

9. Is there an enumeration of \mathbb{Q} as q_1, q_2, q_3, \dots such that $\sum(q_n - q_{n+1})^2$ is finite?
10. Write down a differentiable function f from $[0, 1]$ to \mathbb{R} such that f' is not (Riemann) integrable. If f' is bounded, must it be integrable?
11. Find a continuous surjection from \mathbb{R} to \mathbb{R}^2 .
12. Is there a continuous bijection from \mathbb{R} to \mathbb{R}^2 ?
13. Construct a function from \mathbb{R} to \mathbb{R} that is infinitely-differentiable, but is identically 1 on $[-1, 1]$ and identically 0 outside $(-2, 2)$.
14. A subset of \mathbb{R} is called *perfect* if it is closed and has no isolated points. Write down a (non-empty) perfect set that does not contain any (non-trivial) interval. Prove that every closed set is the union of a perfect set and a countable set.
15. Can a simple closed curve in the plane have positive area?