

Part III

Algebraic Geometry

Example Sheet I, 2022

1. Describe the topological spaces $\text{Spec } \mathbb{R}[x]$, $\text{Spec } \mathbb{C}[x, y]$, $\text{Spec } \mathbb{Z}[x]$, and $\text{Spec } \mathbb{C}[[x]]$. In each case, describe the subset of maximal ideals. In each case, do there exist points that are neither open nor closed?
2. Let A be an integral domain and let η in $\text{Spec } A$ be the point corresponding to the prime (0) – it is called the generic point. Show that η is dense. Show that if $A = \mathbb{Z}$ then η is not open. If $A = \mathbb{C}[[t]]$ then η is open. Is the generic point of $\text{Spec } A$ open for $A = \mathbb{C}[[x, y]]$. How about for $\mathbb{C}[x, y]$?
3. Let A be a commutative ring. Recall that a *distinguished open set* in $\text{Spec } A$ associated to $f \in A$ is a subsets of the form $U_f = \{\mathfrak{p} \in \text{Spec } A \mid f \notin \mathfrak{p}\}$. Prove that the distinguished open sets form a basis for the open sets in the Zariski topology on $\text{Spec } A$.
4. Describe the map on Zariski spectra induced by the following map on \mathbb{C} -algebras:

$$\mathbb{C}[t] \rightarrow \mathbb{C}[x, y, z]/(xy - z), \quad t \mapsto z.$$

In particular, if the map on spectra is denoted $\pi : X \rightarrow B$ what are the possibilities for the topological space $\pi^{-1}(b)$ for $b \in B$, up to homeomorphism?

5. Given an example of a homomorphism of rings $\varphi : A \rightarrow B$ such that the preimage of a maximal ideal is not maximal. Prove that if φ is surjective then the preimage of a maximal ideal is maximal. Consider the natural inclusion

$$\mathbb{C}[t] \hookrightarrow \mathbb{C}[t, t^{-1}].$$

Describe the induced map on Zariski spectra. Is the preimage of a maximal ideal necessarily maximal? For which maximal ideals is this true?

6. Let X_1 and X_2 be the Zariski spectra of rings A_1 and A_2 . Describe a natural ring whose Zariski spectrum is homeomorphic $X_1 \sqcup X_2$.
7. Let A be the quotient of a polynomial ring by a prime ideal. Let $m\text{Spec}(A)$ be the set of maximal ideals of A equipped with the Zariski topology. Describe a procedure that reconstructs the full Zariski spectrum $\text{Spec}(A)$ and its topology in terms of the irreducible closed subsets of $m\text{Spec}(A)$.

Now, apply this procedure with $A = \mathbb{C}[[x]]$ to conclude that some rings “do not have enough maximal ideals”.

8. (Sheafification is functorial) Prove that if $f : \mathcal{F} \rightarrow \mathcal{G}$ is a morphism of presheaves, there is an induced morphism $f^{\text{sh}} : \mathcal{F}^{\text{sh}} \rightarrow \mathcal{G}^{\text{sh}}$ with $(f^{\text{sh}})_p = f_p$.
9. Describe a non-zero presheaf of abelian groups all of whose stalks are 0. Conclude that the sheafification is the constant sheaf 0.
10. (Exactness is stalk local) Show that a sequence $\cdots \rightarrow \mathcal{F}_{i-1} \rightarrow \mathcal{F}_i \rightarrow \mathcal{F}_{i+1} \rightarrow \cdots$ is exact if and only if for every $p \in X$, the corresponding sequence of maps of abelian groups is exact.
11. Show that if $f : \mathcal{F} \rightarrow \mathcal{G}$ is a morphism between sheaves, then the sheaf image $\text{im } f$ can be naturally identified with a subsheaf of \mathcal{G} .
12. Show a morphism of sheaves is an isomorphism if and only if it is injective and surjective.
13. (f^{-1} and f_* are adjoint functors.) Given a continuous map $f : X \rightarrow Y$, sheaves \mathcal{F} on X and \mathcal{G} on Y , construct natural maps $f^{-1}f_*\mathcal{F} \rightarrow \mathcal{F}$ and $\mathcal{G} \rightarrow f_*f^{-1}\mathcal{G}$. Use this to construct a bijection

$$\text{Hom}_X(f^{-1}\mathcal{G}, \mathcal{F}) \rightarrow \text{Hom}_Y(\mathcal{G}, f_*\mathcal{F}),$$

(i.e., f^{-1} is left adjoint to f_* and f_* is right adjoint to f^{-1} .)

14. (Gluing) Let $\{X_i\}$ be a family of schemes (possibly infinite) and suppose for each $i \neq j$ we are given an open subscheme $U_{ij} \subseteq X_i$. Suppose also given for each $i \neq j$ an isomorphism of schemes $\varphi_{ij} : U_{ij} \rightarrow U_{ji}$, such that (1) for each i, j , $\varphi_{ji} = \varphi_{ij}^{-1}$ and (2) for each i, j, k , $\varphi_{ij}(U_{ij} \cap U_{ik}) = U_{ji} \cap U_{jk}$, and $\varphi_{ik} = \varphi_{jk} \circ \varphi_{ij}$ on $U_{ij} \cap U_{ik}$.

Then show there is a scheme X , together with morphisms $\psi_i : X_i \rightarrow X$ for each i , such that (1) ψ_i is an isomorphism of X_i with an open subscheme of X ; (2) the $\psi_i(X_i)$ cover X ; (3) $\psi_i(U_{ij}) = \psi_i(X_i) \cap \psi_j(X_j)$; and (4) $\psi_i = \psi_j \circ \varphi_{ij}$ on U_{ij} .

(Note: The last two exercises are basically big tautologies; these kinds of arguments are affectionately called “diagram chases”. You should only do them once in your life, but you have to do them once in your life.)