Extremal graph theory

David Conlon

Lecture 1

The basic statement of extremal graph theory is Mantel’s theorem, proved in 1907, which states that any graph on \(n \) vertices with no triangle contains at most \(\frac{n^2}{4} \) edges. This is clearly best possible, as one may partition the set of \(n \) vertices into two sets of size \(\lfloor n/2 \rfloor \) and \(\lceil n/2 \rceil \) and form the complete bipartite graph between them. This graph has no triangles and \(\lfloor n^2/4 \rfloor \) edges.

As a warm-up, we will give a number of different proofs of this simple and fundamental theorem.

Theorem 1 (Mantel’s theorem) If a graph \(G \) on \(n \) vertices contains no triangle then it contains at most \(\frac{n^2}{4} \) edges.

First proof Suppose that \(G \) has \(m \) edges. Let \(x \) and \(y \) be two vertices in \(G \) which are joined by an edge. If \(d(v) \) is the degree of a vertex \(v \), we see that \(d(x) + d(y) \leq n \). This is because every vertex in the graph \(G \) is connected to at most one of \(x \) and \(y \). Note now that

\[
\sum_x d^2(x) = \sum_{xy \in E} (d(x) + d(y)) \leq mn.
\]

On the other hand, since \(\sum_x d(x) = 2m \), the Cauchy-Schwarz inequality implies that

\[
\sum_x d^2(x) \geq \frac{\left(\sum_x d(x) \right)^2}{n} \geq \frac{4m^2}{n}.
\]

Therefore

\[
\frac{4m^2}{n} \leq mn,
\]

and the result follows.

Second proof We proceed by induction on \(n \). For \(n = 1 \) and \(n = 2 \), the result is trivial, so assume that we know it to be true for \(n - 1 \) and let \(G \) be a graph on \(n \) vertices. Let \(x \) and \(y \) be two adjacent vertices in \(G \). As above, we know that \(d(x) + d(y) \leq n \). The complement \(H \) of \(x \) and \(y \) has \(n - 2 \) vertices and since it contains no triangles must, by induction, have at most \((n - 2)^2 / 4 \) edges. Therefore, the total number of edges in \(G \) is at most

\[
e(H) + d(x) + d(y) - 1 \leq \frac{(n - 2)^2}{4} + n - 1 = \frac{n^2}{4},
\]

where the \(-1\) comes from the fact that we count the edge between \(x \) and \(y \) twice.
Third proof Let A be the largest independent set in the graph G. Since the neighborhood of every vertex x is an independent set, we must have $d(x) \leq |A|$. Let B be the complement of A. Every edge in G must meet a vertex of B. Therefore, the number of edges in G satisfies

$$e(G) \leq \sum_{x \in B} d(x) \leq |A||B| \leq \left(\frac{|A| + |B|}{2} \right)^2 = \frac{n^2}{4}.$$

Suppose that n is even. Then equality holds if and only if $|A| = |B| = n/2$, $d(x) = |A|$ for every $x \in B$ and B has no internal edges. This easily implies that the unique structure with $n^2/4$ edges is a bipartite graph with equal partite sets. For n odd, the number of edges is maximised when $|A| = \lceil n/2 \rceil$ and $|B| = \lfloor n/2 \rfloor$. Again, this yields a unique bipartite structure.

The last proof tells us that not only is $n^2/4$ the maximum number of edges in a triangle-free graph but also that any triangle-free graph with this number of edges is bipartite with partite sets of almost equal size.

The natural generalisation of this theorem to cliques of size r is the following, proved by Paul Turán in 1941.

Theorem 2 (Turán’s theorem) If a graph G on n vertices contains no copy of K_{r+1}, the complete graph on $r + 1$ vertices, then it contains at most $\left(1 - \frac{1}{r} \right) \frac{n^2}{2}$ edges.

First proof By induction on n. The theorem is trivially true for $n = 1, 2, \ldots, r$. We will therefore assume that it is true for all values less than n and prove it for n. Let G be a graph on n vertices which contains no K_{r+1} and has the maximum possible number of edges. Then G contains copies of K_r. Otherwise, we could add edges to G, contradicting maximality.

Let A be a clique of size r and let B be its complement. Since B has size $n - r$ and contains no K_{r+1}, there are at most $\left(1 - \frac{1}{r} \right) \frac{(n-r)^2}{2}$ edges in B. Moreover, since every vertex in B can have at most $r - 1$ neighbours in A, the number of edges between A and B is at most $(r - 1)(n - r)$. Summing, we see that

$$e(G) = e_A + e_{A,B} + e_B \leq \left(\frac{r}{2} \right) + (r - 1)(n - r) + \left(1 - \frac{1}{r} \right) \frac{(n-r)^2}{2} = \left(1 - \frac{1}{r} \right) \frac{n^2}{2},$$

where $e_A, e_{A,B}$ and e_B are the number of edges in A, between A and B and in B respectively. The theorem follows.

Second proof We again assume that G contains no K_{r+1} and has the maximum possible number of edges. We will begin by proving that if $xy \notin E(G)$ and $yz \notin E(G)$, then $xz \notin E(G)$. This implies that the property of not being connected in G is an equivalence relation. This in turn will imply that the graph must be a complete multipartite graph.

Suppose, for contradiction, that $xy \notin E(G)$ and $yz \notin E(G)$, but $xz \in E(G)$. If $d(y) < d(x)$ then we may construct a new K_{r+1}-free graph G' by deleting y and creating a new copy of the vertex x, say x'. Since any clique in G' can contain at most one of x and x', we see that G' is K_{r+1}-free. Moreover,

$$|E(G')| = |E(G)| - d(y) + d(x) > |E(G)|,$$

contradicting the maximality of G. A similar conclusion holds if $d(y) < d(z)$. We may therefore assume that $d(y) \geq d(x)$ and $d(y) \geq d(z)$. We create a new graph G'' by deleting x and z and creating two extra copies of the vertex y. Again, this has no K_{r+1} and

$$|E(G'')| = |E(G)| - (d(x) + d(z) - 1) + 2d(y) > |E(G)|,$$
so again we have a contradiction.

We now know that the graph is a complete multipartite graph. Clearly, it can have at most \(r \) parts. We will show that the number of edges is maximised when all of these parts have sizes which differ by at most one. Indeed, if there were two parts \(A \) and \(B \) with \(|A| > |B| + 1 \), we could increase the number of edges in \(G \) by moving one vertex from \(A \) to \(B \). We would lose \(|B| \) edges by doing this, but gain \(|A| - 1 \). Overall, we would gain \(|A| - 1 - |B| \geq 1 \).

\(\square\)

This second proof also determines the structure of the extremal graph, that is, it must be \(r \)-partite with all parts having size as close as possible. So if \(n = mr + q \), we get \(q \) sets of size \(m + 1 \) and \(r - q \) sets of size \(m \).