

1. We say that a function f from \mathbb{R} to \mathbb{R} *crosses the axis* at a point x if $f(x) = 0$ but for any $\epsilon > 0$ there exist y and z in $(x - \epsilon, x + \epsilon)$ with $f(y) > 0$ and $f(z) < 0$. Can a continuous function cross the axis at uncountably many places?
2. Let $[a_1, b_1], [a_2, b_2], \dots$ be a sequence of closed intervals whose union contains $[0, 1]$. Does it follow that $\sum_{n=1}^{\infty} (b_n - a_n) \geq 1$?
3. Construct a continuous function from $[0, 1]$ to \mathbb{R}^2 that is exactly $3 - 1$ onto its image.
4. Is there a continuous function from $[0, 1]$ to \mathbb{R}^2 that is exactly $2 - 1$ onto its image?
5. Is every function from $[0, 1]$ to \mathbb{R} the pointwise limit of a sequence of continuous functions?
6. Let f be an infinitely-differentiable function from \mathbb{R} to \mathbb{R} , such that for every x there is an n with all the derivatives $f^{(n)}(x), f^{(n+1)}(x), f^{(n+2)}(x), \dots$ being zero. Must f be a polynomial?
7. Let f be a differentiable function from \mathbb{Q} to \mathbb{Q} such that $f' = f$. Must f be identically zero?
8. If f is a polynomial of one real variable that is bounded below (on \mathbb{R}), explain why f attains its minimum value. If f is a polynomial of two real variables that is bounded below (on \mathbb{R}^2), must f attain its minimum value?