trivial but is also
certainly not beyond your reach.

Proposition 14.8. The projection map Pn × Am → Am is a closed map.

Once this is taken for granted the following result is straightforward.

Proposition 14.9. Let ϕ : X → Y be a morphism of quasi-projective varieties and suppose X is proper.
Then the image of ϕ is closed in Y .

Proof. The first key idea is to factorize ϕ as follows:

X → Γϕ ⊂ X × Y → Y,

where Γϕ is the graph:
Γϕ := {(x, ϕ(x))} ⊂ X × Y.

The second morphism is the projection. Now notice that the graph Γϕ is closed: it is the preimage of the
diagonal under the morphism:

ϕ× 1 : X × Y → Y × Y,

and the diagonal is Zariski closed (exercise!). Now, X sits inside Pn as a closed subset, so in fact, it would
suffice to show that

Pn × Y → Y

sends closed sets to closed sets. It would suffice to prove that for an open cover of Y by {Ui}, the
projection

Pn × Ui → Ui

11This is the most general instance of a variety that we will see; it is a very large class. In the modern world, a variety
is still more general, and is defined as a scheme satisfying certain properties. It is hard to even prove that there exists a
variety that is not quasi-projective, so we will not worry about this.
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are closed maps for all i. Finally, each Ui actually sits inside an affine space, say Am by definition. The
way we have defined the topologies, it now reduces to showing that

Pn × Am → Am

is closed. We have asserted this already, and the result follows.

We now have as a corollary, the first claimed statement.

Corollary 14.10. Let ϕ : V → W be a non-constant morphism of projective possibly singular but irre-
ducible curves. Then ϕ is surjective.

Proof. The image of ϕ is a closed and therefore either a point or W itself. Since the map is non-constant,
we conclude.

Statement (ii) is sometimes called the finiteness theorem for curves. We will not include the proof in the
lectures, and the material is non-examinable. I record a sketch of the proof for those who are interested.

Proof. (Non-examinable; sketch) We have C(W ) ⊂ C(V ); rename the fields as K ⊂ L for convenience.
Now let A be the local ring OW,Q and define B to be the intersection of OV,P over all P in V mapping
to Q. We have already seen that A is a local principal ideal domain, because Q is a smooth point on a
curve. We have a homomorphism

A→ B

making B into a finitely generated A-module. Now observe that B is actually torsion-free as an A-module:
if a is in A and b is in B such that ab is 0, then either a or b is 0. From the classification theorem for
modules over a PID (i.e. the same theorem used to prove the classification of finitely generated abelian
groups, and used to prove the existence of Jordan normal forms), we realize that B is A⊕r.

We now compute the rank r in two different ways; it is useful to know how to tensor modules over a ring
for this, which is the real reason this proof is omitted, and why we only give a sketch. First we observe
that it must be equal to [L : K]. On the other hand, if we reduce modulo the maximal ideal mQ, it is
straightforward to explicitly compute its dimension as a C-vector space. These numbers are equal and
give the formula.

Finally, we will prove statement (iii) a little later. The following is an important consequence:

Corollary 14.11. Let V be a (smooth projective irreducible) curve and f ∈ C(V )∗. Then:

(i) If f regular for all P ∈ V then f ∈ C is a constant function.

(ii) The set of P such that νP (f) 6= 0 is finite, and
∑

P∈V νP (f) = 0.

Proof. Given f , the trick is to consider

ϕ = (1 : f) : V → P1

which is automatically a morphism. Now ϕ(P ) is the point (0 : 1) if and only if f is not regular at P .
But this immediately means that if f is regular everywhere, ϕ is not surjective, and therefore constant.

For (ii) we can assume that f is non-constant. Let t denote the rational function X1/X0. This is a local
coordinate at the point (1 : 0) in P1; for convenience we call this point 0. Now observe that ϕ?t is precisely
f . Therefore, if f(P ) = 0 that implies that eP = νP (ϕ∗t) = νP (f). Similarly, 1/t is a local parameter
near ∞, namely the point (0 : 1), and a similar calculation shows that if f(P ) =∞ then

eP = νP (ϕ∗(1/t)) = −νP (f).
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Finally, if ϕ(P ) is neither 0 nor ∞, then νP (f) is 0, and by the theorem above

degϕ =
∑

ϕ(P )=0

νP (f) =
∑

ϕ(P )=∞

−νP (f).

It follows immediately that
∑

P νP (f) = 0.

The statement is really saying that the number of zeroes and the number of poles of a rational function
are the same, and that most points are neither.

15 Divisors theory on curves

For the rest of this course, curve will mean smooth, projective, irreducible curve, unless explicitly stated
to the contrary.

We have seen have already seen that if V is a projective curve, then

{Everywhere regular functions on V } = C ↪→ {Rational functions on V } = C(V ).

The field C(V ) is difficult to work with; as a C-vector space it is infinite dimensional. We would like to
cut it up into more manageable pieces. An element f determines a function on an open set

V ⊃ U → C

but we have no control over this U . It is better to remember more information. A simple minded fix is
to fix a set of points P1, . . . , Pn on V and let U be the complement of {P1, . . . , Pn} and study functions
that are regular on U . The notion of a divisor is a slightly better version of this idea.

Definition 15.1. A divisor on a curve V is a finite formal integer linear combination
∑

P∈V
nPP . The

set of divisors can be identified with the group

Div(V ) =
⊕
P∈V

Z · P.

If D =
∑
nPP is a divisor, define the degree of the divos r as deg(D) =

∑
nP ∈ Z. The map D 7→ deg(D)

is homomorphism, whose kernel is denoted Div0(V ).

It is common to write νP (D) for the coefficient nP of P in D.

The purpose of introducing divisors is that help to organize the vector space C(V ).

Definition 15.2. Let D be a divisor. The space of rational functions with poles bounded by D is the
set

L(D) = {f ∈ C(V ) | ∀P ∈ V, νP (f) + nP ≥ 0}.

If D is a divisor
∑
nPP with all nP non-negative, then L(D) is the set of functions which have a pole of

order no worse than nP at the point P . If nP is negative, then an element of L(D) is forced to have a
zero of order at least nP at P .

A given rational function may lie in many different vector spaces L(D). Nevertheless, given f in C(V ),
it lies in one natural space.
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Definition 15.3. Let f ∈ C(V )∗ be a nonzero rational function. Define the divisor of f to be

div(f) = (f) :=
∑
P∈V

νP (f)P.

Divisors of rational functions have degree 0, and are called principal divisors. They form a subgroup

Div0(V ) whose quotient is the Picard group or Class group of V . If D and D′ differ by a principal
divisor, then they are said to be linearly equivalent.

Remark 15.4. Note that the Picard group and Class group grow into different incarnations in the study
of general varieties and schemes, and only happen to coincide for smooth varieties. It’s closely related
to Poincaré duality. Note also that when V is higher dimensional, a divisor is a linear combination of
codimension 1 subvarieties rather than points.

Proposition 15.5. Every divisor of degree 0 on P1 is principal.

Proof. Identify the points of P1 as C and the point ∞. Write the divisor as D =
∑

a∈C na(a) + n∞(∞).
As deg(D) = 0, n∞ = −

∑
na. Let

f =
∏
a∈k

(t− a)na .

Then since (t − a) is a local parameter at a and a unit at other points b 6= a, we see that va(f) = na.
Since 1/(t− a) is a local parameter at ∞ for any a, v∞(f) = −

∑
na = n∞.

For a general curve V the degree homomorphism descends to a homomorphism Cl(V ) → Z. If V is
isomorphic to P1 this homomorphism is an isomorphism. In fact, this characterizes P1 as we will see
later.

The principal divisors are the simplest. We will see two other ways that divisors arise. The first is via
hyperplane sections, and the second is via the theory of differentials.

Definition 15.6. Let V ⊂ Pn and consider a hyperplane H = V(L) ⊂ Pn not containing V , defined by
some linear form L. The hyperplane section of V by H is the divisor

div(L) =
∑

nPP, where if Xi(P ) 6= 0, nP = νP (L/Xi)

We take a moment to justify the well-definedness. If P is a point where both Xi and Xj are nonzero, we
claim that the valuations of L/Xi and L/Xj coincide. Equivalently, our claim is that Xi/Xj is a rational
function of valuation 0. However, since the rational function doesn’t vanish at all, this is immediate.

Note also that this is a sum of points lying in V ∩H, because the nP are necessarily positive.

Proposition 15.7. Let V ⊂ Pn be a curve. Let L and L′ be two linear forms, neither vanishing on V .
Then there is an equality:

div(L′)− div(L) = div(L′/L).

In particular, the hyperplane sections of V by L and L′ have the same degree.

Proof. Immediate from the definition.

Definition 15.8. Let V ⊂ Pn be a curve. The degree of V is the degree of any hyperplane section of V .

Note that more generally, a hyperplane section can be defined for any non-constant morphism ϕ : V → Pn,
without ϕ necessarily being an isomorphism onto its image. Let L be a linear form on Pn. At a point P
of V , choose i such that Xi(P ) is nonzero and take the divisor whose coefficient at such P is νP (ϕ?L/Xi).
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If G is any homogeneous polynomial of degree m, then one can similarly define div(G) as a divisor on
V ⊂ Pn,

div(G) =
∑

nPP, where if Xi(P ) 6= 0, nP = νP (L/Xm
i )

If G is homogeneous of degree m, then div(G) is linearly equivalent to m×div(L), where L is homogeneous
of degree 1. Therefore, div(G) has degree md).

The following is a weak form of a beautiful theorem.

Theorem 15.9 (Bezout’s Theorem, basic version). Two distinct irreducible plane curves of degrees m
and n intersect in at most mn points.

Proof. Suppose C and D are plane curves cut out as V(F ) and V(G), with F and G irreducible homoge-
neous of degrees m and n. Then the the degree of div(G) on C is mn. In order to see this, notice that to
calculate the degree, we can replace G by something linearly equivalent, such as the mth power of a linear
homogeneous polynomial L. The number of intersection points with the vanishing locus of this linear L
is at most n. The number of intersection points is at most the degree by the above discussion.

Remark 15.10. There are two strengthenings of this. The first is that each intersection point can be given
a positive multiplicity such that the sum of the intersection points with multiplicity is exactly mn. The
proof is not so difficult, and can actually be extracted from what we’ve discussed already. The second is
that if the curves are chosen generically then the number of intersection points is exactly mn.

A divisor D =
∑
nPP is effective if nP ≥ 0 for all points P . We write this as D ≥ 0. We introduced the

vector spaces L(D) earlier as functions with a certain property. We can also view it as a set of effective
divisors.

L(D) = {f ∈ C(V ) | f = 0 or div(f) +D ≥ 0}

= {f ∈ C(V ) | ∀P ∈ V, νP (f) + nP ≥ 0} if D =
∑
P

nPP.

Proposition 15.11. The set L(D) is a complex vector space.

Its dimension will be written `(D).

Proof. if f and g are rational functions, observe that νP (f + g) ≥ νP (f) + νP (g). It follows that sums of
rational functions in L(D) remain in L(D). The remaining vector space axioms are obvious.

Example 15.12. Let ∞ denote the point (0 : 1) on V = P1, and let D = m(∞). Writing x = X1/X0.
Now observe that L(D) is spanned by 1, x, . . . , xm so `(D) = m+ 1.

These numbers `(D) for different divisors D are important invariants of a curve.

Proposition 15.13. Let D be a divisor on V . Then:

(i) If deg(D) < 0 then L(D) = 0.

(ii) If deg(D) ≥ 0 then `(D) ≤ deg(D) + 1.

(iii) For any P ∈ V , `(D) ≤ `(D − P ) + 1.

In particular, the vector space L(D) is always finite dimensional.

Proof. (i) If L(D) 6= 0 then for 0 6= f ∈ L(D), div(f) +D = E ≥ 0. But then deg(D) = deg(E) ≥ 0 (as
deg div(f) = 0).
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(iii) Let n = νP (D). Define
eνP : L(D)→ C

by eνP (f) = (πnP f)(P ). The kernel of this homomorphism is then L(D − P ) so `(D − P ) ≥ `(D)− 1.

(ii) now follows: if d = deg(D) ≥ 0 we see `(D) ≤ `(D−(d+1)P )+d+1 = d+1 since deg(D−(d+1)P ) =
0.

Proposition 15.14. If D and E are linearly equivalent, i.e. they coincide in the group Cl(V ), then
L(D) and L(E) are isomorphic and therefore `(D) depends only on the class of D in the Class group.

Proof. If D − E is the principal, then there is some g such that div(g) is D − E. By sending f in L(E)
to fg in L(D).

More generally, there is a “multiplication”:

L(D)× L(E)→ L(D + E).

One instance of this occurs when we take a divisor D and consider L(nD) for n in Z. If D were effective
then there is a natural object

A(D) :=
⊕
n∈N

L(nD)

which is in fact a graded ring. It is often called the section ring.

16 Differentials on curves

The heart of the study of the geometry of algebraic curves is the following question. Given a divisor
D on a curve V , what is the number `(D) of meromorphic functions with poles bounded by D? More
generally, one can ask for what integers ` and d does there exist a divisor of degree d on V such that
`(D) = `. This is known as the Brill–Noether problem. It is a distilled down version of the following
natural geometric questions.

(i) Let V be a curve. For what integers r and d does V admit a morphism

ϕ : V → Pr

of degree d, with imϕ not contained in a hyplerplane12?

(ii) Given curves V and W , for what integer d is there a non-constant morphism V →W?

Note that if V is P1 the number `(D) depends only on the degree of D.

The first landmark result that allows us to answer this question is the Riemann–Roch theorem and
the related Riemann–Hurwitz theorem. An important lesson that was learned from computations – by
Riemann and his student Roch – was that an important role is played by path integrals and a generalized
residue theorem on the curve V in the Euclidean topology. Closely related: we need to know the genus
of V . In essence we need to do calculus on V but purely with the tools of rings, fields, and modules.

Let K/C be a field extension. Informally, a differential is a finite C-linear combination of formal symbols
x dy with x, y in K subject to the standard rules of calculus: (i) the d(·) expression should be linear
for additive inputs in the argument, (ii) it should satisfy the Leibniz rule for multiplicative inputs in its
argument, and (iii) it should output 0 for scalar inputs. Precisely:

12The hyperplane condition is only here to ensure that the problem is not stupidly solved by embedding smaller projective
spaces linearly into larger ones
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Definition 16.1. The space of differentials13 ΩK/C is the quotient vector space M/N where

M =
(
K-vector space generated by symbols δx, x ∈ K

)
N =

(
subspace generated by δ(x+y)−δx−δy, δ(xy)−
x δy − y δx, δa for x, y ∈ K, a ∈ C.

)
and define dx to be the coset δx+N in ΩK/C.

The map d : K → ΩK/C is the exterior derivative. It is linear over the scalar field C.

We will write ΩK for ΩK/C when the field C is clear from context, which is probably always will be.

Remark 16.2. It is sometimes useful to note that in fact the appropriate generality for the definition is the
following. Let A and B be any commutative rings and let ϕ : A→ B be a ring homomorphism. Then we
can define the module of differentials of B over A (with ϕ implicit) in exactly the same way, by treating
A as the “constants”. The only reason we mention this is to convince the reader that the differentials are
a piece of algebra always there to be considered, and therefore something useful may come from doing
so.

A closely related notion is that of a derivation. We keep the notation above.

Definition 16.3. Let U be a K-vector space. A C-linear transformation D : K → U is called a derivation
if D(xy) = xDy + yDx.

Example 16.4. The map d : K → ΩK is a derivation. The derivative map d/dx : C(x)→ C(x) is also a
derivation.

The vector space ΩK is the universal source of derivations, because we defined it to be. The following
lemma is essentially a tautology but nevertheless can be fairly useful.

Lemma 16.5 (Universal property). A map D :K → U is a derivation if and only if there is a K-linear
map λ : ΩK → U such that λ(dx) = D(x) for all x ∈ K.

In other words, every derivation on K factors (uniquely) through the external differentiation d : K → ΩK .

Proof. If λ is such a K-linear map then certainly D = λ ◦ d is linear over C and D(xy) = λ(d(xy)) =
xλ(dy) + yλ(dx), by definition. Conversely, given a derivation D :K → U , write ΩK/C = M/N as in the
definition: i.e. M is the K-vector space of symbols δx and N is the relation set of linearity, Leibniz rule.
Define a K-linear map λ̂ :M → U by δy 7→ D(y) for all y ∈ K. Then as D is a derivation it follows that
λ̂(N) = 0 so we get a K-linear map λ as required.

For any derivation, and therefore for d in particular, if y 6= 0 then Dx = D(y(x/y)) = yD(x/y)+(x/y)Dy
so the the quotient rule from calculus holds D(x/y) = y−2(yDx − xDy). We use this in the following
lemma, which is a generation result for ΩK .

Lemma 16.6. (i) Let f = g/h in C(X1, . . . , Xn) be a rational function in n variables and write and y =
f(x1, . . . , xn) ∈ K as a rational expression in elements xi in K. Then dy =

∑
i(∂f/∂Xi)(x1, . . . , xn) dxi.

(ii) If K = C(x1, . . . , xn) for xi ∈ K then {dxi} spans ΩK .

Proof. (i) follows from the calculus rules for d(xy), d(x/y) and complex linearity linearity. (ii) is an
immediate consequence.

13In the literature you will often find these under the name Kähler differentials. It is well-recorded that Kähler was an
unapologetic Nazi, and since there’s no mathematical benefit to keeping his name in front of the term differentials, the
instructor has decided to excise it.
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When K is the function field of an algebraic curve, in fact ΩK is a 1-dimensional vector space over K.
We will prove this below, but please keep in mind that we should not conflate this one dimensional vector
space with K – there is no field structure on ΩK .

Theorem 16.7. Let K/C(t) a finite extension with t transcendental over C. Then ΩK/C is one-
dimensional, spanned by dt.

Proof. First suppose K = C(t). Then the lemma above, the vector space ΩK/C is generated by dt so has
dimension ≤ 1. It is now enough to show it is nonzero. By the universal property of ΩK discussed above,
it enough to show there is a non-zero derivation K → K, and d/dt is one.

For the general case, write K0 = C(t) so that K = K(α) = C(t, α) by the primitive element theorem. Let
h ∈ K0[X] be the minimal polynomial of α. Then h′(α) 6= 0 by minimality. Again by the lemma above,
ΩK is spanned by dt and dα. If for f ∈ K0[X] we write Dtf = ∂f/∂t (i.e. apply d/dt to the coefficients
of f), then the first part of the lemma gives

0 = d(h(α)) = (Dth)(α)dt+ h′(α)dα

so ΩK is spanned by dt. It therefore is enough to show ΩK 6= 0, or equivalently to write down a none-zero
derivation K → K.

The point is now that we already know what this derivation does to K0, and we just need to extend to the
elements that involve α. Since the field K is presented as a quotient, we first define a “ring derviation”
D :K0[X]→ K by

D(f) = Dt(f) if f ∈ K0, D(X) = −(Dth)(α)

h′(α)
, D(Xn) = nαn−1D(X).

Then D(h) = Dt(h)(α) + h′(α)D(X) = 0, so for any f ∈ K0[X], D(fh) = f(α)D(h) + h(α)D(f) = 0.
So D vanishes on the ideal hK0[X] ⊂ K0[X], hence descends to a derivation D̄ :K = K0[X]/(h) → K,
whose restriction to K0 is Dt, hence is non-zero.

In our situation V is a curve, andK above will be the field of rational functions C(V ). A rational differential
on V is an element of ΩC(V ), and the latter will be denoted ΩV for convenience. A differential is
regular at P for a point P on V if it can be expressed as

ω =
∑
i

fidgi

where fi and gi are regular as rational functions at P . The module of differentials that are regular at P
is the subset

ΩV,P = {ω ∈ ΩV : ω is regular at P}.

The subset is not a vector space over C(V ), but the condition of regularity is preserved by multiplication
by OV,P .

We recall that the key to producing divisors out of rational functions was that we could measure the
order of vanishing of a rational function at a point. In turn, the key structure was the fact that in OV,P
was that the maximal ideal was principal.

Theorem 16.8. ΩV,P is the free OV,P module generated by dπP for any local parameter πP at P , i.e.

ΩV,P = {fdπP | f ∈ OV,P }.
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We come to the proof in a moment, but let us look at the structure that this reveals. If π′P is another
local parameter, then we have dπ′P = udπP where u ∈ O∗V,P . More generally, if ω is a rational differential

form, we know that πkPω is regular for some k. Given this, we can always write ω as fdπP where f is a
rational function. We have our new source of divisors.

Definition 16.9. If ω is a rational differential on V and P is a point on V , define νP (ω) = νP (f) where
ω = fdπP .

By the last remark this doesn’t depend on the choice of local parameter, and νP (ω) ≥ 0 if and only if ω
is regular at P .

Lemma 16.10. Let ω ∈ ΩV be a nonzero differential on a curve V . Then νP (ω) = 0 for all but finitely
many P .

Proof. As νP (f dg) = νP (f) + νP (dg) and νP (f) = 0 for all but finitely many P , it’s enough to consider
ω = dg. Moreover, since g must be transcendental in order to have any contribution to the divosor, we see
that C(V )/C(g) is finite.. Now consider ϕ = (1 : g) : V → P1. By the finiteness theorem, there are only
finitely many P ∈ V with g(P ) = ∞ or eP > 1. If P is a point without ramification (i.e. ramification
index 1) then ϕ?(t−g(P )) is a local parameter, but this is just g−g(P ). We now see that νP (dg) = 0.

Definition 16.11. If ω is a rational differential on V , define div(ω) as

div(ω) =
∑
P∈V

νP (ω).

The differentials are well-behaved from our point of view.

Proposition 16.12. If ω and ω′ are nonzero rational differentials on V , then

div(ω)− div(ω′)

is principal.

Proof. Since ΩV is a 1-dimensional vector space, we can write ω = fω′. It is essentially immediate from
the definitions that div(ω)− div(ω′) is the divisor of f .

As a consequence, the divisor of a rational differential is well-defined as a class in the Picard group of V .
Any divisor of the form div(ω) is called a canonical divisor14. The class is called the canonical class and
is typically denoted KV .

We come to the proof of the proposition.

Proof of Theorem 16.8. We want to check that dπP generates a module over a ring, and therefore we are
going to use Nakayama’s lemma. Obviously OPdπP ⊂ ΩP . Given any f in OP we can write it as

f = f(P ) + πP g ∈ OP = C + mP .

Then by applying the Leibniz rule we have df = gdπP + πPdg ∈ OPdπP + πPΩP . Therefore

OPdπP ⊂ ΩP ⊂ OPdπP + πPΩP

and then applying Nakayama’s Lemma with R = OP , J = mP , M = ΩP ⊃ N = OPdπP , we get
ΩP = OPdπP . The only tricky thing to check is that ΩP is finitely generated as a module over OP .

14Notice the absurdly non-canonical use of the word canonical. The canonical object is really the class in the Picard group.
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Choose an affine piece V0 ⊂ An of V containing P , so that C[V0] = C[x1, . . . , xn], where these xi generate
C[V0] as an algebra over C. If f ∈ OP then f = g(x)/h(x) for polynomials g, h with g(P ) 6= 0, and then

df =
∑ h∂g/∂Xi − g∂h/∂Xi

h2
(x)dxi

by the quotient rule. Since h does not vanish at P , the expression preceding dxi is in OP . Therefore
{dxi} generate ΩP . as a module over OP .

It may seem superficially that the construction above is identical to getting divisors from rational func-
tions. Indeed, at each point, a differential fdπ contributes νP (f) to the divisor. But the key is that
although at every point the constructions look the same, differentials transform in a different way when
we move between points on a curve. This is especially visible in the following.

Example 16.13. Let V be P1 and let t be the coordinate on the standard affine A1 ⊂ P1. Consider the
differential dt. At any point a, with a ∈ C, the function t− a is a local parameter. Since dt and d(t− a)
coincide, the divisor has no support any such point. At ∞, the function 1

t is a local parameter. By
calculus, dt = −t2d(1/t), so v∞(dt) = v∞(t2) = −2. Therefore div(dt) = −2(∞) is a canonical divisor.

The canonical divisor is the route to the genus in algebraic geometry.

Definition 16.14. Let V be a curve. The genus of V is the quantity `(KV ) where KV a canonical divisor
on V . It is denoted g(V ).

We notice immediately, and as a sanity check, that g(P1) = 0. Crucially, we notice that KV cannot be
principal! In particular, the divisor of a rational differential genuinely gives a new source of divisors.

17 Differentials on plane curves

The purpose of this section is to convince you that although calculations with differentials are slightly
esoteric, and involve a lot of bookkeeping, they really are very concrete – as long as the curve is concrete.
The most concrete curves are plane curves.

We first show that there exists a curve of genus 1, and thereby for the first time in this course, show that
there exist non-isomorphic algebraic curves! We phrase it as an example.

Example 17.1. Smooth plane cubics have genus 1. Consider V = V(F ) plane cubic, with

F = X0X
2
2 −

3∏
i=1

(X1 − λiX0),

with λi 6= λj if i 6= j. The curve is nonsingular. Suppose the affine equation is given by

f(x, y) = y2 −
∏

(x− λi) = y2 − g(x).

By differentiating this equation, we observe the following basic relation on V :

2y dy = g′(x) dx in ΩV .

By using this relation, and by using the fact that we understand local parameters on smooth plane curves
we will compute the genus. We begin with a well-chosen differential.

Consider the differential ω given by dx/y. We will compute its divisor and use the above relation to show
that it is 0. In order to do this, we will need a supply of local parameters. If P is a point with non-zero
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y-coordinate in A2, then ∂f/∂y(P ) is nonzero so x−x(P ) is a local parameter by what we have discussed
previously. In this case ω contributes 0 to the divisor.

Similarly, one sees that if y(P ) is 0, then x(P ) is λi. But now ∂f/∂x is equal to −g′(λi), which is
nonzero. It follows that y is a local parameter. The differential dx/y can be expressed as 2dy/g′(x) so
νP (ω) is once again 0.

There is one final point, which is the point (0 : 0 : 1). Now use the affine patch X2 is nonzero. If we use
coordinates z and t, then the equation becomes

z =
∏
i

(t− λiz).

At the point (0, 0) on the curve, the rational function t is a local coordinate, since the z-derivative of
the equation does not vanish. On the other hand, the t-derivative of f does vanish at (0, 0). Therefore z
vanishes to order at least 2. Therefore (t− λiz) vanishes to order 1, and therefore νP (z) is 3. Finally by
using basic calculus, observe that dx/y = d(1/t)/(z/t) = −(t3/z)dt and νP (ω) = 0.

The example has the following consequence.

Theorem 17.2. Let V be a smooth cubic plane curve. Then V has genus 1, and in particular, it is not
isomorphic to P1.

We will now generalize this to general plane curves, and try to understand their canonical divisors.

Theorem 17.3. Let V = V(F ) ⊂ P2 be a plane curve of degree d ≥ 3. Then KV = (d− 3)H, where H
is the divisor of a hyperplane section.

Proof. The strategy is the same as the example calculation we have done previously: we choose an
appropriate differential ω, and then use the equation F to obtain different expressions of ω. We use what
we know about local parameters of plane curves to calculate the divisor of ω.

I Selecting a Differential: First choose coordinates so (0 : 1 : 0) is not in V . Let x = X1/X0, y = X2/X0.
We view them as rational functions on V . Setting f(X,Y ) to be F (1, X, Y ), we see that f(x, y) is 0.
Differentiating this expression moves it from a relation between elements in C(V ) to a relation in ΩV .
Explicitly, the exterior derivative gives

(∂f/∂X)(x, y) dx+ (∂f/∂Y )(x, y) dy = 0

in ΩV . We now choose our differential to be:

ω =
dx

(∂f/∂Y )(x, y)
= − dy

(∂f/∂X)(x, y)

e will now calculate to show that div(ω) is (d− 3)div(X0), where V(X0) is the line H at infinity, which
would give the theorem.

II Calculation in a Patch: We first do the calculation in A2 ⊂ P2. Let P be a point in V ∩ A2. If
(∂f)/∂Y )(P ) 6= 0, then x− x(P ) is a local parameter at P . We therefore find

νP (ω) = νP (1/(∂f)/∂Y )(P )) = 0.

Otherwise, we have (∂f)/∂X)(P ) 6= 0. In this case y − y(P ) is a local parameter and we similarly have
νP (ω) = 0.
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III Calculation at Infinity: We now know that the divisor is supported on the line at infinity. Since
(0 : 1 : 0) is not contained in V , any point at infinity is contained in the {X2 6= 0}. On this open set, we
can rewrite the equation of the curve as follows. The equation is given by g(z, w) = 0, with

z = X0/X2 = 1/y, w = X1/X2 = x/y

and g(Z,W ) = F (Z,W, 1) ∈ C[Z,W ].

Now consider a new differential η = dz/(∂g/∂W )(z, w) = −dw/(∂g/∂Z)(z, w). This is not meant to be
the same differential as ω!

The preceding argument shows that νP (η) = 0 for any P in this the affine piece {X2 6= 0}. But
f(X,Y ) = Y dg(1/Y,X/Y ) so ∂f/∂X = Y d−1(∂g/∂V )(1/Y,X/Y ) and we have

ω = − dy

(∂f/∂X)(x, y)
=

z−2dz

yd−1(∂g/∂W )(z, w)
= zd−3η.

If X2(P ) 6= 0, then we can calculate νP (ω) = (d − 3)νP (z) + νP (η) = (d − 3)νP (z). Since z = X0/X2,
this means (ω) = (d− 3)div(X0) as claimed.

We can go a step further and write a basis for the space of differentials on a plane curve of degree d.

Proposition 17.4. If f(x, y) = 0 is an affine equation for for a smooth projective plane curve V ⊂ P2,
and assume the degree is at least 3. Then{

xrysdx

∂f/∂y
: 0 ≤ r + s ≤ d− 3

}
is a basis for the vector space L(KV ), where KV is the canonical divisor given by (d− 3)H.

Proof. Omitted; the result follows from the preceding proof and a linear independence argument for the
terms xrys. If these were not independent, then a linear combination of them would be zero on the curve,
which contradicts the fact that V is irreducible of degree d.

Corollary 17.5. If d, d′ are distinct integers larger than 2, then no two smooth plane curves of degrees
d and d′ are isomorphic. In particular, there exist infinitely many non-isomorphic algebraic curves.

18 The Riemann–Roch theorem and consequences

Let V be a smooth projective algebraic curve. We have define the genus of V to be the dimension `(KV )
of the space of regular differential forms. We have seen that P1 has genus 0 and that smooth plane cubics
have genus 1. We have also seen that the degree of the canonical divisor of a plane curves grows linearly
with the degree of the curve.

Theorem 18.1 (Riemann-Roch). Let g be the genus of V , and K = KV a canonical divisor. For any
divisor D,

`(D)− `(K −D) = 1− g + deg(D).

The proof is beyond the scope of the course. I will say a word about the proof, after recording the
following elementary consequence.

Corollary 18.2. Let K be a canonical divisor on a curve V . Then deg(K) = 2g − 2.

Proof. Take D = K so that `(D) = `(K) = g and `(K −D) = `(0) = 1.
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Remark 18.3. Many readers will have seen this number 2g− 2 before. It is the negative of the number of
poles of a vector field on an orientable topological surface of genus g. You may also have seen it as the
topological Euler characteristic of such a surface. The amazing fact about the Riemann–Roch theorem
is that the left hand side and the right hand side have different natures. The left hand side involves
functions, differentials, and the algebraic structure of a curve. The right hand side is “topological”: the
degree is just the number of points and g is the genus. In this sense, Riemann–Roch has a geometric left
hand side and a topological right hand side. In this guise, it is part of a much larger family of results.
The theorem can be viewed as a version of the Gauss–Bonet theorem, and both of them are a special
case of the Atiyah–Singer index theorem. Another result that you should have nearby in your mind is
the residue theorem.

Remark 18.4. In order to get a flavour for the result15, we record a proof of Riemann–Roch in a special
case, which the instructor learned from notes of Joe Harris. Suppose that D is an effective divisor, given
by p1 + · · · + pn and KV is a representative of the canonical divisor such that KV −D is also effective.
Let us also assume the points are distinct, so L(D) are functions with a pole of order at most 1. Suppose
we know that deg(K) is 2g − 2 already; this can be deduced independently.

Given a rational function f , there is a residue of f at pi. Let zi be a local coordinate near pi. For a
regular function regular at pi, we can extract a power series expressing the function in terms of zi. For
the constant term we look at the image of f under the evaluation map at pi. For the next term, subtract
off a constant term to make the function 0 at pi. We now divide out by zi and evaluate at pi to extract
the linear coefficient. Proceeding inductively, and working formally with ratios of power series, we extract
a Laurent series. Since the coefficients of pi in D is 1, the power series only goes to z−1

i and no lower.
Call the coefficient of z−1

i in this power series the residue.

We have a linear map L(D)→ Cn given by taking the residue at pi in each factor. The kernel is precisely
C, i.e. the constant functions: if there are no poles at any pi the function must be constant.

There is also a linear map L(K) → Cn. First, we have differentials dzi for each pi. Given ω, the ratio
ω/dzi is a rational function. The rational function can be evaluated at pi. Now notice that the kernel is
L(K −D).

The next step is to show that the images of these two maps under the map to Cn are orthogonal. The
simplest way to see this is to use the Stokes theorem and Cauchy’s theorem. Replacing the divisor D
with K − D and repeating the argument, the standard inequalities for dimensions from linear algebra
and the degree of K being 2g − 2 gives us the Riemann–Roch theorem.

Corollary 18.5. A smooth projective plane curve of degree d has genus (d−1)(d−2)
2 .

Proof. The degree of KV for a degree d plane curve with d ≥ 3 is (d− 3) multiplied by the degree of V .
The rest is numerics.

Another corollary of Riemann–Roch is that the calculation of `(D) is straightforward for “most D”.

Corollary 18.6. If the degree of D is larger than 2g − 2 then `(D) is deg(D)− g + 1.

Divisors of small degree, relative to the genus, are “special”. In fact, we define a divisor D to be special
if `(K −D) is nonzero. The first two examples of special divisors are (i) the trivial divisor D = 0, and
(ii) the canonical divisor D = KV .

We know everything there is to know about P1. The next case up is curves of genus 1.

Corollary 18.7. If g(V ) = 1 then if deg(D) > 0 then `(D) = deg(D).

15Perhaps more accurately, after three years of teaching this course without being able to prove Riemann–Roch for students
who attend it, the instructor’s frustration boiled over into the following multi-paragraph rant.
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Proof. `(K −D) = `(−D) = 0.

We certainly do not know everything there is to know about genus 1 curves! Let us say a word or two
about their basic structure. Fix P0 ∈ V . The pair (V, P0) or, for brevity, just V itself, is called an
elliptic curve. Traditionally we write E instead of V .

Let P , Q be points on E. Then by the Riemann–Roch theorem, we have `(P +Q− P0) = 1. Therefore,
there is a unique effective divisor of degree 1, i.e. a point which we’ll call R, such that P +Q− P0 ∼ R.
In other words, once we’ve chosen a basepoint,

We define:
P +E Q = R

(It would perhaps be more correct, but over-pedantic, to write P +(E,P0) Q.)

The result is variety that is simultaneously an abelian group.

Theorem 18.8. The operation +E makes E into an abelian group, with identity element P0. Moreover
the map P 7→ [P −P0] ∈ Cl(E) is an isomorphism of groups between E and Cl0(E), the groups of divisor
classes of degree 0 on E.

Proof. Let β(P ) = [P − P0] ∈ Cl0(E). We first show that β is a injection. If we have β(P ) = β(Q) that
implies that P − P0 ∼ Q − P0 in the class group, and therefore that P ∼ Q. However, since `(P ) = 1,
the only functions that are allowed a potential pole at P are the constants. It follows that P and Q must
coincide, so β is injective.

Now consider surjectivity. Let D be a divisor of degree 0, that we want to show has the class of P − P0,
for some P . If D is a divisor of degree 0 then as `(D + P0) = 1 there exists P with D + P0 ∼ P , so
[D] = β(P ). Therefore β is a bijection (of sets). Finally, if P +E Q = R then β(P +E Q) = [R − P0] =
[P + Q − P0 − P0] = [P − P0] + [Q − P0] = β(P ) + β(Q). So β transforms +E into addition in Cl0(E),
and therefore (E,+E) is a group and β is an isomorphism.

Theorem 18.9. Let (E,P0) be the plane curve given by the vanishing of

F = X0X
2
2 −

3∏
i=1

(X1 − λiX0).

with λi distinct complex numbers. Choose P0 to be the point (0 : 0 : 1). Then the equation P+EQ+ER = 0E
if and only if P,Q,R are collinear.

Proof. Observe that P+EQ+ER = 0E if and only if P+Q+R ∼ 3P0. In turn, this holds if and only if there
exists a rational function f such that the divisor of f is P +Q+R− 3P0. Now, by a similarly calculation
to the previous cubic plane curve calculation, if x and y are the functions X1/X0 and X2/X0 have a pole
of order at most 3 at P0. By a similarly calculation to the example in the previous section, they have
different orders of vanishing. By Riemann–Roch `(3P0) is 3 and L(3P0) = 〈1, x, y〉 = 〈1, X1/X0, X2/X0〉.
Therefore, the function f must be of the form f = G/X0 for a linear form G with the divisor div(G)
being P +Q+R.

The group law is really very concrete and geometric. Although the statement of Riemann–Roch may
seem rather abstract, its consequences are really concrete and beautiful statements. Another instance is
the Riemann–Hurwitz formula.

Let ϕ : V → W be a finite morphism of curves. What is the relation between the genus of V and the
genus of W?
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Let ω = f dt be an element in ΩW , where C(W )/C(t) exhibits C(W ) as a finite extension. Then
C(V )/ϕ?(C(t)) is also finite. In particular, ΩV is generated by dϕ?(t). Define

ϕ?(ω) = ϕ?(f) dϕ?(t).

Let P be a point on V and let Q = ϕ(P ). We will compare νP (ϕ?(ω) and vQ(ω). Let eP be the
ramification degree of ϕ at P , and πP , πQ local parameters.

Lemma 18.10. We have νP (ϕ?(dπQ)) = e − 1, where e is the ramification of ϕ at P . More generally,
νP (ϕ?ω) = eνQ(ω) + e− 1.

Proof. Write ω as u · πnQ dπQ. The pullback is a ring homomorphism so it suffices to understand how the
individual pieces pull back. The units pull back to units so can be ignored. The term πQ pulls back to a
unit multiple of πeP . The result now applies from the formal rules of calculus that we have established.

The Riemann–Hurwitz formula is a beautiful consequence, obtained by taking degree for the divisor
obtained by pulling back a differential.

Theorem 18.11 (Riemann-Hurwitz formula). Let ϕ : V →W be a finite morphism of curves in charac-
teristic zero. Let n = deg(ϕ). Then

2g(V )− 2 = n(2g(W )− 2) +
∑
P∈V

(eP − 1).

Proof. Let 0 6= ω ∈ ΩW . Then

2g(V )− 2 = deg div(ϕ?ω) =
∑
P∈V

νP (ϕ∗ω)

=
∑
Q∈W

∑
P 7→Q

νP (ϕ?ω)

=
∑
Q∈W

∑
P 7→Q

(eP vQ(ω) + eP − 1)

=
∑
Q∈W

(
nvQ(ω) +

∑
P 7→Q

(eP − 1)
)

= n deg div(ω) +
∑
P∈V

(eP − 1)

A beautiful consequence is the following.

Corollary 18.12. Let V and W be curves with g(W ) larger than g(V ). Then any morphism V →W is
constant.

Another one is the following.

Corollary 18.13. Let V be a product of two curves of genus at least 1. Then V is smooth and projective,
and contains no subvariety isomorphic to P1.

As an aside, products of curves are excellent examples of higher dimensional algebraic varieties. The
current course will only discuss curves. Algebraic surfaces are much more complicated, but between
products of curves and hypersurfaces in P3, one sees a large sweep of the phenomena that the general
theory of surfaces exhibits.

Notice that if V is a curve that admits a degree 1 morphism to P1, then V must in fact be P1. Essentially
the same fact tells us that if D is the divisor P for a point P on V , then `(D) is necessarily 1. The
simplest divisors on curves of positive genus have degree 2. They have a special name.
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19 Equations for curves via Riemann–Roch

Let V ⊂ Pm be a curve, not contained in any hyperplane, and let D = div(X0). Let G ∈ C[X] be a
nonzero linear form, and consider f = G/X0 ∈ C(V )∗. Then div(f) +D = div(G) ≥ 0 , hence f ∈ L(D).
Thus we get an injective linear map

β : {Linear Homogeneous Polynomials} ↪−→L(D), G 7→ G/X0

Let us make two observations about this to motivate what is to come. Suppose P and Q are points fo
V . Then

(i) There exist linear forms F and G such that F (P ) 6= 0 and G(P ) = 0, but with G(Q) 6= 0. In other
words, β(F ) is a an element of L(D) not vanishing at P , and β(G) is an element of L(D − P ) not
vanishing at Q.

(ii) Since P is a smooth point, we can find its tangent line L, which is a line inside Pm. We can find a
linear form F such that F (P ) is 0, but F does not vanish on all of L.

(?) We deduce that D satisfies the following condition. For every P,Q on V , we have `(D − P − Q) =
`(D)− 2.

Definition 19.1. Let V be a curve and D a divisor with `(D) = n + 1 ≥ 2. Let B = {f0, . . . , fn} be a
basis for L(D). The morphism associated to D with respect to B is given by

ϕD = (f0 : f1 : · · · : fn) : V → Pn

We say that ϕD is an embedding if it is an isomorphism from V to its image. The morphism ϕD with
respect to a different basis B′ is related by a linear transformation of Pn.

If the precise choice of basis is not important, we will just refer to ϕD without basis as the morphism
associated to D.

The reason for our two key observations is that they precisely characterize an embedding. The following
theorem is very useful, but the proof will be omitted.

Theorem 19.2. The morphism ϕD associated to D is an embedding if and only condition (?) holds.

For example, the following corollary tells us that every genus g curve can be embedded into the same
projective space.

Corollary 19.3. Suppose D has degree larger than 2g, then ϕD is an embedding.

Proof. The proof follows immediately from Riemann–Roch. Indeed, D and D − P − Q both have large
degree, so Riemann–Roch controls the spaces L(−) as having dimension d− g+ 1 exactly. The condition
(?) is a consequence.

The equations for curves that come out of Riemann–Roch are typically not explicit. If E is an elliptic
curve however, this can be made very concrete.

Theorem 19.4. Let E be an elliptic curve with basepoint P0. Then the divisor 3P0 gives an embedding
of E as a cubic in P2.

We have already seen that every plane cubic is a genus 1 curve. The above result gives the converse.
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Proof. We already know from Riemann–Roch that L(3P0) is 3. Let x and y be non-constant functions.
Since L(2P0) contains a non-constant function, but L(P0) does not, we can assume that x lies in L(2P0)
but y does not. In other words, at P0 the valuation of x is −2 while the valuation of y is −3. This gives
a morphism

(1 : x : y) : E → P2.

It is an embedding by the discussion above. In order to get equations for the image, we need to consider
powers of x. The function x2 lies in L(4P0) and in fact

L(4P0) = L(3P0)⊕ Cx2.

Similarly, xy is in L(5P0). But now y2 and x3 are both in L(6P0) but not in L(5P0). Therefore there is a
linear dependence in L(6P0) between 1, x, x2, x3, xy, y2. The linear equation gives rise to a cubic equation
for E after homogenizing. Let F be the resulting equation. We obtain a morphism

ϕ : V → V(F ) ⊂ P2.

Since ϕ is an embedding and V is a curve of genus 1, this can only happen if V(F ) is smooth and is equal
to the image of V .

In particular, the divisor 2KV for V a curve of genus g at least 3 gives an embedding of V into projective
space of dimension 3g− 4. In genus 2, we can take 3KV instead. This “gives equations” for curves in the
same projective space.

Corollary 19.5. Every curve of genus g can be embedded in Pm for some number m depending only on
g.

Proof. Take m to be `(2KV ) for g at least 3 and `(3KV ) for g equal to 2.

In fact, the following theorem seems stronger but is actually less useful.

Theorem 19.6 (Non-examinable). Every curve can be embedded in P3.

Let V be a curve of genus at least 1. Then it cannot admit a degree 1 morphism to P1, or equivalently,
it cannot have a divisor D of degree 1 and `(D) ≥ 2. A simple claim, which is left as an exercise shows
that it would have to be isomorphic to P1.

Definition 19.7. A curve V of genus g > 1 is hyperelliptic is there exists π : V → P1 of degree 2.

If V is hyperelliptic as above, then we can consider the divisor D = π∗(∞). The space L(D) has dimension
at least 2, since it contains the constant functions, as well as the pullback of X1/X0. We claim that it is
exactly 2. Indeed, if D is P +Q then `(P ) is 1 because V is not isomorphic to P1. Therefore `(D) is at
most 2.

Theorem 19.8. (i) Let g(V ) > 1. If there exists an effective divisor D of degree 2 on V with `(D) = 2
then π = ϕD : V → P1 has degree 2, π?(∞) = D and V is hyperelliptic.

(ii) Every curve of genus 2 is hyperelliptic.

(iii) There exist hyperelliptic curves of every genus at least 2.

Proof. (i) The statement will be assigned as an exercise.

(ii) If g = 2 then `(K) = 2 = deg(K), which gives thr result.

(iii) By using the degree-genus formula for P1 × P1, a bidegree (d, 2) curve on P1 × P1 has genus d − 1.
The projection onto the second factor gives a morphism to P1 of degree 2.
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Hyperelipticity of a curve is very closely controlled by the properties of KV .

Theorem 19.9. Suppose V is not hyperelliptic. Then ϕK : V → Pg−1 is an embedding.

Proof. Suppose ϕK were not an embedding. Then K must violate condition (?) above. As a consequence,
there must exist points P and Q such that `(K − P −Q) is at least g − 1. But by Riemann–Roch that
means D = P +Q has `(D) at least 2.
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