The horizontal direction &

other differences between the classical and higher Cichoń diagram

Tristan van der Vlugt (TU Wien)

STUK 14 University of Cambridge

November 18, 2024

The **classical Baire space** is the set ${}^{\omega}\omega$ of functions $f:\omega\to\omega$. The **classical Cantor space** is the set ${}^{\omega}2$ of functions $f:\omega\to 2$.

The sets $[s]=\{f\in {}^\omega\omega\mid s\subseteq f\}$ where $s\in {}^{<\omega}\omega$ form a clopen basis for the topology on ${}^\omega\omega$. The **Borel sets** $\mathcal{B}({}^\omega\omega)$ are the least family closed under complements and countable unions such that $[s]\in\mathcal{B}({}^\omega\omega)$ for each $s\in {}^{<\omega}\omega$. Similar for ${}^\omega 2$.

A set X is **nowhere dense** if every open U contains an open $U' \subseteq U$ with $X \cap U' = \emptyset$. A countable union of nowhere dense sets is called a **meagre** set, and $\mathcal M$ is the family of meagre sets of ${}^\omega \omega$. Each meagre set is a subset of a Borel meagre set.

In ${}^{\omega}2$, give [s] the measure $\mu([s])=2^{-{
m ot}(s)}$, and extend μ to a **Lebesgue measure** on $\mathcal{B}({}^{\omega}2)$. Let \mathcal{N} be the family of sets $N\subseteq {}^{\omega}2$ such that N is contained in a Borel set of measure 0.

Let κ be inaccessible. The **higher Baire & Cantor spaces** are the sets ${}^{\kappa}\kappa$ and ${}^{\kappa}2$ of functions $f:\kappa\to\kappa$ or $f:\kappa\to 2$ resp. Elements of ${}^{\kappa}\kappa$ and ${}^{\kappa}2$ are called κ -reals.

The sets $[s]=\{f\in {}^\kappa\kappa\mid s\subseteq f\}$ where $s\in {}^{<\kappa}\kappa$ form a clopen basis for the **bounded topology** on ${}^\kappa\kappa$. The κ -Borel sets $\mathcal{B}_\kappa({}^\kappa\kappa)$ are the least family closed under complements and κ -unions such that $[s]\in \mathcal{B}_\kappa({}^\kappa\kappa)$ for each $s\in {}^{<\kappa}\kappa$. Similar for ${}^\kappa 2$.

A union of κ -many nowhere dense sets is a κ -meagre set, and \mathcal{M}_{κ} is the family of all κ -meagre subsets of κ . Each κ -meagre set is a subset of a κ -Borel κ -meagre set.

Without a proper analogue of **countably** infinite sums of positive **real** numbers to the uncountable, it is unclear how to define Lebesgue measure on $^{\kappa}2$.

Let $R\subseteq X\times Y$ be a relation, λ be a cardinal, $f:\lambda\to X$ and $g:\lambda\to Y$ be functions. We define $R^\infty,R^*\subseteq{}^\lambda X\times{}^\lambda Y$:

 $f \ R^{\infty} \ g \Leftrightarrow \{\alpha \in \lambda \mid f(\alpha) \ R \ g(\alpha)\}$ is unbounded below λ , $f \ R^{*} \ g \Leftrightarrow \{\alpha \in \lambda \mid f(\alpha) \not R \ g(\alpha)\}$ is bounded below λ , $f \ R^{*} \ g$ and $f \ R^{\infty} \ g$ are the negations of the above.

For instance, we may consider the **domination** \leq^* and **eventual difference** \Rightarrow^{∞} relations on ${}^{\kappa}\kappa$ or on ${}^{\omega}\omega$.

If $h \in {}^{\kappa}\kappa$, then an h-slalom is a function $\varphi \in \prod_{\alpha \in \kappa} [\kappa]^{<|h(\alpha)|}$. Let Sl_h denote the set of h-slaloms. We may consider the localisation relation $\in {}^*$ on ${}^{\kappa}\kappa \times \mathrm{Sl}_h$.

Let \mathcal{I} be an ideal on a space X, then we define:

$$\begin{aligned} &\operatorname{cov}(\mathcal{I}) = \min \left\{ |\mathcal{C}| \mid \mathcal{C} \subseteq \mathcal{I} \wedge \bigcup \mathcal{C} = X \right\} \\ &\operatorname{add}(\mathcal{I}) = \min \left\{ |\mathcal{A}| \mid \mathcal{A} \subseteq \mathcal{I} \wedge \bigcup \mathcal{A} \notin \mathcal{I} \right\} \\ &\operatorname{non}(\mathcal{I}) = \min \left\{ |\mathcal{N}| \mid \mathcal{N} \subseteq X \wedge \mathcal{N} \notin \mathcal{I} \right\} \\ &\operatorname{cof}(\mathcal{I}) = \min \left\{ |\mathcal{F}| \mid \mathcal{F} \subseteq \mathcal{I} \wedge \forall I \in \mathcal{I} \exists F \in \mathcal{F}(I \subseteq F) \right\} \end{aligned}$$

Given a relation $R \subseteq X \times Y$, we define:

$$\mathfrak{D}(R, X, Y) = \min \{ |\mathcal{D}| \mid \mathcal{D} \subseteq Y \land \forall f \in X \exists g \in \mathcal{D}(f \ R \ g) \}$$

$$\mathfrak{B}(R, X, Y) = \min \{ |\mathcal{B}| \mid \mathcal{B} \subseteq X \land \forall g \in Y \exists f \in \mathcal{B}(f \ \mathcal{R} \ g) \}$$

For instance, $\operatorname{cov}(\mathcal{I}) = \mathfrak{D}(\in, X, \mathcal{I})$ and $\operatorname{non}(\mathcal{I}) = \mathfrak{B}(\in, X, \mathcal{I})$, whereas $\operatorname{cof}(\mathcal{I}) = \mathfrak{D}(\subseteq, \mathcal{I}, \mathcal{I})$ and $\operatorname{add}(\mathcal{I}) = \mathfrak{B}(\subseteq, \mathcal{I}, \mathcal{I})$.

We will use the following shorthands:

$$\mathfrak{d} = \mathfrak{D}(\leq^*, {}^\omega\omega, {}^\omega\omega) \quad \text{ and } \quad \mathfrak{b} = \mathfrak{B}(\leq^*, {}^\omega\omega, {}^\omega\omega)$$

$$\mathfrak{d}(\not > \!) = \mathfrak{D}(\not > \! , {}^\omega\omega, {}^\omega\omega) \quad \text{ and } \quad \mathfrak{b}(\not > \!) = \mathfrak{B}(\not > \! , {}^\omega\omega, {}^\omega\omega)$$

$$\mathfrak{d}^h(\in^*) = \mathfrak{D}(\in^*, {}^\omega\omega, \operatorname{Sl}_h) \quad \text{ and } \quad \mathfrak{b}^h(\in^*) = \mathfrak{B}(\in^*, {}^\omega\omega, \operatorname{Sl}_h)$$

$$\mathfrak{d}_\kappa = \mathfrak{D}(\leq^*, {}^\kappa\kappa, {}^\kappa\kappa) \quad \text{ and } \quad \mathfrak{b}_\kappa = \mathfrak{B}(\leq^*, {}^\kappa\kappa, {}^\kappa\kappa)$$

$$\mathfrak{d}_\kappa(\not > \!) = \mathfrak{D}(\not > \! , {}^\kappa\kappa, {}^\kappa\kappa) \quad \text{ and } \quad \mathfrak{b}_\kappa(\not > \!) = \mathfrak{B}(\not > \! , {}^\kappa\kappa, {}^\kappa\kappa)$$

$$\mathfrak{d}^h_\kappa(\in^*) = \mathfrak{D}(\in^*, {}^\kappa\kappa, \operatorname{Sl}_h) \quad \text{ and } \quad \mathfrak{b}^h_\kappa(\in^*) = \mathfrak{B}(\in^*, {}^\kappa\kappa, \operatorname{Sl}_h)$$

Theorem Bartoszyński (1987) $\operatorname{cov}(\mathcal{M}) = \mathfrak{d}(\nearrow^{\infty})$ and $\operatorname{non}(\mathcal{M}) = \mathfrak{b}(\nearrow^{\infty})$, and for $h \in {}^{\omega}\omega$ cofinally increasing $\operatorname{cof}(\mathcal{N}) = \mathfrak{d}^h(\in^*)$ and $\operatorname{add}(\mathcal{N}) = \mathfrak{b}^h(\in^*)$.

Theorem Blass, Hyttinen, and Zhang (n.d.) $\operatorname{cov}(\mathcal{M}_{\kappa}) = \mathfrak{d}_{\kappa}(\mathbf{z}^{\infty})$ and $\operatorname{non}(\mathcal{M}_{\kappa}) = \mathfrak{b}_{\kappa}(\mathbf{z}^{\infty})$.

Theorem Truss (1977), Miller (1981) $\operatorname{add}(\mathcal{M}) = \min \left\{ \mathfrak{b}, \operatorname{cov}(\mathcal{M}) \right\}$ and $\operatorname{cof}(\mathcal{M}) = \max \left\{ \mathfrak{d}, \operatorname{non}(\mathcal{M}) \right\}$.

Theorem Brendle, Brooke-Taylor, Friedman, and Montoya (2018) $\operatorname{add}(\mathcal{M}_{\kappa}) = \min \{\mathfrak{b}_{\kappa}, \operatorname{cov}(\mathcal{M}_{\kappa})\}$ and $\operatorname{cof}(\mathcal{M}_{\kappa}) = \max \{\mathfrak{d}_{\kappa}, \operatorname{non}(\mathcal{M}_{\kappa})\}.$

We need κ inaccessible. For example, Brendle (2022) showed that $2^{<\kappa} = 2^{\kappa}$ implies $\max{\{\mathfrak{d}_{\kappa}, \operatorname{non}(\mathcal{M}_{\kappa})\}} \leq 2^{\kappa} < \operatorname{cof}(\mathcal{M}_{\kappa})$.

$$\operatorname{cov}(\mathcal{N}) \longrightarrow \operatorname{non}(\mathcal{M}) \longrightarrow \operatorname{cof}(\mathcal{M}) \longrightarrow \operatorname{cof}(\mathcal{N}) \longrightarrow 2^{\aleph_0}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\flat \longrightarrow \mathfrak{dod}(\mathcal{N}) \longrightarrow \operatorname{add}(\mathcal{M}) \longrightarrow \operatorname{cov}(\mathcal{M}) \longrightarrow \operatorname{non}(\mathcal{N})$$

$$\operatorname{non}(\mathcal{M}_{\kappa}) \rightarrow \operatorname{cof}(\mathcal{M}_{\kappa}) \longrightarrow \mathfrak{d}_{\kappa}^h(\in^*) \longrightarrow 2^{\kappa}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\flat_{\kappa} \longrightarrow \flat_{\kappa} \qquad \qquad \uparrow \qquad \qquad \uparrow$$

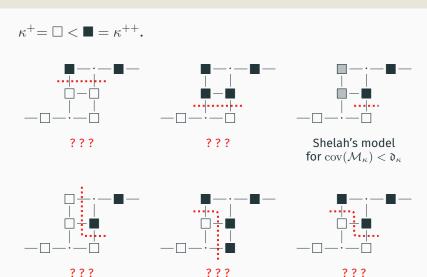
$$\kappa^+ \longrightarrow \flat_{\kappa}^h(\in^*) \longrightarrow \operatorname{add}(\mathcal{M}_{\kappa}) \rightarrow \operatorname{cov}(\mathcal{M}_{\kappa})$$

Sacks

$$\aleph_1 = \square < \blacksquare = \aleph_2. \quad \text{(FSI)} \quad \text{(CSI)}$$

$$random \quad short random \quad Laver \\ Mathias$$

$$Miller \quad eventually \ different \quad Blass-Shelah$$



- ... random forcing?
- ... Laver forcing?
- ... Mathias forcing?
- ... Miller forcing?
- ... eventually different forcing?
- ... (Blass-Shelah forcing?)

A **tree forcing** is a forcing notion $\mathbb P$ with conditions being trees T on ${}^{<\omega}\omega$ or ${}^{<\omega}2$, such that if G is a generic filter, then $r=\bigcup_{T\in G}\operatorname{stem}(T)$ is a generic real and $\mathbf V[G]=\mathbf V[r]$.

If B is Borel, then there is some **code** $c_B \in {}^{\omega}\omega$ describing how to construct B from the basic clopen sets [s]. Given a model W that contains c_B , we may **decode** c_B in W to obtain a set $(B)^W$ that is Borel in W.

Given a tree forcing $\mathbb P$ with $\dot r$ a name for the generic real, we define an ideal $\mathcal I_{\mathbb P}$ generated by those Borel sets B such that $\mathbb P$ forces that $\dot r \notin B$ (as decoded in the extension).

For example, **random forcing** $\mathbb B$ can be defined with conditions being trees $T\subseteq {}^{<\omega}2$ such that the set of branches [T] has positive measure. The corresponding ideal $\mathcal I_{\mathbb B}$ is equal to $\mathcal N$.

We can describe conditions $T \in \mathbb{B}$ as follows. If $0 < n \in \omega$, let $N_n = \{s \in {}^n2 \mid s \notin T \land s \upharpoonright n - 1 \in T\}$. Then $T \in \mathbb{B}$ if and only if $\sum_{n \in \omega} |N_n| \cdot 2^{-n} < 1$.

Shelah (2017) described a tree forcing notion \mathbb{Q}_{κ} on κ^2 , where $T \in \mathbb{Q}_{\kappa}$ if only at a "small" number of levels of inaccessible height of T at most a "negligible" set of nodes is pruned. If \dot{r} names the generic κ -real, then one defines \mathcal{N}_{κ} as the ideal generated by those κ -Borel sets B such that $\mathbb{Q}_{\kappa} \Vdash$ " $\dot{r} \notin B$ ".

The notions of "small" and "negligible" are defined inductively.

Let $T \in \mathbb{Q}_{\kappa}$ if $T \subseteq {}^{<\kappa}2$ is a tree and there are

- \circ a node $\operatorname{stem}(T) \in T$ that is the stem of T,
- \circ a set $S_T \subseteq \{\lambda < \kappa \mid \lambda \text{ is inaccessible}\}$ that is **nowhere** stationary, i.e. $S_T \cap \lambda$ is nonstationary for all $\lambda < \kappa$,
- \circ a set $N_{\lambda} \in \mathcal{N}_{\lambda}$ for each $\lambda \in S_{T}$,

such that for all $s \supseteq \text{stem}(T)$

- \circ if $\operatorname{ot}(s) \notin S_T$, then $s \in T$ iff $s \upharpoonright \alpha \in T$ for all $\alpha < \operatorname{ot}(s)$,
- \circ if $\operatorname{ot}(s) \in S_T$, then $s \in T$ iff $s \notin N_\lambda$.

Let κ be weakly compact.

Random forcing & ${\cal N}$	Shelah's forcing & \mathcal{N}_{κ}
$^{\omega}\omega$ -bounding	$^\kappa\kappa$ -bounding
$\sigma ext{-}n ext{-linked for }n\in\omega$	κ - λ -linked for $\lambda < \kappa$
finitely closed	(strategically) $< \kappa$ -closed
Orthogonal ${\mathcal M}$ and ${\mathcal N}$ sets	Orthogonal \mathcal{M}_{κ} and \mathcal{N}_{κ} sets
No generic in σ -centred	No generic in κ -centred
forcing extension	forcing extension
Symmetry (Fubini's theorem)	Asymmetry (anti-Fubini set)

Question

How to preserve the ${}^{\kappa}\kappa$ -bounding property under iteration?

Question

Is there a side-by-side version of Shelah's forcing?

A tree $T\subseteq {}^{<\kappa}\kappa$ is **limit-closed** if it has no branch of length $<\kappa$. Call $T\subseteq {}^{<\kappa}\kappa$ a κ -Laver tree if T is limit closed and there exists $\operatorname{stem}(T)\in T$ such that $|\operatorname{suc}(s,T)|=\kappa$ for all $\operatorname{stem}(T)\subseteq s\in T$. For $<\kappa$ -complete nonprincipal filter $\mathcal U$, a tree T is **guided by** $\mathcal U$ if $\operatorname{suc}(s,T)\in \mathcal U$ for all splitting nodes $s\in T$.

 $\mathbb{L}^{\mathcal{U}}_{\kappa}$ consists of all κ -Laver trees guided by \mathcal{U} , ordered by inclusion. Laver-like forcings add dominating κ -reals.

Proposition Folklore?

If $\mathcal U$ is the club filter, then $\mathbb L_\kappa^\mathcal U$ adds a κ -Cohen generic.

Proof. Let $S_0 \sqcup S_1 = \kappa$ be a stationary partition, then $\mathrm{suc}(s,T) \cap S_i$ is nonempty for any $s \supseteq \mathrm{stem}(T)$ and $i \in 2$.

Theorem Khomskii, Koelbing, Laguzzi, and Wohofsky (2022) If $\mathbb L$ has κ -Laver trees as conditions and $(T)_s \in \mathbb L$ for every $T \in \mathbb L$ and $s \in T$, then $\mathbb L$ adds a κ -Cohen generic.

Theorem Khomskii, Koelbing, Laguzzi, and Wohofsky (2022) If $\mathbb P$ is $<\kappa$ -distributive, has limit-closed κ -trees as conditions and $(T)_s \in \mathbb P$ for every $T \in \mathbb P$ and $s \in T$, and the $\mathbb P$ -generic κ -real is dominating, then $\mathbb P$ adds a κ -Cohen generic.

Corollary

 κ -Mathias forcing adds a κ -Cohen generic.

Question

Is there a $<\kappa$ -distributive forcing that adds a dominating κ -real without adding a κ -Cohen generic?

A tree $T\subseteq {}^{<\kappa}\kappa$ is **splitting-closed** if it is limit-closed and for every $f\in [T]$ the set $\{\alpha\in\kappa\mid f\upharpoonright\alpha$ splits in $T\}$ is club.

 \mathbb{M} i $_{\kappa}^{\mathcal{U}}$ consists of all splitting-closed trees guided by \mathcal{U} . Miller-like forcings add unbounded κ -reals.

Proposition Brendle, Brooke-Taylor, Friedman, and Montoya (2018) If $\mathcal U$ is the club filter, then $\mathbb M i_\kappa^\mathcal U$ adds a κ -Cohen generic.

Let $\mathbb P$ be a forcing notion and $h \in {}^\kappa \kappa$ be cofinally increasing. $\mathbb P$ has the h-Laver property if for all $p \in \mathbb P$ and $\dot f$ with $p \Vdash$ " $\dot f \in {}^\kappa \kappa$ " and $p \Vdash$ " $\dot f \leq {}^* g$ " for some $g \in {}^\kappa \kappa$, there exists $q \leq p$ and $\varphi \in \operatorname{Sl}_h$ such that $q \Vdash$ " $\dot f \in {}^* \varphi$ ".

Proposition Brendle, Brooke-Taylor, Friedman, and Montoya (2018) If $\mathcal U$ is a $<\kappa$ -complete normal ultrafilter, then $\mathbb M$ i $^{\mathcal U}_{\kappa}$ has the h-Laver property, for $h:\alpha\mapsto |2^{\alpha}|^+$.

Proposition Mildenberger and Shelah (2021)

Let κ be Laver indestructibly supercompact and $\overline{\mathbb{M}}\dot{\mathbf{i}} = \langle \mathbb{P}_n, \dot{\mathbb{Q}}_n \mid n \in \omega \rangle$ be a csi where $\mathbb{P}_n \Vdash \text{``}\dot{\mathbb{Q}}_n = \mathbb{M}\dot{\mathbf{i}}_{\kappa}^{\mathcal{U}_n}$ '' for \mathcal{U}_n a normal ultrafilter in $\mathbf{V}^{\mathbb{P}_n}$. Then $\overline{\mathbb{M}}\dot{\mathbf{i}}$ does not have the h-Laver property for any $h \in {}^{\kappa}\kappa$.

Proposition Basically similar to: Mildenberger and Shelah (2021) $\overline{\text{Mi}}$ adds a κ -Cohen generic.

Proof. Partition $\{\alpha \in \kappa \mid \mathrm{cf}(\alpha) = \omega\}$ into stationary sets S_t labeled by $t \in {}^{<\kappa}2$. Let \dot{m}_n name the n-th κ -Miller generic. Define sequences \dot{x}, \dot{x}^* of elements in ${}^{<\kappa}2$:

$$\dot{x}(\alpha) = t \text{ if } \sup\{\dot{m}_n(\alpha) \mid n \in \omega\} \in S_t, \ \dot{x}(\alpha) = \emptyset \text{ otherwise},$$

$$\dot{x}^*(\alpha) = \dot{x}(0)^{\hat{}}\dot{x}(1)^{\hat{}}\cdots^{\hat{}}\dot{x}(\alpha)$$

Hence $\bigcup \dot{x}^*$ names an element of κ_2 .

$$\dot{x}(\alpha) = t \text{ if } \sup\{\dot{m}_n(\alpha) \mid n \in \omega\} \in S_t, \ \dot{x}(\alpha) = \emptyset \text{ otherwise }$$

Let $p \in \overline{\mathbb{M}}$ i. Find $p_0 \leq p$ and $\delta \in \kappa$ and $t_0 \in \mathbf{V}$ s.t. for all $n \in \omega$ $p_0 \upharpoonright n \Vdash$ "ot $(\operatorname{stem}(p_0(n))) = \delta$ " and $p_0 \Vdash$ " $\dot{x}^* \upharpoonright \delta = \check{t}_0$ ".

Claim: For any $t \in {}^{<\kappa}2$, there is $p_{\omega} \leq p_0$ s.t. $p_{\omega} \Vdash$ " $\dot{x}(\delta) = t$ ".

Let $\langle \mathbf{M}_{\alpha} \mid \alpha \in \kappa \rangle$ be a continuous \in -chain with $\mathbf{M}_{\alpha} \prec \mathbf{H}_{\chi}$ and $|\mathbf{M}_{\alpha}| < \kappa$ and $\mathbb{P}, p_0, \delta \in \mathbf{M}_0$. Let $\kappa_{\alpha} = \mathbf{M}_{\alpha} \cap \kappa$ and fix some γ with $\kappa_{\gamma} \in S_t$, where $\langle \gamma_n \mid n \in \omega \rangle$ is cofinal in γ .

For each $n \in \omega$ find $p_{n+1}, \beta_n \in \mathbf{M}_{\gamma_{n+1}}$ with $p_{n+1} \leq p_n$, and $\kappa_{\gamma_n} \leq \beta_n$ s.t. $p_{n+1} \upharpoonright n \Vdash "p_{n+1}(n)(\delta) = \dot{m}_n(\delta) = \beta_n "$ and $p_{n+1}(k) = p_0(k)$ for k > n. Then $p_\omega \Vdash "\dot{x}(\delta) = t "$. \square_{Claim}

Therefore \dot{x}^* names a κ -Cohen generic.

Theorem Brendle, Brooke-Taylor, Friedman, and Montoya (2018) The product $\mathrm{Mi}_{\kappa}^{\mathcal{U}} \times \mathrm{Mi}_{\kappa}^{\mathcal{U}}$ adds a κ -Cohen generic.

Note that classically the product $\mathbb{M}_i \times \mathbb{M}_i$ does not add a Cohen real, although $\mathbb{M}_i \times \mathbb{M}_i \times \mathbb{M}_i$ does.

Question

Is there a $<\kappa$ -distributive forcing notion that adds many κ -Miller generics without adding a κ -Cohen generic?

 $\mathbb{E}_{\kappa} \text{ has conditions } (s,F) \in {}^{<\kappa}\kappa \times [{}^{\kappa}\kappa]^{<\kappa} \text{ with } (t,G) \leq (s,F) \text{ if } s \subseteq t, F \subseteq G \text{ and } t(\alpha) \notin \{f(\alpha) \mid f \in F\} \text{ for } \alpha \in \mathrm{dom}(t) \setminus \mathrm{dom}(s).$

Let $\mathcal F$ be a filter, then a set $Q\subseteq \mathbb P$ is $(\kappa,\mathcal F)$ -linked if every $\langle p_\alpha\mid \alpha\in\kappa\rangle\subseteq Q$ has a $q\in\mathbb P$ s.t. $q\Vdash$ " $\{\alpha\in\kappa\mid p_\alpha\in\dot G\}\in\mathcal F^+$ ". The union of μ -many $(\kappa,\mathcal F)$ -linked sets is $(\mu,\kappa,\mathcal F)$ -linked.

Proposition Goldstern, Mejía, and Shelah (2016)

If $\mathbb P$ is $(\kappa,\kappa,\mathcal F)$ -linked for a $<\kappa$ -complete nonprincipal filter $\mathcal F$, then $\mathbb P$ does not add dominating κ -reals.

Proposition Goldstern, Mejía, and Shelah (2016), Mejía (2019) \mathbb{E} is $(\aleph_0, \aleph_0, \mathcal{F})$ -linked for \mathcal{F} the Fréchet filter or any nonprincipal ultrafilter on ω . Hence \mathbb{E} does not add dominating reals.

Lemma

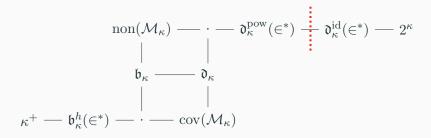
If κ is measurable, \mathbb{E}_{κ} is $(\kappa, \kappa, \mathcal{F})$ -linked for \mathcal{F} the κ -Fréchet filter or any nonprincipal $<\kappa$ -complete ultrafilter on κ .

Question

Let κ be Laver indestructibly supercompact. Does $<\kappa$ -support iteration preserve $(\kappa,\kappa,\mathcal{F})$ -linkedness?

The problem

The ξ -th iterate $(\dot{\mathbb{E}}_\kappa)_\xi$ must be $(\kappa,\kappa,\dot{\mathcal{U}}_\xi)$ -linked for a $<\kappa$ -complete ultrafilter $\dot{\mathcal{U}}_\xi\in\mathbf{V}^{\mathbb{P}_\xi}$ extending all previous ultrafilters $\dot{\mathcal{U}}_\eta$ for $\eta<\xi$. At limit stages ξ , how can we be sure that $\bigcup_{\eta<\xi}\dot{\mathcal{U}}_\eta$ can be extended to a $<\kappa$ -complete ultrafilter?



Theorem Bartoszyński (1987)

(Classically) $\operatorname{cof}(\mathcal{N})=\mathfrak{d}^h(\in^*)$ and $\operatorname{add}(\mathcal{N})=\mathfrak{b}^h(\in^*)$ for any cofinally increasing $h\in{}^\omega\omega$.

Theorem Brendle, Brooke-Taylor, Friedman, and Montoya (2018) Let $\mathrm{id}: \alpha \mapsto |\alpha|^+$ and $\mathrm{pow}: \alpha \mapsto (2^{|\alpha|})^+$, then $\mathfrak{d}_\kappa^\mathrm{pow}(\in^*) < \mathfrak{d}_\kappa^\mathrm{id}(\in^*)$ holds in the κ -Sacks model.

Let $\mathbb P$ be a forcing notion and $h \in {}^\kappa \kappa$ be cofinally increasing.

 \mathbb{P} has the h-Laver property if for all $p \in \mathbb{P}$ and \dot{f} with $p \Vdash$ " $\dot{f} \in {}^{\kappa}\kappa$ " and $p \Vdash$ " $\dot{f} \leq {}^{*}g$ " for some $g \in {}^{\kappa}\kappa$, there exists $q \leq p$ and $\varphi \in \mathrm{Sl}_h$ such that $q \Vdash$ " $\dot{f} \in {}^{*}\varphi$ ".

 \mathbb{P} has the h-Sacks property if for all $p \in \mathbb{P}$ and \dot{f} with $p \Vdash$ " $\dot{f} \in {}^{\kappa}\kappa$ ", there exists $q \leq p$ and $\varphi \in \mathrm{Sl}_h$ such that $q \Vdash$ " $\dot{f} \in {}^*\varphi$ ".

If \mathbb{P} has the h-Sacks property, then $(\mathrm{Sl}_h)^{\mathbf{V}}$ witnesses $\mathfrak{d}^h_{\kappa}(\in^*)$.

A tree $T\subseteq {}^{<\kappa}\kappa$ is called **perfect** if every node $s\in T$ has $t\in T$ with $s\subseteq t$ that is splitting. Let κ -Sacks forcing \mathbb{S}_{κ} consist of perfect splitting-closed trees on ${}^{<\kappa}2$, ordered by inclusion.

Theorem Brendle, Brooke-Taylor, Friedman, and Montoya (2018) \mathbb{S}_{κ} has the pow-Sacks property, and \mathbb{S}_{κ} adds a κ -real f such that $f \not\in {}^{\star} \varphi$ for all id -slaloms φ from the ground model.

Proof sketch. Let $T\in \mathbb{S}_\kappa$ and \dot{f} be a name. Using fusion, we may assume that all nodes in the α -th splitting level decide $\dot{f}(\alpha)$. Furthermore, since \mathbb{S}_κ is splitting-closed, there is a club set of α 's for which $T\cap {}^{\alpha}2$ is exactly the set of splitting nodes at the α -th splitting level.

Since $|T \cap {}^{\alpha}2| = 2^{|\alpha|}$, we can collect the possible values of $\dot{f}(\alpha)$ with a pow-slalom, but (possibly) not with an id-slalom.

How to separate **more** localisation cardinals?

Let $h \in {}^{\kappa}\kappa$ be cofinally increasing. We define κ -Miller-Lite forcing \mathbb{ML}^h_κ to have perfect splitting-closed trees $T \subseteq {}^{<\kappa}\kappa$ as conditions such that if $s \in T$ is an α -th level splitting node of T, then s has exactly $h(\alpha)$ -many successors in T.

We order $T' \leq T$ iff $T' \subseteq T$ and for any $s \in T'$ with $\operatorname{suc}_{T'}(s) \neq \operatorname{suc}_{T}(s)$ we also require that $|\operatorname{suc}_{T'}(s)| < |\operatorname{suc}_{T}(s)|$. This guarantees that \mathbb{ML}^h_{κ} is $<\kappa$ -closed.

Let $id_h = id \circ h$ and $pow_h = pow \circ h$.

Theorem vdV. (2024)

 \mathbb{ML}^h_{κ} has the pow_h -Sacks property, and \mathbb{ML}^h_{κ} adds a κ -real f such that $f \not\cong^{\kappa} \varphi$ for all id_h -slaloms φ from the ground model.

Proof sketch. Same as with \mathbb{S}_{κ} . Note that if $T \cap {}^{\alpha}\kappa$ is the set of α -th level splitting nodes, then $|T \cap {}^{\alpha}\kappa| = 2^{h(\alpha)}$.

Suppose that $g \in {}^{\kappa}\kappa$ is a cardinal-valued function satisfying:

- $\circ \ g(\alpha)^{|\alpha|} = g(\alpha)$, and
- $\circ \ 2^{g(\alpha)} \leq g(\beta) \text{ for all } \alpha < \beta.$

If $S_0, S_1 \subseteq \kappa$ are almost disjoint stationary sets, and h_0, h_1 are such that $h_i \upharpoonright S_i = g(\alpha)$ and $h_i \upharpoonright (\kappa \setminus S_i) = 2^{g(\alpha)}$, then it is consistent that $\mathfrak{d}_{\kappa}^{h_0}(\in^*) < \mathfrak{d}_{\kappa}^{h_1}(\in^*)$ and $\mathfrak{d}_{\kappa}^{h_1}(\in^*) < \mathfrak{d}_{\kappa}^{h_0}(\in^*)$.

Under assumption of \Diamond_{κ} there exists a family $\langle S_{\xi} \mid \xi \in \kappa^{+} \rangle$ of mutually almost disjoint stationary sets.

Theorem vdV. (2024)

If:

- $\circ \ 2^{\kappa} = \kappa^+$, and
- $\circ \ \langle S_\xi \mid \xi \in \kappa^+ \rangle$ is a family of mutually almost disjoint stationary sets, and
- $\circ \ \iota : \kappa^+ \to \kappa^+$ is bijective, and
- \circ we define $h_{\xi} \upharpoonright S_{\xi} = g(\alpha)$ and $h_{\xi} \upharpoonright (\kappa \setminus S_{\xi}) = 2^{g(\alpha)}$,

then there is a forcing extension in which for all $\xi, \xi' \in \kappa^+$ with $\xi < \xi'$ we have $\mathfrak{d}_{\kappa}^{h_{\iota(\xi)}}(\in^*) < \mathfrak{d}_{\kappa}^{h_{\iota(\xi')}}(\in^*)$.

References

- Bartoszyński, T. (1987). "Combinatorial aspects of measure and category". In: Fundamenta Mathematicae 127.3, pp. 225–239.
- Blass, A., Hyttinen, T., and Zhang, Y. (n.d.). Mad families and their neighbors. Preprint. URL: https://dept.math.lsa.umich.edu/~ablass/madfam.pdf.
- Brendle, J. (2022). "The higher Cichoń diagram in the degenerate case". In: Tsukuba Journal of Mathematics 42.2, pp. 255–269.
- Brendle, J., Brooke-Taylor, A., Friedman, S.-D., and Montoya, D. C. (2018). "Cichoń's diagram for uncountable cardinals". In: Israel Journal of Mathematics 225.2, pp. 959-1010.
- Goldstern, M., Mejía, D. A., and Shelah, S. (2016). "The left side of Cichoń's diagram". In: Proceedings of the American Mathematical Society 144.9, pp. 4025-4042.
- Khomskii, Y., Koelbing, M., Laguzzi, G., and Wohofsky, W. (2022). "Laver trees in the generalized Baire space". In: Israel Journal of Mathematics 255.2, pp. 599-620.
- Mejía, D. A. (2019). "Matrix Iterations with Vertical Support Restrictions". In: Proceedings of the 14th and 15th Asian Logic Conferences, pp. 213–248.
- Mildenberger, H. and Shelah, S. (2021). "Higher Miller forcing may collapse cardinals". In: The Journal of Symbolic Logic 86.4, pp. 1721–1744.
- Miller, A. W. (1981). "Some Properties of Measure and Category". In: Transactions of the American Mathematical Society 266.1, pp. 93-114.
- Shelah, S. (2017). "A parallel to the null ideal for inaccessible λ: Part I". In: Archive for Mathematical Logic 56.3-4, pp. 319-383.
- Truss, J. (1977). "Sets Having Calibre N₁". In: Logic Colloquium 76. Ed. by R. Gandy and J. Hyland. Vol. 87.
 Studies in Logic and the Foundations of Mathematics. Elsevier, pp. 595–612.
- Vlugt, T. van der (2024). "Separating many localisation cardinals on the generalised Baire space". In: Journal of Symbolic Logic 89.3, pp. 1212–1231.