

## ALGEBRAIC GEOMETRY, SHEET IV: LENT 2022

1. Let  $X$  be the projective closure of the affine curve  $y^3 = x^4 + 1$ . Prove that this curve is smooth and prove that it has a unique point at infinity. Calculate the zeroes and poles of the differential

$$\omega = \frac{dx}{y^2}.$$

2. Let  $V$  be a curve and  $p \in V$ . Prove that there exists a non-constant rational function on  $V$  that is regular away from  $p$ .

3. Let  $V$  be a curve and  $p \in V$ . Prove that the variety  $V \setminus \{p\}$  is affine.

4. Let  $V$  be a curve of genus  $g \geq 2$ . Prove that  $V$  admits a degree 2 morphism to  $\mathbb{P}^1$  if and only if there exists an effective divisor  $D$  on  $V$  of degree 2 such that  $\ell(D) \geq 2$ .

5. Prove that a smooth plane quartic curve is not hyperelliptic by examining the map determined by the canonical divisor.

6. (★) Let  $F$  be a bihomogeneous polynomial of bidegree  $(d_1, d_2)$  in 4 variables  $X_0, X_1$  and  $Y_0, Y_1$ . Assume that  $\mathbb{V}(F) \subset \mathbb{P}^1 \times \mathbb{P}^1$  is a smooth curve  $V$ .<sup>1</sup> By adapting the calculation for  $\mathbb{P}^2$  from lectures, calculate the degree of the canonical divisor of  $V$  and deduce that the genus of  $V$  is  $(d_1 - 1)(d_2 - 1)$ . Deduce that there exists a curve of genus  $g$  for all  $g \in \mathbb{Z}_{\geq 0}$ .

7. Let  $Q_1$  and  $Q_2$  be two smooth quadric surfaces in  $\mathbb{P}^3$ . Assume that their intersection  $Q_1 \cap Q_2$  is a smooth curve. Calculate the genus of this curve. [*One way to go about this is via the geometry of the Segre embedding and using the previous question*].

8. Prove that if  $V$  and  $W$  are smooth projective curves then  $\mathbb{C}(V) \cong \mathbb{C}(W)$  if and only if  $V$  is isomorphic to  $W$ .

9. Let  $\varphi : V \rightarrow W$  is a morphism of smooth curves. Given a point  $q \in W$ , define the pullback  $\varphi^*([q])$  of the divisor  $[q]$  as  $\sum_{p \mapsto q} e_p[p]$  where  $e_p$  is the ramification index. The pullback on divisors is defined by linear extension. Prove that this determines a well-defined map on class groups:

$$\varphi^* : \text{Cl}(W) \rightarrow \text{Cl}(V).$$

---

Dhruv Ranganathan, dr508@cam.ac.uk

<sup>1</sup>From the end of Sheet III, we have two ways of thinking about subvarieties  $\mathbb{P}^1 \times \mathbb{P}^1$ : via the Segre embedding or by vanishing loci of bihomogeneous polynomials. These coincide by the work on the previous Sheet III, and as a consequence  $\mathbb{V}(F)$  has the structure of a projective variety in the usual sense that we've defined.

10. (★) Construct a smooth projective variety  $S$  of dimension 2 and a morphism  $\pi : S \rightarrow \mathbb{P}^1$  such that (i) away from a finite set of points on  $\mathbb{P}^1$ , the  $\pi$ -preimage of  $p \in \mathbb{P}^1$  is a smooth curve of genus 1, and (ii) there exists a point  $q \in \mathbb{P}^1$  such that  $\pi^{-1}(q)$  is a singular curve<sup>2</sup>.

---

<sup>2</sup>This is an example of a type of surface called an elliptic fibration