The Frankl-Wilson theorem and some consequences in Ramsey theory and combinatorial geometry

Lectures 1-5

We first consider one of the most beautiful applications of the linear independence method. Our starting-point is the classical EKR Theorem:

Theorem 1 (EKR, 1961). Let \(r < n/2 \), and let \(\mathcal{A} \) be an intersecting family of \(r \)-subsets of \([n]\). Then

\[
|\mathcal{A}| \leq \binom{n-1}{r-1}.
\]

Equality holds if and only if \(\mathcal{A} \) consists of all \(r \)-subsets containing some fixed \(i \in [n] \).

What happens if, instead of demanding that \(\mathcal{A} \subseteq [n]^r \) be intersecting, we demand that \(|x \cap y| \) is odd for any two distinct \(x, y \in \mathcal{A} \)? How large can \(|\mathcal{A}| \) be? It turns out that the answer depends heavily on whether \(r \) is even or odd. If \(r \) is odd, we can take \(\mathcal{A} \) to be the family of all \(r \)-sets containing 1 and \((r-1)/2\) of the pairs \(\{2,3\}, \{4,5\}, \ldots, \{(n-1),n\} \), giving

\[
|\mathcal{A}| = \binom{(n-1)/2}{(r-1)/2}.
\]

(if \(n \) is odd). If \(0 < \alpha < 1 \) is fixed, and \(r = \lfloor \alpha n \rfloor \), this is \(\geq c^n \) for some \(c = c(\alpha) > 1 \): it grows exponentially with \(n \).

Amazingly, though,

Theorem 2. If \(r \in \mathbb{N} \) is even, and \(\mathcal{A} \subseteq [n]^r \) is such that \(|x \cap y| \) is odd for any two distinct \(x, y \in \mathcal{A} \), then

\[
|\mathcal{A}| \leq n + 1.
\]

So we have a linear bound on \(|\mathcal{A}| \), completely independent of \(r \) (for \(r \) even).

In order to prove this, we’ll first prove the following

Theorem 3. If \(\mathcal{A} \subseteq \mathcal{P}([n]) \) with \(|x| \) odd for all \(x \in \mathcal{A} \), and \(|x \cap y| \) even for any two distinct \(x, y \in \mathcal{A} \), then

\[
|\mathcal{A}| \leq n.
\]

Proof. We’ll find a linearly independent set of size \(|\mathcal{A}| \) in a vector-space of dimension \(n \). For each \(x \subseteq [n] \), let \(\chi_x \) be the characteristic vector of \(x \), i.e.

\[
\chi_x(i) = \begin{cases} 1 & \text{if } i \in x; \\ 0 & \text{if } i \notin x. \end{cases}
\]
For example, if $n = 5$, then $\chi_{123} = (1, 1, 1, 0, 0)$. We think of χ_x as a vector in F_2^n, where $F_2 = \{0, 1\}$ is the two-element field, i.e. we add vectors modulo 2.

We use the 'standard inner-product' on F_2^n:

$$\langle u, v \rangle = \sum_{i=1}^{n} u_i v_i.$$

Note that this is not a genuine inner-product, as it is not positive definite: $\langle \chi_x, \chi_x \rangle = 0$ whenever $|x|$ is even. (We call \langle , \rangle a degenerate inner-product.) But this doesn’t matter for our purposes.

Note that $\langle \chi_x, \chi_y \rangle = |x \cap y|$ for any $x, y \subset [n]$. Hence, for any two distinct $x, y \in A$, $\langle \chi_x, \chi_y \rangle \equiv 0 \pmod{2}$, whereas $\langle \chi_x, \chi_x \rangle \equiv 1 \pmod{2}$ for any $x \in A$. It follows that the χ_x’s are linearly independent as elements of the F_2-vector-space F_2^n. Indeed, suppose

$$\sum_{x \in A} c_x \chi_x \equiv 0 \pmod{2}$$

for some c_x’s in F_2; then for any y, taking the inner-product with χ_y gives:

$$0 \equiv \langle \sum_{x \in A} c_x \chi_x, \chi_y \rangle \equiv \sum_{x \in A \setminus \{y\}} c_x \langle \chi_x, \chi_y \rangle + c_y \langle \chi_y, \chi_y \rangle \equiv \sum_{x \in A \setminus \{y\}} c_x |x \cap y| + c_y |y| \equiv c_y |y| \pmod{2},$$

so $c_y = 0$ for all $y \in A$, as required.

The vector space F_2^n has dimension n, and $\{\chi_x : x \in A\}$ is a linearly independent subset of size $|A|$, so $|A| \leq n$.

Remark. Equality holds in Theorem 3 if $A = \{\{i\} : i \in [n]\}$ is the family of all singletons. For even n, equality also holds if $A = [n]^{(n-1)}$. Using ‘products’ of these constructions, one can show that for n sufficiently large, there are at least $2^{n^2/9}$ non-isomorphic extremal examples (exercise).

Remark. No purely combinatorial proof of this theorem is known. In a sense, this is unsurprising, as the algebraic proof is making use of the extra ‘structure’ we have imposed upon the ground-set $[n]$. Another reason why it is unsurprising is that there exist many non-isomorphic extremal examples. (Typically, a purely combinatorial proof can be analyzed to give a simple characterization of the extremal examples.)

Theorem 2 follows immediately from Theorem 3:

Proof of Theorem 2: Let $r \in \mathbb{N}$ be even, and let $A \subset [n]^{(r)}$ be such that $|x \cap y|$ is odd for any two distinct $x, y \in A$. Let

$$B = \{x \cup \{n+1\} : x \in A\}.$$
Then $|b| = r + 1$ is odd for all $b \in B$, and $|b \cap b'|$ is even for any two distinct $b, b' \in B$. We have

$$|A| = |B| \leq n + 1,$$

by Theorem 3.

If r is even, and $A \subset [n]^{(r)}$ is such that $|x \cap y|$ is even for any two distinct $x, y \in A$, then we can achieve

$$|A| = \binom{(n - 1)/2}{r/2},$$

so we can again get exponential growth. The following table summarizes the situation:

<table>
<thead>
<tr>
<th>r even</th>
<th>r odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>x \cap y</td>
</tr>
<tr>
<td>$</td>
<td>x \cap y</td>
</tr>
<tr>
<td>$</td>
<td>A</td>
</tr>
</tbody>
</table>

It is natural to ask: does this phenomenon generalize to other moduli than 2? The answer is yes, for prime moduli (and prime power moduli, though we will not prove this).

Theorem 4 (Frankl-Wilson). Let p be prime. Let $A \subset [n]^{(r)}$ such that $|x \cap y| \equiv \lambda_1, \lambda_2, \ldots, \lambda_s \pmod{p}$ for any two distinct $x, y \in A$, where $\lambda_i \not\equiv r \pmod{p}$ for all i. Then

$$|A| \leq \binom{n}{s}.$$

Proof. Again, we will construct a linearly independent set of size $|A|$ in a vector space V of dimension at most $\binom{n}{s}$. This time, we work over \mathbb{R}, unless otherwise stated. We first build a useful ‘store’ of legal matrices by left multiplication.

Let V be the row-space of $N(s, r)$ over \mathbb{R}. (This time, we work over \mathbb{R}, unless otherwise stated.) Since $N(s, r)$ has $\binom{n}{s}$ rows, we clearly have $\dim(V) \leq \binom{n}{s}$. (In fact, $\dim(V) = \binom{n}{s}$, though we will not need this.)

We will find $|A|$ linearly independent points in V; these will be rows of a matrix M whose row-space is in V. In fact, our matrix M will be an integer matrix with rows and columns indexed by $[n]^{(r)}$, with row-space in V, and entries depending only on $|x \cap y|$. The congruence conditions in the theorem will imply that the square minor $M|_A$ (i.e. the square minor whose rows and columns are indexed by A) will be nonsingular over \mathbb{Z}_p (and therefore over \mathbb{R}).

We call a matrix B with columns indexed by $[n]^{(r)}$ ‘legal’ if its row space is contained within V. Note that multiplying the matrix $N(s, r)$ on the left by a real matrix whose columns are indexed by $[n]^{(s)}$ always produces a legal matrix, since the rows of the product are then real linear combinations of the rows of $N(s, r)$. We first build a useful ‘store’ of legal matrices by left multiplication.
We claim that for any \(i \leq s \), the matrix \(N(i, r) \) is a legal matrix. Indeed, for any \(x \in [n]^{(i)} \) and any \(y \in [n]^{(r)} \), we have

\[
(N(i, s)N(s, r))_{x,y} = \sum_{z \in [n]^{(s)}} 1_{x \subseteq z} 1_{y \subseteq z} = \begin{cases} \binom{r-i}{s-i}, & \text{if } x \subseteq y; \\ 0, & \text{if } x \not\subseteq y. \end{cases}
\]

Hence,

\[
N(i, s)N(s, r) = \binom{r-i}{s-i}N(i, r).
\]

Since \(\binom{r-i}{s-i} \neq 0 \), we have

\[
N(i, r) = \left(N(i, s)/\binom{r-i}{s-i} \right) N(s, r),
\]

so \(N(i, r) \) is a legal matrix, as claimed.

It follows that the \(\binom{n}{s} \times \binom{n}{s} \) matrix \(M(i) = N(i, s) \top N(i, s) \) is also legal. The \((x, y)\) entry of this matrix is a simple function of \(|x \cap y|\). For any \(x, y \in [n]^{(s)} \),

\[
M(i)_{x,y} = \sum_{z \in [n]^{(i)}} 1_{x \subseteq z} 1_{y \subseteq z} = \binom{|x \cap y|}{i}.
\]

Our matrix \(M \) will be an appropriate real linear combination of the \(M(i) \)'s,

\[
M = \sum_{i=0}^{s} M(i),
\]

where \(a_i \in \mathbb{R} \) for each \(i \leq s \). We have

\[
M_{x,y} = \sum_{i=0}^{s} a_i \binom{|x \cap y|}{i} \quad \forall x, y \in [n]^{(r)}.
\]

Since the polynomials \(\{ \binom{T}{i} : 0 \leq i \leq s \} \) are a basis for the space of real polynomials in \(T \) of degree at most \(s \), for any polynomial \(Q(T) \in \mathbb{R}[T] \) of degree at most \(s \), we can choose \(a_i \)'s such that

\[
M_{x,y} = Q(|x \cap y|) \quad \forall x, y \in [n]^{(r)}.
\]

Choose \(Q(T) = (T - \lambda_1)(T - \lambda_2) \ldots (T - \lambda_s) \), and choose the \(a_i \)'s accordingly. Then \(M \) is an integer matrix; we have

\[
M_{x,y} = (|x \cap y| - \lambda_1)(|x \cap y| - \lambda_2) \ldots (|x \cap y| - \lambda_s) \quad \forall x, y \in [n]^{(r)}.
\]

Let \(M|A \) be the submatrix of \(M \) whose rows and columns are indexed by sets in \(A \). We claim that the rows of \(M|A \) are linearly independent over \(\mathbb{R} \). Indeed, if \(x, y \in A \), we have

\[
M_{x,y} \begin{cases} \not\equiv 0 \text{ (mod. } p) & \text{if } x = y, \text{ since no } \lambda_i \equiv r \text{ (mod. } p); \\ \equiv 0 \text{ (mod. } p) & \text{if } x \neq y, \text{ since } |x \cap y| \equiv \text{ some } \lambda_i \text{ (mod. } p). \end{cases}
\]

4
so \(\det(M|_A) \not\equiv 0 \pmod{p} \), so \(\det(M|_A) \not\equiv 0 \), so its rows are linearly independent over \(\mathbb{R} \). It follows that the rows of \(M \) indexed by \(A \) are linearly independent over \(\mathbb{R} \), so \(M \) has rank at least \(|A| \). But the row space of \(M \) (over \(\mathbb{R} \)) is a subspace of \(V \), which has dimension at most \(\binom{n}{s} \), proving the theorem.

Remark. For any fixed \(r \) and \(s \), the bound \(\binom{n}{s} \) is essentially best possible. To see this, let \(s \leq r \), and choose any prime \(p > r \). Take \(\lambda_i = r - s + i - 1 \) (1 \(\leq i \leq s \)), and take

\[
A = \{ x \in [n]^{(r)} : \lfloor r - s \rfloor \subset x \}.
\]

Then

\[
|A| = \binom{n - r + s}{s} = (1 + O(1/n)) \binom{n}{s}
\]

if \(r \) and \(s \) are fixed.

Remark. The hypothesis \(\lambda_i \not\equiv r \pmod{p} \) is essential: if \(\lambda_1 \equiv r \pmod{p} \), say, then we can get

\[
|A| = \binom{\lfloor (n - \lambda_1)/p \rfloor}{(r - \lambda_1)/p},
\]

which is exponential in \(n \) if \(r = \lfloor \alpha n \rfloor \), for some fixed \(\alpha \in (0, 1) \).

Remark. The Frankl-Wilson Theorem also holds if \(p \) is replaced by a prime power. Amazingly, it is false when \(p \) is replaced by a product of at least two distinct primes, e.g. 6. (Grolmusz, 2000.) This indicates that the phenomenon is ‘genuinely’ a number-theoretic / algebraic one, not just a combinatorial one.

Corollary 5 (Ray-Chaudhury-Wilson). Let \(A \subset [n]^{(r)} \) such that \(|x \cap y| \in L \) for all distinct \(x, y \in A \), where \(L \subset \{0, 1, 2, \ldots, r - 1\} \) with \(|L| = s \). Then

\[
|A| \leq \binom{n}{s}.
\]

Proof. Apply the Frankl-Wilson Theorem with any prime \(p > r \). □

Explicit Ramsey constructions

In 1930, Ramsey proved the celebrated

Theorem 6 (Ramsey’s Theorem). For any \(t \in \mathbb{N} \), there exists \(n \in \mathbb{N} \) such that whenever the edges of the complete graph on \(n \) vertices are coloured red and blue, there must be a monochromatic \(K_t \).

This was the birth of Ramsey Theory, a rich and beautiful area of mathematics dealing with ‘finding order in chaos’. The common phenomenon is that ‘total disorder is impossible’: if any sufficiently large structure (e.g. a complete graph) is partitioned into a bounded number of pieces, there must be a largish ‘substructure’ of the original structure (e.g. a complete subgraph) contained within one of the pieces.

Back to Ramsey’s Theorem. For each \(t \in \mathbb{N} \), we define the Ramsey number \(R(t) \) of \(t \) to be the least integer \(n \) such that whenever the edges of \(K_n \) are 2-coloured, there exists a monochromatic \(K_t \).
Estimating the rate of growth of \(R(t) \) accurately is one of the most infamous open problems in combinatorics. Erdős and Szekeres gave a simple argument showing that
\[
R(t) \leq \left(\frac{2t - 2}{t - 1}\right) \leq 2^{2t - 2}.
\]
(To do this, for any \(s, t \in \mathbb{N} \), define \(R(s, t) \) to be the minimum \(n \in \mathbb{N} \) such that whenever the edges of \(K_n \) are coloured red and blue, there exists a red \(K_s \) or a blue \(K_t \). It is easy to see that \(R(s, t) \leq R(s - 1, t) + R(s, t - 1) \); it follows by induction on \(s + t \) that \(R(s, t) \leq \left(\frac{s + t - 2}{s - 1}\right) \).

An exponential lower bound was proved by Erdős, using one of the first applications of the probabilistic method in combinatorics. Namely, if the edges of \(K_n \) are coloured red and blue independently at random, with probability \(\frac{1}{2} \) of each colour, then the expected number of monochromatic \(K_t \)'s is
\[
\left(\frac{n}{t}\right)^2 2^{1 - \frac{t}{2}} \frac{n^t}{t!} = 2^{1 + \frac{t}{2}} \left(\frac{n}{2^{t/2}}\right)^t.
\]
This is \(< 1 \) if \(n \leq 2^{t/2} \), provided \(t \geq 3 \). Hence, under these conditions, there exists at least one red/blue colouring containing no monochromatic \(K_t \), and therefore
\[
R(t) > 2^{t/2} \forall t \geq 3.
\]
Thinking of the red edges in a colouring of \(K_n \) as the edges of a graph \(G \), and the blue edges as the edges of the complement \(\bar{G} \), we make the following

Definition. We say that a graph \(G = (V, E) \) is \(t \)-Ramsey if it contains no clique of order \(t \) and no independent set of order \(t \).

Definition. If \(G = (V, E) \) is a graph, a subset of \(V \) is said to be homogeneous if it is a clique or an independent set.

Erdős’ argument above implies that if \(n = o(2^{t/2}) \), if we select a graph \(G \) at uniformly at random from the set of all (labelled) graphs on \(\lfloor n \rfloor \), then \(G \) is \(t \)-Ramsey with high probability. (Throughout this course, ‘with high probability’ will mean ‘with probability tending to 1 as \(n \to \infty \).’) To see this, observe that choosing a graph uniformly at random from the set of all labelled graphs on \(\lfloor n \rfloor \) is equivalent to including every edge of \(K_n \) independently with probability \(1/2 \); this is of course the usual ‘Erdős-Renyi’ random graph\(^1\) \(G(n, 1/2) \). Let the random variable \(X \) denote the number of homogeneous \(t \)-sets in \(G(n, 1/2) \). If \(n = o(2^{t/2}) \), then
\[
\mathbb{E}X < \frac{2^{1 + t/2}}{t!} \left(\frac{n}{2^{t/2}}\right)^t = o(1).
\]
By Markov’s inequality,
\[
\mathbb{P}\{X \geq 1\} \leq \mathbb{E}X,
\]
and therefore \(\mathbb{P}\{X \geq 1\} = o(1) \). In other words, with high probability, \(G(n, 1/2) \) contains no homogeneous \(t \)-set, i.e. is \(t \)-Ramsey.

We now ask the following

Question. Can we explicitly construct large \(t \)-Ramsey graphs?

\(^1\)Recall that if \(n \in \mathbb{N} \) and \(0 \leq p \leq 1 \), we define the Erdős-Renyi random graph \(G(n, p) \) by independently placing each edge of \(K_n \) in \(G \), with probability \(p \).
Explicit constructions of large t-Ramsey graphs are notoriously hard to come by. For a while, no explicit constructions of order superlinear in t were known.

Nagy then gave the following explicit construction of a t-Ramsey graph on $(t-1)/3$ vertices. Our vertex-set will be $[t-1]^{(3)}$; we join two sets $x, y \in [t-1]^{(3)}$ by an edge if and only if $|x \cap y| = 1$. By Corollary 5, any clique has order at most $t-1$. An independent set I has $|x \cap y|$ even for all distinct $x, y \in I$; so by Theorem 3, $|I| \leq t-1$. This construction is a t-Ramsey graph of order $(t-1)/3$.

The best known completely explicit construction to date gives $R(t) > t^{c \log t / \log \log t}$, where $c > 0$ is an absolute constant. This grows faster than any polynomial in t, but is still a long way from exponential growth. It is a generalization of Nagy’s construction by Frankl and Wilson, using their theorem above to show that it has the required properties.

Our vertex-set will be $[m]^{(r)}$, so $N = \binom{m}{r}$, for some m, r to be chosen later. Choose a prime p, and choose $r \equiv -1 \pmod{p}$. Join x and y if and only if $|x \cap y| \equiv -1 \pmod{p}$. By the Frankl-Wilson theorem, any independent set has order at most $\binom{m}{p-1}$. If we choose $r = p^2 - 1$, then the edges correspond to $|x \cap y| = p - 1, 2p - 1, \ldots, (p-1)p - 1$, so a clique corresponds to an L-intersecting family with $|L| = p - 1$, and therefore has size at most $\binom{m}{p-1}$ by Corollary 5. This construction gives

$$R\left(\binom{m}{p-1} + 1\right) > \binom{m}{p^2 - 1}.$$

Choosing $m = p^3$ gives

$$R\left(\binom{p^3}{p-1} + 1\right) > \binom{p^3}{p^2 - 1}.$$

It follows that $R(t) > t^{c \log t / \log \log t}$ for all $t \in \mathbb{N}$, where $c > 0$ is an absolute constant, as required.

Remark. In 2006, Barak, Rao, Shaltiel and Wigderson gave constructions of t-Ramsey graphs of higher order, but these constructions are not totally explicit.

It turns out that graphs arising from algebraic structures often mimic the ‘large-scale’ behaviour of random graphs, though on a ‘small-scale’, they are highly non-random. This theme will occur later in the course, when we give algebraic constructions of bounded-degree ‘expander graphs’, graphs which, like random graphs, have a ‘large’ number of edges in every cut.

The chromatic number of \mathbb{R}^N

Consider the graph G on \mathbb{R}^N where we join x and y if $d(x,y) = 1$. (Here, d denotes the Euclidean distance.) What is the chromatic number, $\chi(\mathbb{R}^N)$, of this graph?
For $N = 2$, it is known only that

$$4 \leq \chi(\mathbb{R}^2) \leq 7.$$

(Proving that $\chi(\mathbb{R}^2) > 3$ is a nice exercise. One can prove that $\chi(\mathbb{R}^2) \leq 7$ by tiling \mathbb{R}^2 with regular hexagons of diameter slightly smaller than 1, and then colouring the hexagons appropriately.)

The value of $\chi(\mathbb{R}^2)$ may in fact depend upon the axiom of choice! Shelah and Soifer [1] constructed a similar ‘distance’ graph G' on \mathbb{R}^2, where $xy \in E(G')$ if and only if $d(x, y)$ lies in a certain set of reals, where the value of $\chi(G')$ depends on whether one uses the axiom of choice. (To be precise, there are models of ZF, without the axiom of choice, where $\chi(G')$ is greater than the value when the axiom of choice is assumed.)

Can we estimate $\chi(\mathbb{R}^N)$? We have the following upper bound:

Theorem 7. If N is sufficiently large, then $\chi(\mathbb{R}^N) \leq 20^N$.

Proof. First, partition \mathbb{R}^N into small N-dimensional cubes C_a of side-length $1/\sqrt{N}$:

$$C_a = \{ v \in \mathbb{R}^N : a_j/\sqrt{N} \leq v_j < a_j/\sqrt{N} \ \forall j \in [N] \} \quad (a \in \mathbb{Z}^N).$$

Note any two points in the same small cube are a distance < 1 apart. Now we colour the cubes: formally, we colour the (infinite) graph H with vertex-set \mathbb{Z}^N, where a and b are joined if there is a point in C_a which is distance 1 from some point in C_b. We colour this graph greedily, in order of increasing $|a|$. Clearly, the graph H is regular; we claim that it has degree less than 20^N, for N sufficiently large. To see this, simply observe that for fixed $a \in \mathbb{Z}^N$, all cubes C_b containing a point of distance 1 from some point in C_a must lie within a distance 3 from the bottom-left corner v_a of C_a. The number of such cubes is at most

$$\frac{\text{vol}(B_N(0, 3))}{\text{vol}(C_b)}.$$

Recall that the volume of the ball of radius R in \mathbb{R}^N is

$$\frac{\pi^{N/2} R^N}{\Gamma(N/2 + 1)},$$

where $\Gamma(t)$ denotes the Gamma function, which satisfies $\Gamma(t + 1) = t!$ for all $t \in \mathbb{N}$. Hence,

$$\frac{\text{vol}(B_N(0, 3))}{\text{vol}(C_a)} = \frac{\pi^{N/2} 3^N}{\Gamma(N/2 + 1) N^{N/2}} < 20^N,$$

provided N is sufficiently large. So the degree of H is less than 20^N, as claimed. Hence, the greedy algorithm uses at most 20^N colours to properly colour H. This gives a proper colouring of \mathbb{R}^N, proving the theorem.

What about lower bounds? If we are allowed to use the axiom of choice, then a compactness argument (first given by de Bruijn and Erdős) shows that $\chi(\mathbb{R}^N)$ is equal to the maximum of the chromatic numbers of its finite subgraphs, so if we wish to obtain a lower bound, there is no loss in restricting our attention to finite subgraphs.
Theorem 8 (The de Bruijn-Erdős Theorem). Let $G = (V, E)$ be an arbitrary graph (where V may be infinite, even uncountable). Then

$$\chi(G) = \max \{\chi(H) : H \text{ is a finite subgraph of } G\}.$$

Proof. It suffices to show that if every finite subgraph of G is k-colourable, then so is G. Suppose then that every finite subgraph of G is k-colourable. Let

$$X = [k]^V$$

be the set of all functions $V \to [k]$. Endow $[k]$ with the discrete topology, and $[k]^V$ with the product topology. Note that the sets of the form

$$\{f \in [k]^V : f|_U = g\},$$

where $U \subset V$ is finite and $g : U \to [k]$, form a basis of open sets in the product topology on $[k]^V$.

Trivially, $[k]$ is compact. Tychonoff’s theorem states that a product of compact spaces is compact, so $[k]^V$ is compact. Recall that a collection of sets is said to have the finite intersection property if any finite subcollection has nonempty intersection, and that a topological space is compact if and only if every collection of closed sets with the finite intersection property has nonempty intersection.

For each finite subset $U \subset V$, let A_U be the set of functions $f : V \to [k]$ such that $f|_U$ defines a proper colouring of the finite subgraph $G[U]$. Observe that each set A_U is closed (and, in fact, open). Moreover, the collection

$$\{A_U : U \subset V, U \text{ finite}\}$$

has the finite intersection property. Indeed, if $(U_i)_{i=1}^m$ is a collection of finite sets, then $G[U_i \cup \cap_{i=1}^m U_i]$ is a finite subgraph of G, and therefore k-colourable. A corresponding k-colouring is an element of $\cap_{i=1}^m A_{U_i}$.

By the compactness of $[k]^V$, Tychonoff’s theorem, and the finite intersection property, we may conclude that

$$\bigcap_{U \subset V, U \text{ finite}} A_U \neq \emptyset.$$

An element of this intersection is precisely a proper k-colouring of G, so G is k-colourable, as required. \square

Recall that (given the other axioms of ZF set theory), Tychonoff’s theorem is equivalent to the axiom of choice. The de Bruijn-Erdős theorem relies upon the axiom of choice: there are models of ZF (without the axiom of choice) in which the de Bruijn-Erdős theorem does not hold (see Shelah and Soifer, [1],).

Frankl and Wilson proved the following:

Theorem 9. If N is sufficiently large, then there exists a finite subset $S \subset \mathbb{R}^N$ such that $\chi(G[S]) \geq 1.05^N$.

They proved this by explicitly constructing a finite subset $S \subset \mathbb{R}^N$ such that any independent set $S' \subset S$ has $|S'|/|S| \leq 1.05^{-N}$.

They used an easy consequence of the Frankl-Wilson theorem. Namely, if $n = 4p$ for some prime p, then a family of half-sized subsets of $[n]$ in which we forbid an intersection of size exactly $n/4$ contains an exponentially small fraction of all the half-sized sets.
Corollary 10. Let p be prime. Suppose $A \subset [4p]^{(2p)}$ such that $|x \cap y| \neq p$ for any two distinct $x, y \in A$. Then

$$|A| \leq 2 \left(\frac{4p}{p-1} \right).$$

Proof. First remove one set from each pair $\{x, x^c\} \subset A$ to produce a family $B \subset A$ with $|B| \geq \frac{1}{2}|A|$ and $x \cap y \neq \emptyset$ for any two $x, y \in B$. Then we have $|x \cap y| \not\in \{0, p, 2p\}$ for any two distinct $x, y \in B$, so $|x \cap y| \not\equiv 0 \pmod{p}$ for any two distinct $x, y \in B$. Since $2p \equiv 0 \pmod{p}$, by the Frankl-Wilson Theorem,

$$|B| \leq \left(\frac{4p}{p-1} \right).$$

Hence,

$$|A| \leq 2 \left(\frac{4p}{p-1} \right),$$

as required.

Remark. We have

$$\frac{2 \left(\frac{4p}{p-1} \right)}{\left(\frac{4p}{2p} \right)} = \Theta \left(\frac{\left(\frac{4p}{p} \right)}{\left(\frac{4p}{2p} \right)} \right) = \Theta(2^{-4p(1-H_2(1/4))}) = \Theta((\frac{16}{27})^p),$$

where $H_2(t) = t \log_2(1/t) + (1-t) \log_2(1/(1-t))$ denotes the binary entropy function.

Observe that if x and y are chosen independently and uniformly at random from $[4p]^{(2p)}$, their expected intersection size is p. Although two sets chosen independently and uniformly at random are unlikely to have intersection of size exactly p, once we have more than an exponentially small fraction of all $(2p)$-sets, an intersection of size exactly p is guaranteed.

Proof of Theorem 9: We use Corollary 10 to construct a finite subset $S \subset \mathbb{R}^N$ in which any independent set $S' \subset S$ (i.e., a set in which no two points have distance 1 apart) has $|S'| \leq 1.05^{-N}|S|$.

First, observe that if $M \leq N$, we can embed the M-dimensional discrete cube in \mathbb{R}^N by identifying $P([M])$ with $\{0, 1\}^M$ in the usual way; we have

$$d(x, y) = \sqrt{|x \Delta y|} \quad \forall x, y \in \mathcal{P}([M]).$$

If we restrict ourselves to a subset of $[M]^{(k)}$ for some $k \leq M$, i.e. to a single layer of $\{0, 1\}^M$, then

$$d(x, y) = \sqrt{|x \Delta y|} = \sqrt{2(k - |x \cap y|)} \quad \forall x, y \in [M]^{(k)},$$

so the distance between two points is determined by the size of the intersection of the corresponding sets. Choose $M = 4p$, where p is prime, and choose $k = 2p$. We know that any family $A \subset [4p]^{(2p)}$ in which $|x \cap y| \neq p$ for any $x, y \in A$ has exponentially small fractional size. Since

$$d(x, y) = \sqrt{|x \Delta y|} = \sqrt{2(2p - |x \cap y|)} \quad \forall x, y \in [4p]^{(2p)},$$

10
banning $|x \cap y| = p$ corresponds to banning distance $\sqrt{2p}$. Scaling our set by a factor of $1/\sqrt{2p}$ therefore produces a set $S \subset \mathbb{R}^{4p}$ in which any set with no unit distance has exponentially small fractional size. Formally, let
\[S = \left\{ \frac{1}{\sqrt{2p}} \chi_x : x \in [4p]^{(2p)} \right\} \subset \mathbb{R}^N; \]
then by Corollary 10, an independent set $S' \subset S$ has size
\[|S'| \leq 2 \left(\begin{array}{c} 4p \\ p-1 \end{array} \right). \]
Hence,
\[\frac{|S'|}{|S|} \leq \frac{2 \left(\begin{array}{c} 4p \\ p-1 \end{array} \right)}{\left(\begin{array}{c} 4p \\ p \end{array} \right)} = \Theta((\frac{16}{27})^p). \]
Now choose p to be the largest prime $\leq N/4$. Recall Bertrand's Postulate (actually a theorem of Chebychev): for any real $t \geq 1$, there exists a prime p between t and $2t$. It follows that $p \geq N/8$. Hence,
\[\frac{|S'|}{|S|} \leq \Theta((\frac{16}{27})^{N/8}). \]
Since each colour-class in a proper colouring of $G[S]$ is an independent set, it follows that the number of colours required on S is at least
\[\frac{(\frac{4p}{p})}{2(\frac{4p}{p-1})} = \Theta((\frac{27}{16})^p) \geq \Theta((\frac{27}{16})^{N/8}) \geq 1.05^N, \]
provided N is sufficiently large. \(\square\)

Remark. The best known bounds are
\[(1.239... + o(1))^N \leq \chi(\mathbb{R}^N) \leq (3 + o(1))^N. \]
The lower bound is due to Raigorodsky, and the upper bound to Larman and Rogers.

Borsuk’s Problem

If S is a bounded subset of \mathbb{R}^N, we define the *diameter*
\[\text{diam}(S) = \sup_{x,y \in S} d(x,y), \]
where d denotes the Euclidean distance. Suppose we wish to decompose a bounded subset $S \subset \mathbb{R}^N$ into as few pieces as possible, such that each piece has diameter strictly less than the diameter of S. We write $b(S)$ for the number of pieces required. How large can $b(S)$ be?

Let
\[a(N) = \max\{b(S) : S \text{ is a bounded subset of } \mathbb{R}^N\} \]
denote the maximum possible number of pieces required to decompose a bounded subsets of \mathbb{R}^N into pieces with strictly smaller diameter.
It is easy to see that \(a(N) \geq N + 1 \) for all \(N \in \mathbb{N} \): just exhibit an equilateral set of \(N + 1 \) points in \(\mathbb{R}^N \), meaning a set in which all the distances are the same. In \(\mathbb{R}^2 \), this is simply an equilateral triangle. It is an easy exercise to construct an equilateral set of size \(N + 1 \) in \(\mathbb{R}^N \).

Borsuk proved in 1932 that \(a(2) = 3 \): in other words, every bounded subset \(S \subset \mathbb{R}^2 \) can be decomposed into at most 3 pieces with diameter strictly smaller than \(S \). He asked whether \(a(N) = N + 1 \) for all \(N \in \mathbb{N} \). Eggleston proved in 1955 that \(a(3) = 4 \), and for a long time, it was believed that \(a(N) = N + 1 \) for all \(N \in \mathbb{N} \). It turns out that if \(S \) is

- smooth and convex,
- centrally symmetric (\(x \in S \Rightarrow -x \in S \)),

then \(S \) can be broken into at most \(N + 1 \) pieces, each with diameter strictly less than the diameter of \(S \).

Amazingly, Kahn and Kalai proved that in general, \(a(N) \geq c \sqrt{N} \) for some absolute constant \(c > 1 \); in fact, they gave an explicit construction of a finite subset \(S \subset \mathbb{R}^N \) which must be broken into at least \(c \sqrt{N} \) pieces, if we wish each piece to have diameter strictly smaller than the diameter of \(S \).

Theorem 11 (Kahn, Kalai). There exists an absolute constant \(c > 1 \) such that for all \(N \in \mathbb{N} \), \(a(N) \geq c \sqrt{N} \). In fact, there exists a finite subset \(S \subset \mathbb{R}^N \), such that breaking \(S \) into pieces with diameter strictly smaller than the diameter of \(S \) requires at least \(c \sqrt{N} \) pieces.

Remark. Our proof, examined carefully, gives a negative answer to Borsuk’s question for \(N \geq 298 \).

Proof. We will construct a finite subset \(S \subset \mathbb{R}^N \), such that any set \(S' \subset S \) with \(\text{diam}(S') < \text{diam}(S) \) has \(|S'|/|S| \leq c^{-\sqrt{N}} \). In fact, we’ll go for \(S \subset \{0,1\}^M \) where \(N/4 \leq M \leq N \): our set \(S \) will be a subset of a discrete cube (possibly of dimension slightly less than \(N \)). We have

\[
d (\chi_A, \chi_B) = \sqrt{|A \Delta B|} \quad \forall A, B \in \mathcal{P}([M]),
\]

so again, the distance between two points is determined by (indeed, is a strictly increasing function of) the symmetric difference of the corresponding sets. So we’ll look for a family \(S \subset \mathcal{P}([M]) \) such that any subfamily \(S' \subset S \) with

\[
\max_{A, B \in S'} |A \cap B| < \min_{A, B \in S} |A \Delta B|
\]

has size \(|S'| \leq c^{-\sqrt{N}} |S| \).

As before, we will just use sets in a single layer of the cube, so that distance between points is determined by the size of the intersection of the corresponding sets. If \(S \subset \{0,1\}^M \), then we have

\[
d (\chi_A, \chi_B) = \sqrt{|A \Delta B|} = \sqrt{2(k - |A \cap B|)} \quad \forall A, B \in S,
\]

so \(|A \Delta B| \) is a strictly decreasing function of \(|A \cap B| \), and our task becomes to construct a family of subsets \(S \subset \{0,1\}^M \) such that any subfamily \(S' \subset S \) with

\[
\min_{A, B \in S'} |A \cap B| > \min_{A, B \in S} |A \cap B|
\]

12
has size $|S'| \leq c^{-\sqrt{N}}|S|$.

We know that if we have a family of $n/2$-sized subsets of $[n]$ (where $n = 4p$), and we ‘ban’ intersections of exactly the ‘average’ size $n/4$, the family must have exponentially small fractional size; this was what enabled us to bound the chromatic number of \mathbb{R}^N from below. But now we wish to ‘ban’ intersections of exactly the minimum size. The idea of Kahn and Kalai was to build S out of another set-system \mathcal{A}, such that ‘average’-sized intersections in \mathcal{A} correspond to minimum-sized intersections in S. To do this, we take $M = \binom{4p}{2}$, where p is the maximal prime such that $\binom{4p}{2} \leq N$, and we identify $\{1, 2, \ldots, M\}$ with $E(K_{4p})$, the edge-set of the complete graph on $\{1, 2, \ldots, 4p\}$. We take our family to be

$$S = \{E(K_{x,x'}) : x \in [4p]^{(2p)}\},$$

the collection of all edge-sets of $2p \times 2p$ complete bipartite subgraphs of K_{4p}.

We then have

$$|E(K_{x,x'}) \cap E(K_{y,y'})| = |x \cap y||x^c \cap y^c| + |x \cap y^c||x^c \cap y|.$$

For any $x, y \in [4p]^{(2p)}$, we have $|x \cap y| = |x^c \cap y^c|$, and therefore

$$|E(K_{x,x'}) \cap E(K_{y,y'})| = |x \cap y|^2 + |x \cap y^c|^2 = |x \cap y|^2 + (m/2 - |x \cap y|)^2.$$

This is minimized precisely when $|x \cap y| = p$, where its value is $2p^2$. So ‘average’-sized intersections in \mathcal{A} correspond exactly to minimum-sized intersections in S! We just pay a small price: the ‘real’ ground set now has size $4p = \Theta(\sqrt{N})$, so we get a lower bound of $c^{\sqrt{N}}$, rather than c^N as in the chromatic number problem.

Now for the details. Let $S' \subset S$ with

$$\min_{A,B \in S'} |A \cap B| > \min_{A,B \in S} |A \cap B|.$$

Let

$$\mathcal{A} = \{x \in [4p]^{(2p)} : E(K_{x,x'}) \in S'\}.$$

Then $|\mathcal{A}| = 2|S'|$, and we have $x \cap y \neq p$ for any $x, y \in \mathcal{A}$. So by Corollary 10, we have

$$|\mathcal{A}| \leq 2 \left(\frac{4p}{p-1}\right).$$

Since $|S| = \frac{1}{2}\binom{4p}{2}$, we have

$$\frac{|S'|}{|S|} = \frac{|\mathcal{A}|}{\binom{4p}{2}} \leq \frac{2(4p/p-1)}{\binom{4p}{2}} = \Theta((\frac{16}{27})p).$$

Recall that p was chosen to be the maximal prime such that $M = \binom{4p}{2} \leq N$. By Bertrand’s postulate, $p > \sqrt{N}/8$, and therefore

$$|S'|/|S| \leq \Theta((\frac{16}{27})N/8) \leq c^{-\sqrt{N}},$$

where $c > 1$ is an absolute constant.

It follows that we need at least $c^{\sqrt{N}}$ pieces to break S into pieces each of diameter strictly smaller than that of S, proving the theorem.
What about upper bounds on $a(N)$? It is easy to obtain an upper bound of the form
\[a(N) \leq C^N, \]
for some absolute constant $C > 1$:

Lemma 12. There exists an absolute constant C such that $a(N) \leq C^N$ for any $N \in \mathbb{N}$.

Proof. We must show that any subset $S \subset \mathbb{R}^N$ can be broken into at most C^N pieces, each with diameter strictly less than the diameter of S. Without loss of generality, we may assume that $\text{diam}(S) = 1$, and that $0 \in S$. Hence, $S \subset B(0,1)$. Our aim is simply to cover $B(0,1)$ with at most C^N balls of radius 1/4.

To do this, let $Y \subset B(0,1)$ be a maximal subset of $B(0,1)$ such that $d(y,y') > 1/4$ for any two distinct $y,y' \in Y$. Note that the set of all closed balls of radius 1/4 and centre in Y covers $B(0,1)$. Indeed, if there exists $v \in B(0,1) \setminus \bigcup_{y \in Y} B(y,1/4)$, then $d(v,y) > 1/4 \forall y \in Y$, so we could add v to Y while still maintaining the property $d(y,y') > 1/4$ for all distinct $y,y' \in Y$, contradicting the maximality of Y. So we have covered $B(0,1)$ by $|Y|$ balls of radius 1/4. A simple volume-packing argument gives us an upper bound on $|Y|$. Observe that the closed balls of radius 1/8 and centre in Y are all pairwise disjoint, and lie in the ball $B(0,1 + 1/8)$. It follows that
\[|Y| \leq \frac{\text{vol}(B(0,9/8))}{\text{vol}(B(0,1/8))} = 9^N. \]

The sets
\[\{S \cap B(y,1/4)\} \quad (y \in Y) \]
cover S, so there exists a partition of S into at most 9^N parts in which each part has diameter at most 1/2, proving the lemma.

The best upper bound is $a(N) \leq (\sqrt[3]{\frac{3}{2}} + o(1))^N$, due to Schramm. It is conjectured that the lower bound can be improved:

Conjecture 1. There exists an absolute constant $c > 1$ such that $a(N) \geq c^N$ for all $N \in \mathbb{N}$.

Grolmusz’ construction.

Babai and Frankl conjectured that the Frankl-Wilson theorem holds for all composite moduli, not just primes and prime powers. A special case of this is as follows:

Conjecture 2 (Babai, Frankl). Let $m \geq 2$. If $\mathcal{A} \subset [n]^{(r)}$ is such that $|x \cap y| \neq r \pmod. m$ for any two distinct $x,y \in \mathcal{A}$, then
\[|\mathcal{A}| \leq \binom{n}{m-1}. \]

Surprisingly, this turned out to be false whenever m is a product of at least 2 distinct primes, demonstrating that the Frankl-Wilson theorem is an intrinsically number-theoretic / algebraic phenomenon, not just a combinatorial one.
Theorem 13 (Grolmusz, 1999). If m is a product of $k \geq 2$ distinct primes, then for infinitely many n, there exists $r \equiv 0 \pmod{m}$ and a family $A \subset [n]^{(r)}$ with $|x \cap y| \neq 0 \pmod{m}$ for any two distinct $x, y \in A$, and size

$$|A| \geq \exp(c_m (\log n)^k / (\log \log n)^{k-1}),$$

where $c_m > 0$ is a constant depending upon m alone.

Remark. This grows faster than any polynomial in n.

Our strategy is to take a family A of size l^N, with sets corresponding to functions from $[N]$ to $[l]$, i.e. $[l]^{[N]}$.

For each subset $T \subset [N]$, we fix a non-negative integer a_T (we’ll choose these later). Now for each $T \subset [N]$, and for each function $g \in [l]^T$, we take $l^{|T|}$ disjoint blocks $B_T(g)$ of size a_T, one for each function $g \in [l]^T$. (We call these blocks the T-blocks. Note that all the T blocks are disjoint from all the T'-blocks, for $T \neq T'$. If we happened to choose $a_T = 0$, we don't take any T-blocks.) The union of all the blocks forms our ground-set X; it has size

$$n = |X| = \sum_{T \subset [N]} a_T l^{|T|}.$$

We now define our set-system A. For each function $f : [N] \to [l]$ let $f|_T \in [l]^T$ denote the restriction of f to T. We associate with f the set

$$x_f = \bigcup_{T \subset [N]} B_T(f|_T) \subset X,$$

and we let

$$A = \{x_f : f \in [l]^{[N]}\}.$$

Note that $|A| = l^N$, and each set in A has size

$$\sum_{T \subset [N]} a_T.$$

If we choose $a_T = 0$ for large $|T|$, then n will be much smaller than $|A|$. For any $f, g \in [l]^{[N]}$, f and g contain the same T-block if and only if they have the same restriction to T, i.e. $f|_T = g|_T$. So

$$|x_f \cap x_g| = \sum_{T : f|_T = g|_T} a_T = \sum_{T \subset S : f(i) = g(i)} a_T.$$

Therefore, the size of the intersection of x_f and x_g is determined purely by the set of coordinates on which f and g agree.

Our task is to choose the a_T's such that $|x_f \cap x_g| \equiv 0 \pmod{m}$ if and only if $f = g$, so we need

$$\sum_{T \subset S} a_T \equiv 0 \pmod{m} \iff S = [N].$$

Since this condition is a modulo-m congruence condition, we may as well choose $a_T \in \{0, 1, \ldots, m-1\}$ for each T. In addition, to ensure that n is small compared
to \(A \), we need to ensure that \(a_T = 0 \) for all \(|T| > d \), for some \(d \) not too large. We will then have
\[
n \leq \sum_{j=0}^{d} \binom{N}{j} l^j (m-1) \leq (m-1)N^d l^d.
\]

For ease of calculation, we’ll choose \(l = N \). We then have
\[
n \leq \sum_{j=0}^{d} \binom{N}{j} N^j (m-1) \leq (m-1)N^{2d} \leq O(N^{2d}),
\]

compared with \(|A| = N^N \). Provided we can satisfy the congruence condition with \(d = o(N) \), we will have \(|A| \) growing faster than any polynomial in \(n \). We will in fact satisfy the congruence condition with \(d = \lfloor (mN)^{1/k} \rfloor \).

What we want is a function from \(\mathcal{P}([N]) \) to \(\mathbb{Z}_{\geq 0} \) of the form
\[
S \mapsto \sum_{T \subset S} a_T \quad (S \subset [N]),
\]

which is zero modulo \(m \) if and only if \(S = [N] \), and has \(a_T = 0 \) for all \(|T| > d \). Identifying subsets of \([N] \) with their characteristic vectors in \(\{0, 1\}^N \), we want to choose \(a_T \)'s such that the function
\[
(z_1, z_2, \ldots, z_N) \mapsto \sum_{T \subset S} a_T \prod_{i \in T} z_i
\]
is zero modulo \(m \) only at \((1, 1, \ldots, 1)\).

In other words, we must construct a multilinear polynomial \(Q(X_1, X_2, \ldots, X_N) \in \mathbb{Z}[X_1, \ldots, X_m] \) with total degree at most \(d = \lfloor (mN)^{1/k} \rfloor \), such that for \(z \in \{0, 1\}^N \),
\[
Q(z) \equiv 0 \pmod{m} \iff z = (1, 1, \ldots, 1).
\]

This leads us to the following general definition:

Definition. If \(Q \in \mathbb{Z}[X_1, \ldots, X_N] \) is a multivariate polynomial, and \(F : \{0, 1\}^N \to \{0, 1\} \) is a Boolean function, we say that \(Q \) represents \(F \) modulo \(m \) if the modulo \(m \) zeros of \(Q \) in \(\{0, 1\}^N \) are precisely the zeros of \(F \), i.e.
\[
\forall z \in \{0, 1\}^N, \quad Q(z) \equiv 0 \pmod{m} \iff F(z) = 0.
\]

So our task is to construct a modulo-\(m \) representation of \(\text{NAND} \), of total degree at most \(d = o(N) \). Sanity check: we had better make sure that we cannot do this \(m \) is prime, otherwise the Frankl-Wilson theorem would be false. If \(m = p \) is prime, and \(Q \) is a polynomial of total degree at most \(d \) representing \(\text{NAND} \) modulo \(p \), then we have
\[
\forall z \in \{0, 1\}^N, \quad Q(z) \equiv 0 \pmod{p} \iff z = (1, 1, \ldots, 1).
\]

By Fermat’s Little Theorem, \(a^{p-1} \equiv 1 \pmod{p} \) for all \(a \neq 0 \pmod{p} \), so the polynomial
\[
R = 1 - Q^{m-1}
\]
satisfies
\[R(z) \equiv \begin{cases} 1 \pmod{p} & \text{if } z = (1, 1, \ldots, 1); \\ 0 \pmod{p} & \text{otherwise.} \end{cases} \]
It is easy to see that such a polynomial \(R \in \mathbb{Z}_p[X_1, \ldots, X_N] \) must have the polynomial \(X_1X_2\cdots X_N \) as a factor, so must have total degree at least \(N \). Hence, \(Q \) must have total degree at least \(N/(p-1) \), i.e. we cannot have \(d = o(N) \).

Now for our construction. Of course, building a low-degree modulo \(m \) representation of \(\text{NAND} \) is equivalent to building a low-degree modulo \(m \) representation of \(\text{OR} \): if \(R(X_1, \ldots, X_N) \) does for \(\text{OR} \), then \(R(1 - X_1, \ldots, 1 - X_N) \) does for \(\text{NAND} \), and has the same total degree. So we will build a low-degree modulo-\(m \) representation of \(\text{OR} \).

Observe that the polynomial
\[
1 - (1 - z_1)(1 - z_2)\cdots(1 - z_N) = \sum_{T \subseteq [N] : |T| \neq 0} (-1)^{|T|} \prod_{i \in T} z_i
\]
is equal to \(OR \), but its total degree, \(N \), is too large. For \(p \) a prime and \(e \in \mathbb{N} \), we form the polynomial
\[
G_p^e(z) = \sum_{T \subseteq [N] : 0 < |T| < p^e} (-1)^{|T|+1} \prod_{i \in T} z_i
\]
by ‘truncating’ \(G \), removing the monomials with total degree \(\geq p^e \). Observe that \(G_p^e \) is really a function of \(s = |\{i \in [N] : z_i = 1\}| \) alone:
\[
G_p^e(s) = \sum_{0 < t < p^e} (-1)^{t+1} \binom{s}{t}.
\]
It has a very useful modulo-\(p \) property, even stronger than being a modulo-\(p \) representation of \(OR \): \(G_p^e(s) \equiv 0 \pmod{p} \) if \(s \equiv 0 \pmod{p^e} \), and \(G_p^e(s) \equiv 1 \pmod{p} \) otherwise. An appropriate linear combination of the \(G_p^e \)'s will be our low-degree representation of \(OR \) modulo \(m \).

Lemma 14. Let \(p \) be prime, and let \(e \in \mathbb{N} \). Then the function
\[
G_p^e(s) = \sum_{0 < t < p^e} (-1)^{t+1} \binom{s}{t}
\]
satisfies
\[
G_p^e(s) \equiv \begin{cases} 0 \pmod{p} & \text{if } s \equiv 0 \pmod{p^e}; \\ 1 \pmod{p} & \text{otherwise.} \end{cases}
\]

Proof. Clearly, \(G_p^e(0) = 0 \), and if \(0 < s < p^e \), then \(G_p^e(s) = 1 - (1 - 1)^s = 1 \), so the lemma holds for all \(0 \leq s < p^e \). Assume now that \(s \geq p^e \). Observe that we may write
\[
\binom{s}{t} = \sum_{j=0}^{t} \binom{p^e}{j} \binom{s - p^e}{t - j}.
\]
We now make the following

Claim. If \(0 < j < p^e \), then
\[
\binom{p^e}{j} \equiv 0 \pmod{p}.
\]
Proof of Claim: We have
\[
\binom{p^e}{j} = \frac{p^e(p^e - 1) \ldots (p^e - j + 1)}{j(j - 1) \ldots (1)}.
\]
Observe that if \(p^a \mid b \) for some \(b < p^e \), then \(p^a \mid p^e - b \). Pairing up the numerator-term \(p^e - b \) with the denominator-term \(b \) for each \(b \), we see that the highest power of \(p \) dividing the numerator is more than the highest power of \(p \) dividing the denominator (\(p^e \) is paired up with \(j < p^e \)). The claim follows.

It follows that
\[
G_{p^e}(s) \equiv G_{p^e}(s - p^e) \pmod{p^e}
\]
whenever \(s \geq p^e \), so the statement of the lemma holds for all \(s \).

We can now construct our low-degree representation of \(OR \) by taking an appropriate linear combination of the \(G_{p^e} \)'s, using the Chinese Remainder Theorem:

Lemma 15. Let \(m = p_1p_2 \ldots p_k \) be a product of \(k \) distinct primes. Then there exists a polynomial \(P \) representing \(OR \) modulo \(m \), with degree at most \(d = \left\lfloor \frac{(mN)^{1/k}}{k} \right\rfloor \).

Proof. By the Chinese Remainder Theorem, we can choose \(c_1, \ldots, c_k \) such that
\[
c_i \equiv 1 \pmod{p_i}
\]
for all \(i \in [k] \), and
\[
c_i \equiv 0 \pmod{p_j}
\]
for all distinct \(i, j \in [k] \).
Define
\[
R(z) = \sum_{i=1}^{k} c_i G_{p_i^{e_i}}(z),
\]
where the \(e_i \)'s are to be chosen later. Of course, like the \(G_{p^e} \)'s, \(R \) is really a function of \(s = |\{i \in [n] : z_i = 1\}| \) alone:
\[
R(s) = \sum_{i=1}^{k} c_i G_{p_i^{e_i}}(s).
\]
We have \(R(s) \equiv 0 \pmod{m} \) if and only if \(R(s) \equiv 0 \pmod{p_i} \) for each \(i \); this occurs if and only if \(G_{p_i^{e_i}}(s) \equiv 0 \pmod{p_i} \) for each \(i \), which occurs if and only if
\[
s \equiv 0 \pmod{p_i^{e_i}} \quad \forall i \in [k].
\]
This occurs if and only if \(\prod_{i=1}^{k} p_i^{e_i} \) divides \(s \). But we always have \(s \leq N \), so all we need to do is to choose the \(e_i \)'s such that
\[
\prod_{i=1}^{k} p_i^{e_i} > N;
\]
we will have \(R(s) = 0 \) if and only if \(s = 0 \). For each prime \(p_i \), simply choose \(e_i \in \mathbb{N} \) maximal such that
\[
p_i^{e_i} \leq (mN)^{1/k}.
\]
We then have
\[
p_i^{e_i} > (mN)^{1/k} / p_i,
\]
so
\[
\prod_{i=1}^{k} p_i^{e_i} > N.
\]
Clearly, R is a modulo-m representation of OR with total degree at most $\lfloor(mN)^{1/k}\rfloor$, completing the proof. The ‘magic’ of modular arithmetic has enabled us to eliminate modulo-m zeros using much lower total degree.

For our low-degree representation of $NAND$ modulo m, we can now take

$$Q(X_1, \ldots, X_N) = R(1 - X_1, \ldots, 1 - X_N),$$

completing our construction.

Note that we have

$$n \leq (m - 1)N^{2d} \leq (m - 1)N^{2(mN)^{1/k}},$$

whereas

$$|A| = N^N.$$

Hence, if m is fixed,

$$|A| \geq \exp\left((1 - o(1)) \frac{k}{(2k)^{k/m} (\log n)^{k-1}} \right),$$

which grows faster than any polynomial in n, provided $k \geq 2$.

Grolmusz’ construction above can be used to construct another explicit t-Ramsey graph of order

$$\exp\left(c \frac{(\log t)^2}{\log \log t} \right),$$

where $c > 0$ is an absolute constant, though the constant c is somewhat smaller than that in the construction of Frankl and Wilson given earlier.

Indeed, let $m = 6$, and consider the graph with vertex-set \mathcal{A}, where we join two sets $x, y \in \mathcal{A}$ if and only if $|x \cap y|$ is even. By construction, we have $\mathcal{A} \subset [n]^{(r)}$, where $r \equiv 0 \pmod{6}$, and for any two distinct $x, y \in \mathcal{A}$, we have $|x \cap y| \equiv 0 \pmod{3}$ for any two distinct $x, y \in \mathcal{B}$, whereas $r \equiv 0 \pmod{3}$, so by the Frankl-Wilson Theorem,

$$|C| \leq \binom{n}{2}.$$

If $\mathcal{D} \subset \mathcal{A}$ is an independent set, we have $|x \cap y|$ odd for any two distinct $x, y \in \mathcal{D}$, but r is even, so again by the Frankl-Wilson Theorem, we have

$$|\mathcal{D}| \leq n.$$

Hence, our graph is $\left(\binom{n}{2} + 1\right)$-Ramsey, showing that

$$R\left(\binom{n}{2} + 1\right) \geq \exp\left(c_n \frac{(\log n)^2}{\log \log n} \right),$$

i.e.

$$R(t) \geq \exp\left(c \frac{(\log t)^2}{\log \log t} \right),$$

where $c > 0$ is an absolute constant.
References