Amoeba Forcing and inaccessible cardinals

Raiean Banerjee (joint work with Lucas Wansner and Benedikt Löwe)

Fachbereich Mathematik - Universität Hamburg raiean.banerjee@uni-hamburg.de

15th February, 2024

- Introduction
 - Regularity properties and Forcing
 - What we can and what we cannot
 - Ikegami's theorems
 - Amoebas
 - A general framework for regularity properties
- Inaccessibility and regularity properties
 - Brendle-Labedzki
 - Implications between regularities
- References

A set of reals A is said to be Lebesgue measurable iff for every Borel set B there is a Borel subset C, such that either $C \setminus A$ or $A \setminus C$ is of measure zero.

A set of reals on the other hand is said to have the Baire property iff for every Borel set B, there is a Borel subset C, such that either $C \setminus A$ or $A \setminus C$ is a meager set.

Notice that both the collection of meager sets and that of lebesgue measure zero sets form sigma ideals.

If I, is a σ ideal (which is Σ_2^1) and \mathbb{P}_I consists of Borel sets not in I, then we can define I regularity as follows: A set of reals A is I regular iff for every Borel set B there is a subset C such that either $C \setminus A$ or $A \setminus C \in I$.

If B and C are elements of \mathbb{P}_I , then we say that $C \leq B$ iff $C \subseteq B$. This way \mathbb{P}_I can be seen as a forcing notion.

Theorem

All analytic sets are regular

Proof.

Folklore

Theorem

Regularity of Σ_2^1 sets of reals is however independent of ZFC

Definition

A real x is said to be a quasi-generic over a model V iff it is not contained in any borel set $B \in I$, such that B is coded in V

Theorem (Ikegami)

If I is a σ ideal with Σ_2^1 definition and \mathbb{P}_I is a proper forcing notion, then

- all Δ_2^1 sets are I regular iff for every real r there is an I quasi-generic over L[r].
- all Σ_2^1 sets are I regular iff for every real r the complement of the set of quasi-generics over L[r] is in I

Theorem

Forcing with \mathbb{P}_I adds an I generic over the ground model and I generics are I quasi-generics.

This shows us a way to obtain Δ_2^1 regularity.

If \mathbb{P} is a forcing notion as in Ikegami's theorem, one way to obtain $\Sigma_2^1(\mathbb{P})$ is to iteratively add co-null sets of quasigeneric reals in an iteration of length ω_1 . In order to do this, we would like to have natural forcing notions adding these large sets of quasigenerics, usually called *amoebas* of the original forcing.

Definition

Let $\mathbb P$ be an tree forcing notion and for $T\in \mathbb P$, let [T] denote the set of branches through T and $\mathbb Q$ any other forcing notion. Then we say that $\mathbb Q$ is an amoeba for $\mathbb P$ iff for any $T\in \mathbb P$, any $\mathbb Q$ -generic G, and any model $M\supseteq V[G]$, we have that

$$M \models \exists T' \leq T \forall x (x \in [T'] \rightarrow x \text{ is } \mathbb{P}\text{-generic over } V).$$

Some examples of amoeba forcing notions are as follows: Amoeba forcing, denoted by \mathbb{A} , consists of the set of all pruned trees $T\subseteq 2^{<\omega}$ such that $\mu([T])>\frac{1}{2}$, ordered by inclusion.

For Hechler forcing and eventually different forcing Brendle and Löwe [BL99, BL11] proved that one cannot achieve Σ_2^1 regularity via forcing and that it infact implies that \aleph_1 is inaccessible by reals. The result about Hechler forcing will be used later to show that Σ_2^1 regularity of amoeba forcing implies that \aleph_1 is inaccessible by reals.

Some regularity properties are not defined in terms of I-regularity or \mathbb{P} -measurability; e.g., the Baire property was originally defined in topological terms.

A general framework has been developed by Lucas in his PhD thesis with the help of weak category bases[Wan23]

Definition

Let X be a set and $C \subseteq \mathcal{P}(X)$. We call (X, C) is a *weak category* base if and only if

- ② for every $A, A' \in C$, $A \cap A'$ contains an element of C or for every $c \in C$, there is some $c' \in C$, such that $c' \subseteq c$ and $c' \cap (A \cap A') = \emptyset$.

- We refer to the elements of C as regions
- $A \subseteq X$ is *C-singular* if and only if for every region c there is a region $c' \subseteq c$ such that $c' \cap A = \emptyset$
- a subset A ⊆ X is C-small if it is a countable union of C-singular sets
- $A \subseteq X$ is said to be C-measurable if and only if for every region c, there is a region c' such that $c' \subseteq c$ and either $c' \setminus A$ or $c' \cap A$ is C-small.

For a region c, we say that

- $A \subseteq X$ is *C-not small in c* if $c \cap A$ is not *C-small*
- it is *C-not small everywhere in c* if $c' \cap A$ is not *C-small* for any region $c' \subseteq c$
- The ideal I^{*}_C is defined to be the collection of all subsets of X such that there is no region c for which A is C-not small everywhere in c.

- The set C is a partial order with the ordering \subseteq ; we say that the weak category base (X, C) has the *countable chain condition* if the partial order (C, \subseteq) does.
- A weak category base (X, C) is called *proper* if (C, \subseteq) is a proper forcing notion, \mathcal{I}_C is a proper σ -ideal, and every region is not C-small.

If X is a Polish space and (X, C) is a weak category base, we say that C is Borel compatible with X if every region is Borel and every Borel set is C-measurable.

Definition

Amoeba infinity forcing, denoted by \mathbb{A}_{∞} consists of the set of all pairs $(O, \epsilon) \in \mathbf{O} \times \mathbb{R}_{\infty}^+$ such that $\mu(O) < \epsilon$ ordered by $(O', \epsilon') \leq (O, \epsilon)$ iff $O \subseteq O'$ and $\epsilon' \leq \epsilon$.

This forcing notion lives on the Polish space of all open subsets of \mathbb{R} denoted by $\mathbf{0}$.

$$[O, \epsilon] := \{ U \in \mathbf{O} ; O \subseteq U \text{ and } \mu(U) \leq \epsilon \}$$

for $(O,\epsilon)\in\mathbb{A}_{\infty}$. The collection of sets $[O,\epsilon]$ is denoted by $\mathcal{C}_{\mathbb{A}_{\infty}}$.

The pair $(\mathbf{O}, C_{\mathbb{A}_{\infty}})$ is a c.c.c category base which is Borel compatible with \mathbf{O} and the ideal of $C_{\mathbb{A}_{\infty}}$ -small sets is Borel generated.

Definition

Amoeba forcing for category, also known as universally meagre forcing and denoted by \mathbb{UM} , consists of the set of all (σ, E) such that $\sigma = (\sigma(0), ..., \sigma(n-1))$ is a finite sequence of elements of $2^{<\omega}$ and E is an open dense subset of $2^{<\omega}$. This set is partially ordered as follows:

$$(\sigma', E') \le (\sigma, E)$$
 iff $\sigma \subseteq \sigma'$ and $\forall n \in \text{dom}(\sigma' \setminus \sigma)(\sigma'(n)) \in E$.

Amoeba forcing for category is an Amoeba for \mathbb{C} . It lives on the Polish space \boldsymbol{U} which is the collection of all $x \in (2^{<\omega})^{\omega}$ such that for all $s \in 2^{<\omega}$ there are infinitely many m with $s \subseteq x(m)$, via the the collection U of sets $[\sigma, E]$ for $(\sigma, E) \in \mathbb{UM}$.

The pair (\boldsymbol{U}, U) is a proper weak category base which is Borel compatible with \boldsymbol{U} .

Definition

Localisation forcing, denoted by \mathbb{LOC} , consists of the set of all pairs (σ,F) such that $\sigma=(\sigma(0),...,\sigma(n-1))$ is a finite sequence of elements of $[\omega]^{<\omega}$ and F is a finite set of elements of ω^{ω} such that for every k< n, $|\sigma(k)|=k+1$ and $|F|\leq n+1$. The set is partially ordered as follows:

$$(\sigma', F') \le (\sigma, F)$$
 iff $\sigma \subseteq \sigma'$ and $F \subseteq F'$ and $\forall x \in F$

$$\forall n \in \text{dom}(\sigma' \setminus \sigma)(x(i) \in \sigma'(i)).$$

We define **Loc** to be the Polish space of all slaloms that is of functions $f: \omega \to [\omega]^{<\omega}$ such that for all $n \in \omega$, $|f(n)| \le n + 1$.

The pair (Loc, L) forms a proper weak category base such that it is Borel compatible with Loc.

As mentioned earlier the Σ_2^1 regularity of Hechler and Eventually different Forcings both imply the inaccessibility of \aleph_1 by reals. Up next we shall show that the Σ_2^1 regularity of Amoeba Forcing, Amoeba for Category and the Loc all imply the inaccessibility of \aleph_1 by reals.

The general strategy for proving it in case of the two amoeba forcing notions involves an indirect approach in which we show that $\Sigma_2^1(\mathbb{P})$ implies $\Sigma_2^1(\mathbb{D})$, where $\mathbb{P} \in \{\mathbb{A}, \mathbb{UM}\}$.

On the other hand for \mathbb{LOC} , we develop a Brendle-Labdezki style lemma to prove it.

Let us first outline what a Brendle-Labdezki style lemma is and also the mechanism of the indirect proofs and we shall proceed to the specifics in the next section.

Definition

An assignment is a pair of formulas (Ψ, Φ) such that in every transitive model of set theory M, we have that if $A \in M$ and $M \models \Psi(A)$, then, in M, Φ defines an injection $a \mapsto c_a^A$ with domain A.

For an ideal I on a Polish space X,

Definition

An assignment (Ψ, Φ) is called *I-canonical* if for each transitive model M of set theory, we have that

$$M \models \exists A(\Psi(A) \land |A| = 2^{\aleph_0})$$

and if $M \models \Psi(A)$ and $a \in A$, then c_a^A is a Borel code in M such that the Borel set B_a^A coded by c_a^A is in I.

Definition

A forcing notion defined as \mathbb{P}_I on a Polish space X is said to satisfy a Brendle-Labdezki lemma if, there is an I-canonical assignment (Φ,Ψ) such that for each $Z\in I$ and any set A we have that

$$\{B_a^A : a \in A \land B_a^A \subseteq Z\}$$

is countable.

Theorem

Let \mathbb{P} be a forcing notion satisfying the conditions of Ikegami's theorem that in addition also satisfies a Brendle-Łabędzki lemma, then $\Sigma_2^1(\mathbb{P})$ implies that \aleph_1 is inaccessible by reals.

Proof.

Fix any $x \in \mathbb{R}$. Due to Ikegami's theorem, the assumption gives us that the set

$$N_x := \{z \in X ; z \text{ is not } I\text{-quasigeneric over } L[x]\}$$

is small. By definition of quasigenericity, every Borel set B with Borel code in L[x] satisfies $B\subseteq N_x$. By the canonicity assumption, we find a particular A in L[x] such that $L[x]\models \Psi(A)$ and $|A|=\aleph_1^{L[x]}$ and for all $a\in A$, we have $B_a^A\subseteq N_x$. But by the Brendle-Łabędzki lemma, the set $\{B_a^A\ ; \ a\in A\land B_a^A\subseteq N_x\}$ is countable, so $\aleph_1^{L[x]}$ is countable.

Now, in case of \mathbb{LOC} , we look at the assignment defined as follows:

$$x \in \omega^{\omega} \mapsto X_x = \{ f \in \mathbb{LOC} : \exists^{\infty} n \in \omega(x(n) \notin f(n)) \}$$

We of course mean the Borel code corresponding to X_x . This assignment is made canonical for the \mathbb{LOC} ideal by an eventually different family E (that is for $x, y \in E$, $\forall^{\infty} n \in \omega x(n) \neq y(n)$).

$\mathsf{Theorem}$

 \mathbb{LOC} satisfies Brendle-Labedzki lemma for the above canonical embedding.

Proof.

[Wan23, Lemma 2.5.9]

We now move on to develop the frame work which will enable us to show that $\Sigma_2^1(\mathbb{P})$ implies $\Sigma_2^1(\mathbb{D})$ for $\mathbb{P} \in \{\mathbb{A}, \mathbb{UM}\}.$

Let (X, C) and (Y, D) be weak category bases. A function $f: C \to D$ is called a *projection* if

- 0 whenever $c\subseteq c'$, then $f(c)\subseteq f(c')$ and
- ① for every $c \in C$ and $d \le f(c)$ there is a $c' \subseteq c$ such that $f(c') \le d$.

Lemma (Wansner's Implication Lemma)

Let X and Y be uncountable Polish spaces and (X,C) and (Y,D) be proper weak category bases such that (X,C) and (Y,D) are Borel compatible with X and Y, respectively. Assume that I_D^* is Borel generated, let $\alpha>0$ be an ordinal, that $\langle h_\beta:\beta<\alpha\rangle$ is a sequence of Borel functions from X to Y, and that $\langle \bar{h}_\beta:\beta<\alpha\rangle$ be a sequence of projections from C to D such that

- for every $\beta < \alpha$ and every $c \in C$, there is some region $c' \subseteq c$ such that $h_{\beta}[c'] \subseteq \bar{h}_{\beta}(c)$ and
- for every $d \in D$, there are $\beta < \alpha$ and $c \in C$ such that $\bar{h}_{\beta}(c) \subseteq D$.

Then for every projective pointclass Γ , we have that if every $\Gamma(X)$ set is C-measurable, then every $\Gamma(Y)$ set is D-measurable.

Proof.

[Wan23, Theorem 2.2.46]

So, clearly the wansner implication lemma when at the Σ_2^1 level gives us the necessary technique to prove the intended results.

We first of all intend to show that $\Sigma^1_2(\mathbb{A}_{\infty}) \implies \Sigma^1_2(\mathbb{D})$.

To that end, we define a borel function h as follows:

Let $\{I_k^n\subseteq\mathbb{R}:n,k\in\omega\}$ be a recursive family of pairwise disjoint open intervals with rational endpoints such that for every $n,k\in\omega$ $\mu(I_k^n)=2^{-2n}$. Then

$$h(U)(n) = \begin{cases} 0 & \text{if } \mu(U) = \infty, \\ \min\{k \in \omega : \forall \ell \geq k(I_{\ell}^n)\} & \text{otherwise.} \end{cases}$$

After this we wish to define a projection \bar{h} on a dense subset of O.

$$D = \{(O, \epsilon) \in \mathbb{A}_{\infty} : \exists n \in \omega (\sum_{m \geq n} 2^{-2m} < \epsilon - \mu(O) < 2^{-2(n-1)})\}.$$

which is defined as:

$$D' = \{(O, \epsilon) \in D : \forall U \in [O, \epsilon](h(O) \upharpoonright n_{(O, \epsilon)} = h(U)) \upharpoonright n_{(O, \epsilon)}\}$$

where $n_{(O,\epsilon)} \in \omega$ such that

$$\epsilon - \mu(O) \ge 2^{-2(n-1)} > 2^{-2(n-1)}/3 = \sum_{m \ge n} 2^{-2m}.$$

It being dense actually suffices since $C_{D'} = \{[O, \epsilon] : (O, \epsilon) \in D'\}$ will render O to be as category base equivalent to the original one.

It can be checked that the above satisfy the conditions of the Wansner lemma [Wan23, Proposition 2.3.24]

Next up we show that $\Sigma_2^1(\mathbb{A}) \implies \Sigma_2^1(\mathbb{A}_{\infty})$.

To that end we fix a recursive family $\{A_k^n : n, k \in \omega\}$ of open independent subsets of 2^{ω} with $\mu(A_k^n) = 2^{(-n+1)}$.

Moreover let $I^{\ell,n}$ be the set of finite unions of intervals with rational endpoints with measure $\leq 4^{\ell-n}$ and let $\{U_k^{\ell,n}:k,\ell,n\in\omega\}$ be a recursive family of open sets such that for $\ell,n\in\omega$, $\{U_k^{\ell,n}:k\in\omega\}$ enumerates $\mathcal{I}^{\ell,n}$ and each element of $I^{\ell,n}$ occurs infinitely often in this enumeration.

For every $\ell \in \omega$, we define functions $h_{\ell} : \mathbf{R} \cup \mathbb{A} \to \mathbf{O}$ and $\bar{h}_{\ell} : \mathbb{A} \to \mathbb{A}_{\infty}$ by

$$h_{\ell}(S) = \bigcup \{ U_k^{\ell,n} : \mu(A_k^n \cap [S]) = 0 \}$$
 and $\bar{h}_{\ell}(T) = (h_{\ell}(T), \sup \{ \mu(h_{\ell}(S)) : S < T \})$

This completes the proof of $\Sigma_2^1(\mathbb{A})$ implies the inaccessibility of \aleph_1 by reals [Wan23, Proposition 2.3.27].

Now, we prove that $\Sigma_2^1(\mathbb{UM}) \implies \Sigma_2^1(\mathbb{D})$.

For this we define a Borel function $h: \mathbf{U} \to \omega^{\omega}$ and a projection $\bar{h}: \mathbb{UM} \to \mathbb{D}$ as follows:

$$h(x)(n) := \min\{|s| : s \in \operatorname{ran}(s) \text{ and } t_n \subseteq s\}$$
 and $\bar{h}(\sigma, E) := (n_{(\sigma, E), f_{(\sigma, E)}})$

where $n_{(\sigma,E)}$ is maximal such that for every $x,x'\in [\sigma,E]$, $h(x)\upharpoonright n=h(x')\upharpoonright n$ and $f_{(\sigma,E)}(n)=\min\{h(x)(n):x\in [\sigma,E]\}.$

Brendle-Labedzki Implications between regularities

To check that the above satisfies the Wansner lemma we refer to [Wan23, Theorem 2.4.10]

Jörg Brendle and Benedikt Löwe.
Eventually different functions and inaccessible cardinals.

Journal of the Mathematical Society of Japan, 63(1):137 – 151, 2011.

Lucas Wansner.

Aspects of Forcing in Descriptive Set Theory and Computability Theory.

PhD thesis, Universität Hamburg, 2023.

Thank you!