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1.2 The Erdős-Szemerédi Problem: Minimising the Sum Set and Product Set simultaneously . . . . 4
1.3 Elekes’ Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Solymosi’s Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Sums and Products in Groups 10
2.1 The Cauchy-Davenport Inequality for Fp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The Cauchy-Davenport Inequality for Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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Abstract

Suppose A is a finite subset of R. The Erdős-Szemerédi problem asks: how small can max{|A+A|, |AA|}
be? We will show that for |A| large, max{|A+A|, |AA|} cannot be O

(
|A|4/3

)
, one of the best known results

for this problem. We will also look at additive combinatorics in groups, in particular a generalisation of the
Cauchy-Davenport inequality to all groups: if A,B ⊂ G, then |A + B| ≥ min{p(G), |A| + |B| − 1}, where
p(G) is the size of the smallest subgroup of G. Lastly we will consider A ⊂ Fp and estimate how large
max{|A + A|, |AA|} must be relative to p.

1 Sums and Products in R
1.1 The Smallest and Largest Sum Sets and Product Sets

For A,B finite subsets of R we define
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A+B = {a+ b : a ∈ A b ∈ B} (sum set)

AB = {ab : a ∈ A b ∈ B} (product set)

−A = {−a : a ∈ A}
a+B = {a+ b : b ∈ B}

A quick warmup would be to ask, how big can A + A be? Every element in this set is either a sum of two
distinct elements in A (there are

(|A|
2

)
ways to do this) or a sum of the same element twice (there are |A| ways

to do this). In the worst case, all of these are distinct, thus

|A+A| ≤
(
|A|
2

)
+ |A|

=
1

2

(
|A|2 + |A|

)
This argument also tells us how we would obtain the upper bound for a prescribed |A| = n. We need a + a′

to be distinct for every a, a′ ∈ A (up to commuting), so for instance we could consider An := {1, 2, . . . , 2n−1}.
Since the binary expansion of numbers is unique, each a + a′ is distinct. Therefore the upper bound is tight
(meaning that the bound is attainable for all prescribed |A| = n).

In fact, this argument would work for any commutative operation instead of ’+’. In particular, we have the
similar bound |AA| ≤

(|A|
2

)
+ |A|. One clever idea shows that the bound is also tight for |AA|: For any set

A, we can define 2A := {2a : a ∈ A}. This set has the key property that its product set, 2A2A, has the same
cardinality as A+A. Indeed, 2A2A = 2A+A because for any a, b ∈ A, we have 2a2b = 2a+b, thus

|2A2A| = |2A+A| = |A+A|

Therefore, we can choose Bn = 2An , then |Bn| = |An| and |BnBn| =
(|Bn|

2

)
+ |Bn| for all n. Hence the upper

bound is tight. Impressively, Bn also maximises its sum set simultaneously as the sums are still distinct binary
expansions, thus |Bn +Bn| =

(|Bn|
2

)
+ |Bn|.

Theorem 1.1. (Trivial Upper bound) For A ⊂ R with |A| = n,

|A+A| ≤
(
n

2

)
+ n

|AA| ≤
(
n

2

)
+ n

and these inequalities are tight. They can also be equalities simultaneously, in other words, the inequality

min{|A+A|, |AA|} ≤
(
n

2

)
+ n

is tight.

Our next question is, how small can A+A and AA be? Certainly they cannot be smaller than A since we can
take any a ∈ A then a + A ⊆ A + A and |a + A| = |A|, thus |A + A| ≥ |A|. Our next claim is that we can
actually do a bit better than that.

Theorem 1.2. (Trivial Lower Bound) For any A ⊂ R with |A| = n, |A + A| ≥ 2n − 1, and this bound is
tight.
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Proof. A first guess at what might make A + A small would be an arithmetic progression as intuitively there
would be a lot of overlapping in the sums. The simplest AP is of course the integers A := {1, 2, . . . , n}. Then
A+A = {2, 3, . . . , 2n} is of size 2n− 1.

To prove we cannot get any smaller, one could realise that the above example is more about numbers being
ordered from 1 to n than the set itself being {1, . . . , n}. Suppose A = {x1, . . . , xn} with x1 < x2 < · · · < xn.
Then the inequalities below hold,

x1 + x1

< x1 + x2

< x2 + x2

< x2 + x3

. . .

< xn−1 + xn

< xn + xn

Therefore, the 2n− 1 sums above are distinct.

One could notice from the above proof that the only property of ’+’ that if x1 < · · · < xn, then the chain of
inequalities listed in the proof hold. This property can be phrased precisely as,

b < b′ =⇒ (a+ b < a+ b′ and the commuted version b+ a < b′ + a)

Under the assumption 0 /∈ A, this statement is true if we replace + with ×. Thus, this lower bound also holds
for |AA| and the minimising example would be 2{1,...,n}.

If 0 ∈ A, then in AA we have all the nonzero products, and zero. In other words,

AA = (A\{0})(A\{0}) ∪ {0}

We know |A\{0}A\{0}| ≥ 2(n− 1)− 1, so |AA| ≥ 2n− 2.

Corollary 1.2.1. (Trivial Lower Bound for Multiplication) For any A ⊂ R with |A| = n,

|AA| ≥

{
2n− 1 if 0 /∈ A
2n− 2 if 0 ∈ A

and this bound is tight.

Proof. We just saw the proof of the bounds. To show the bounds are tight, for the 0 /∈ A case we know there
are sets with |A + A| = 2n − 1 (e.g. {1, 2, . . . , n}) so as discussed previously, |2A2A| = 2n − 1. Therefore, a
minimising example is 2{1,2,...,n}.
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1.2 The Erdős-Szemerédi Problem: Minimising the Sum Set and Product Set
simultaneously

Sum-set product-set questions suddenly become a lot less dull when we ask, can both |A + A| and |AA| be
small simultaneously? In other words, can max{|A+A|, |AA|} be small?

We already saw that our example of a set that maximised |AA| also happened to maximise |A+A|, thus showing

min{|A+A|, |AA|} can achieve its upper bound of
(|A|

2

)
+ |A|. It is natural to ask whether max{|A+A|, |AA|}

can achieve its lower bound of 2|A| − 1. This is equivalent to having both |A+A| and |AA| equal to 2|A| − 1.
Sadly, we cannot achieve the bound in the same way as before because our minimising set for |AA| is not a
minimising set for |A+A| (in fact, it is a maximising set).

It turns out that it is not possible to achieve this lower bound. One simple way to prove this is to show all
sets which satisfy |A + A| = 2|A| − 1 are arithmetic progressions and all sets which satisfy |AA| = 2|A| − 1
are geometric progressions. Since no set is both an arithmetic progression and a geometric progression, we can
conclude a set cannot have max{|A+A|, |AA|} = 2|A| − 1.

Lemma 1.3. If A is a finite subset of R with |A+A| = 2|A| − 1, then A is a subset of an AP.

Proof. Let A = {x1, . . . , xn} with x1 < · · · < xn. The set A + A must be precisely the elements listed in the
proof of Theorem 1.2. I.e,

A+A = {x1 + x1, x1 + x2, . . . , xk + xk, xk + xk−1, . . . , xn + xn} (∗)

We will prove inductively that the entire sequence x1, . . . , xn is a subset of an AP. This is equivalent to showing
xk − xk−1 = x1 − x2 for all k.

Assume x1, . . . , xm satisfy the above. Then xm−1 + xm+1 is an element of A+A, but is not written explicitly
in this form in (∗), so it must equal one of the terms we listed. By assumption of the (xi) increasing, we have

xm−1 + xm < xm−1 + xm+1 < xm + xm+1.

The LHS and RHS are terms written in (∗) and the only term in (∗) which lies between them is xm + xm, thus

xm−1 + xm+1 = xm + xm

∴ xm+1 − xm = xm − xm−1
= x1 − x2 (induction)

Replacing ’+’ with ’×’ in the above proof yields the similar claim for product sets.

Lemma 1.4. If A is a finite subset of R with |AA| = 2|A| − 1 and 0 /∈ A, then A is a subset of a GP

Corollary 1.4.1. There is no finite subset A of R with 0 /∈ A and max{|A+A|, |A|} = 2|A| − 1

[The case when 0 ∈ A is more of an uninteresting techanicality.]

It turns out finding the exact minimum of max{|A+A|, |AA|} over all A ⊂ R of prescribed cardinality |A| = n
is simply too difficult of a problem to solve, so we instead we ask whether we can find its asymptotic order for
n large.
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Notation

• We say f(n) = O(g(n)) if there exists a constant C > 0 such that f(n) ≤ Cg(n) for all n sufficiently
large. In other words f is asymptotically bounded above by g

• We say f(n) = Ω(g(n)) if there exists a constant C > 0 such that f(n) ≥ Cg(n) for all n sufficiently
large. In other words, f is asymptotically bounded below by g.

• We say f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)). In other words, f and g have the same
asymptotic order.

Question Let g(n) be the smallest possible value of max{|A + A|, |AA|} over all A ⊂ R size n. For which α
is g(n) = O(nα)?

We first make some basic observations. Since |A + A| and |AA| are bounded above by a quadratic in |A|
(Theorem 1.1), max{|A+A|, |AA|} is also bounded above by a quadratic in |A|. Therefore g(n) = O(n2), and
so α ≥ 2 is sufficient. Also, |A+A| and |AA| are larger than |A|, so α ≥ 1 is necessary.

Consider A = {1, . . . , n}, which we know makes |A + A| minimal. The set AA is the distinct numbers in a n
by n multiplication table which we saw in elementary school, though finding the size of |AA| is no elementary
task.

1 2 3 . . . n

2 4 6 . . . 2n
3 6 9 . . . 3n

. . .
n 2n 3n . . . n2

Figure 1: The n by n multiplication table

It was not until 2008 that Ford[1] showed |AA| = O
(

n2

(logn)c(log logn)3/2

)
for some positive constant c. Since

|A + A| = 2n − 1 is much smaller than |AA|, we know |AA| = max{|A + A|, |AA|}. Although this example
shows the maximum can be asymptotically smaller than O(n2), it is not O(nα) for any α < 2.

The conjecture of Erdős-Szemerédi is that α cannot be smaller than 2.

Conjecture 1.5. (Erdős-Szemerédi[2]) g(n) is not O(n2−ε) for any ε > 0. In other words, for any c, ε > 0,
there exists N such that for all A ⊂ R of cardinality N , max{|A+A|, |AA|} ≥ c|A|2−ε.

Progress towards this conjecture has been made by proving statements of the form ‘If g(n) = O(nα), then
α ≥ β for some β > 1’. Proving for β = 2, would solve the conjecture positively. Over the years, many have
tried to get β as close to 2 as possible, though there is still a long way to go.

According to [3],

Year β Author
1983 1 + δ for some δ > 0 sufficiently small Erdős and Szemerédi[2]
1997 1 + 1

31 Nathanson[4]
1998 1 + 1

15 Ford[5]
1997 1 + 1

4 Elekes[6]
2005 1 + 3

11 Solymosi[7]
2009 1 + 1

3 Solymosi[8]
2016 1 + 1

3 + 5
9813 Konyagin and Shkredov[9]
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1.3 Elekes’ Bound

Elekes significantly improved the results of Erdős, Szemerédi, and Nathanson by applying combinatorial ge-
ometry. Although using geometry is certainly not what one first thinks after reading the problem, the most
surprising part is the simplicity of his proof, given one important lemma.

Lemma 1.6. (Szemerédi-Trotter)[10] Suppose we have a set P of points in the plane and a set L of straight

lines. Let t ≤
√
|P|. If each l ∈ L contains at least t points in P, then

|L| ≤ C |P|
2

t3

for C a (large) constant independent of L,P and t.

Theorem 1.7. (Elekes’ Bound) For any constant c, there exists N large such that for all A of cardinality

larger than N , max{|A+A|, |AA|} > c|A|1+ 1
4 . In other words, β > 1 + 1

4 .

Proof. Let P = (A+A)×AA (in the Cartesian sense) and L = {y = a(x− a′) : a, a′ ∈ A}.

Consider a particular y = a(x − a′) in L and fix b ∈ A. By putting x = a′ + b into the equation, one can see
this line contains the point (a′ + b, ab) ∈ P. Since we can repeat this for any b ∈ A and get a distinct point
each time, we have shown each line in L intersects at least |A| points in P.

Therefore by Lemma 1.6 (Szemerédi-Trotter) with t = |A| and |P| = |A+A||AA| > t2,

|L| ≤ C |P|
2

t3

|A|2 ≤ C |A+A|2|AA|2

|A|3

|A| 52 ≤ C|A+A||AA|

|A| 52 ≤ C max{|A+A|, |AA|}2

∴max{|A+A|, |AA|} ≥ C ′|A|1+ 1
4

Thus, max{|A+A|, |AA|} cannot be asymptotically smaller than |A|1+ 1
4

1.4 Solymosi’s Bound

The improvement to Elekes’ Bound made by Solymosi still involves geometry, but we will need a new ingredient.

Definition 1.8. The multiplicative energy of A, E×(A) := |{(a, b, c, d) ∈ A×A×A×A : ab = cd}|

Why might we be interested in multiplicative energy? Suppose we want to compute |AA| but we know E×(A) is
small. The most simple approach would be: start with an empty list and iterate through every pair (a, b) ∈ A2.
Given (a, b), we write down ab at the end of our list if ab does not appear in our list already. Since E×(A) is
small, it is unlikely that ab appears in our list already, because this would give a pair (a, b, c, d) with ab = cd,
and we know there are few of those. Thus the final length of our list (which equals |AA|) must be large. We
can quantify this idea precisely,
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Lemma 1.9. (|AA| and E×(A) cannot be small simultaneously) For any A ⊂ R,

|AA|E×(A) ≥ |A|4

Proof. An equivalent way to write E×(A) is,

E×(A) =
∑

(a,b)∈A2

∑
(c,d)∈A2

1ab=cd

=
∑

(a,b)∈A2

∑
(c,d)∈A2

∑
x∈AA

1ab=cd=x

=
∑
x∈AA

∑
(a,b)∈A2

∑
(c,d)∈A2

1ab=x1cd=x

=
∑
x∈AA

|{(a, b) ∈ A2 : ab = x}|2 (∗)

Then by the Cauchy-Schwarz inequality, one has

∑
x∈AA

12
∑
x∈AA

|{(a, b) ∈ A2 : ab = x}|2 ≥

( ∑
x∈AA

|{(a, b) ∈ A2 : ab = x}|

)2

= |A|4

∴ |AA|E× ≥ |A|4

This proves that |AA| and E× are related, but why should we work with E× instead of |AA|? The key
observation is that multiplicative energy is equal to ‘quotient energy’,

E×(A) = |{(a, b, c, d) ∈ A4 : a/d = c/b}|

by simply dividing through by bd (we can assert x/0 :=∞ and ∞ =∞, but we will ignore such technicalities)

Why might we care about ‘quotient energy’? If (a, b, c, d) ∈ A4 satisfy a/d = c/b, then (d, a) and (b, c) lie on
the same line through the origin y = mx where m = a/d = c/b (geometry!). Thus,

E×(A) = |{(a, b, c, d) ∈ A4 : (d, a) and (b, c) lie on the same line through the origin}|

The phrasing for the set whose cardinality we are taking above (lets call it S) is quite awkward. To get a more
approachable form for E×(A), we can carry out the same analysis as in Lemma 1.9. Alternatively, to give a bit
more insight, we can argue this by counting |S| in another way.

Fix a line l through the origin. Suppose (d, a) and (b, c) are (not necessarily distinct) points in A × A which
lie on l. Then (a, b, c, d) is a tuple in S. Since there are |(A × A) ∩ l|2 ways to choose (d, a) and (b, c) (in an
ordered way), there are |(A×A) ∩ l|2 tuples in S corresponding to the line l. Thus,

E×(A) =
∑

l is a line through the origin

|(A×A) ∩ l|2
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Define A/A := {a/b : a, b ∈ A}. It will be useful to express things in terms of the gradient m(l) a line l because
the lines for which (A×A) ∩ l is nonempty are precisely those where m(l) ∈ A/A. Hence,

E×(A) =
∑

m∈A/A

r(l(m))2

where r(l) = |(A×A) ∩ l| and l(m) is the line through the origin with gradient m.

Combining with Lemma 1.6 we have,

|AA|
∑

m∈A/A

r(l(m))2 ≥ |A|4 (∗)

If we could upper bound the sum above by something involving |A + A|, we could get a new bound by using
reasoning similar to the end of Elekes’ proof. We’ll need a couple more good ideas for this to work though.

So far we have the set of lines {l(m) : m ∈ A/A} which cover A × A. The only thing we haven’t involved yet
is A + A. Solymosi’s idea is to consider the set of points P := A × A + A × A in the plane. On one hand,
P = (A+A)× (A+A), thus |P | = |A+A|2. Another way to count the number of points in P is to count the
number of points that lie between adjacent lines in {l(m) : m ∈ A/A}.

In general if we have any two lines through the origin in R2 and sum two points on these lines, the resulting
point will lie between the two lines in the component with the smaller angle (because this operation is equivalent
to a reflection of (0,0) through the line joining the two points) as in (a).

Repeating this argument over a set of lines D := {l1, . . . , lk} with gradients m1 > · · · > mk, then for all i,
li + li−1 ⊂ Si as in (b), where Si is region between li and li−1 with the smaller angle.

(a) Adding points on lines

l2

lk

l3

. . .
lk−1

l1

S1 S2 S3

Sk

(b) Partition of first quadrant by the lines
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In particular, (li + li−1) ∩ P ⊂ Si ∩ P, and so

|P| =
k∑
1

|Si ∩ P| (partition)

≥
k∑
2

|(li + li−1) ∩ P| (what we just argued)

=

k∑
2

|(li ∩ P) + (li−1 ∩ P)|

Note that if X,Y ⊂ R have unique sums (i.e. x + y 6= x′ + y′ for all x′ 6= x in X and y′ 6= y in Y ), then
|X + Y | = |X||Y |. The sets li ∩ P and li−1 ∩ P have this property for all i. Indeed, if we have four points
a, a′ ∈ li and b, b′ ∈ lj with a+ b = a′+ b′ then a−a′ = b− b′, but adding points on the same line gives another
point on the line so a − a′ ∈ li ∩ lj . But li ∩ lj = {0} therefore a = a′ and b = b′ i.e the sums in the sum-set
are unique. Thus,

|P| ≥
k∑
i=2

r(li)r(li−1)

Altogether,

|AA|
∑

m∈A/A

r(l(m))2 ≥ |A|4 (∗)

and

|A+A|2 ≥
k∑
2

r(li) · r(li−1) (∗∗)

where D = {l1, . . . , lk} is any choice of lines.

The next brilliant trick is that we can choose D in a clever way so that both the sum of squares in (∗) and
product-sum in (∗∗) become very nice to work with. This method is known as dyadic decomposition.

Since r(l) ≤ |A| for all l (there are |A| possible x-coordinates of an intersection), we can divide our sum into
log |A|+ 1 smaller sums,

∑
m∈A/A

r(l(m))2 =

log |A|∑
j=0

 ∑
m∈(A/A)

r(l(m))2 · 1r(l(m))∈[2j ,2j+1)


︸ ︷︷ ︸

A(j)

Choose J such that A(J) is maximal and let D be the set of lines {l(m) : r(l(m)) ∈ [2J , 2J+1]}

9



∑
m∈A/A

r(l(m))2 ≤ (log |A|+ 1) ·A(J)

≤ 2 log |A| · |D|22(J+1)

For this choice of D, (∗) becomes,

|AA||D|22J+3 log |A| ≥ |A|4

And (∗∗) becomes,

|A+A|2 ≥ (|D| − 1)22(J−1)

≥ |D|22J−3

Combining these we have,

8|A+A|2 ≥ |D|22J ≥ |A|4

8|AA| log |A|

and if we do the algebra on the LHS and RHS,

|A+A||A+A||AA| ≥ |A|4

64 log |A|

∴ max{|A+A|, |AA|}3 ≥ |A|4

64 log |A|

∴ max{|A+A|, |AA|} = Ω

(
|A|4/3

(log |A|)1/3

)
= Ω

(
|A|4/3

)
2 Sums and Products in Groups

2.1 The Cauchy-Davenport Inequality for Fp

We have asked questions about R, which has additive and multiplicative structure. The nice behaviour of R
meant that when we asked questions about A + A or AA individually, they were generally easy to answer. If
we try to generalise and instead consider a group (G, ·) and ask how small A ·A can be, this question is much
harder. One simple example shows this situation can be quite different from R. Trivially, for any A ⊆ G,
|A · A| ≥ |A|. For a general group, this bound is (usually) sharp, because if we take A to be a subgroup of G,
then |A · A| = |A|. If G has no proper non-trivial subgroups, its no longer obvious what the minimum value
of |A · A| should be. In the case where G is finite, this property implies G is isomorphic to (Fp,+), and this
becomes a familiar problem.

Theorem 2.1. (Cauchy-Davenport)[12] For A,B ⊂ Fp, |A+B| ≥ min{p, |A|+ |B| − 1}.

10



Proof. Induct on |B| and assume |B| ≥ 2 and |A| < p.

We may WLOG assume 0 ∈ B. This is because |A + B| = |A + B + k| for all k, so we can replace B with
B + k without changing |B| or |A+B|. In particular we can take k = −b for any b ∈ B. This is an important
assumption and we will use it multiple times.

We first claim |A+B| > |A|. Suppose |A+B| = |A|, then A+B = A since 0 ∈ B.

Define S(A) := {h ∈ Fp : A + h = A}, the stabliser of A. This is a subgroup of Fp and B ⊆ S(A). Since
|B| ≥ 2, S(A) is non-trivial. However, the only nontrivial subgroup of Fp is Fp itself. This is a contradiction
because it implies A = Fp: if k /∈ A then for any fixed a ∈ A,

k − a ∈ S(A)

∴ A+ (k − a) = A

∴ a+ (k − a) ∈ A
∴ k ∈ A

a contradiction. Therefore |A+B| > |A|.

The next idea is to notice that the “|A|+ |B| − 1” term in the Cauchy-Davenport inequality is invariant if we
remove some elements from B and add the same number of elements into A to get new sets A′ and B′. If we
do this in such a way that we do not create new sums i.e. A′ +B′ ⊆ A+B, then we would have,

|A+B| ≥ |A′ +B′| ≥ min{|A′|+ |B′| − 1, p} = min{|A|+ |B| − 1, p} (∗)

by induction on |B| and therefore the Cauchy-Davenport inequality would hold for A and B.

The correct surgical operation is called the e-transform of (A,B). Lets see how one might arrive at this.

We know 0 ∈ B, so there are some elements of A in A + B. Also, there are some elements of A + B not in A
since |A+B| > |A|. In particular, we may suppose a ∈ A has the property that a+B is not a subset of A+B.
The idea is to force these two types of elements to interact.

From a’s point of view, there are two types of elements of B: there are some ‘useless’ elements of B which when
summed with a, are still in A, i.e. Buseless := {b ∈ B : a + b ∈ A}, and there are ’useful’ elements of B which
when summed with a, are no longer in A, i.e. Buseful := {b ∈ B : a+ b /∈ A}.

The key observation is,

(a+Buseful) +Buseless ⊆ A+B (†)

Therefore, there is nothing stopping us from putting a+Buseful into A, i.e. A′ = A∪ (a+Buseful), and replacing
B with Buseless, i.e. B′ = Buseless. Since neither Buseful nor Buseless are empty, we are good to procceed by
induction. We will spell out the details in the next lemmas.

Definition 2.2. Let A,B be subsets of Fp with 0 ∈ B and e ∈ A. The e-transform of (A,B), is the pair
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(A′, B′) where

Buseless := {b ∈ B : e+ b ∈ A}
Buseful := {b ∈ B : e+ b /∈ A}

A′ := A ∪ (e+Buseful)

B′ := Buseless

Lemma 2.3. The e-transform has the following properties

(i) |A|+ |B| = |A′|+ |B′|

(ii) |A| ≥ |A′| and 0 < |B′| ≤ |B| with equality iff e+B ⊆ A

(iii) A′ +B′ ⊆ A+B

Proof.
(i) Since A and e+Buseful are disjoint by definition of Buseful, |A′| = |A|+ |Buseful|. Also, |B′| = |Buseful|. Thus
|A|+ |B| = |A′|+ |B′|.

(ii) |B′| > 0 since 0 ∈ Buseless. The rest of the inequalities follow from the proof of (i).

(iii) A′ = A ∪ (e+Buseful), so it suffices to consider each term in the union separately and show,

(a) A+B′ ⊆ A+B (obviously true as B′ ⊆ B)

(b) (e+Buseful) +B′ ⊆ A+B

For (b), suppose b ∈ Buseful and b′ ∈ Buseless. Then

(e+ b) + b′ = (e+ b′) + b

= a+ b (for some a ∈ A by definition of Buseless)

∈ A+B

∴ A′ +B′ ⊆ A+B

as required.

Corollary 2.3.1. (Cauchy-Davenport in the language of e-transforms) For A,B ⊂ Fp,

|A+B| ≥ min{p, |A|+ |B| − 1}

.

Proof. Induct on B. We have already shown |A + B| > |A| and WLOG 0 ∈ B. Since A + B is not a subset
of A, there exists a ∈ A such that a + B is not a subset of A. Let (A′, B′) be the e-transform of (A,B) by a.
Since a+B is not a subset of A, we know |B′| < |B| and A′ +B′ ⊆ A+B. Then by induction,

|A+B| ≥ |A′ +B′| ≥ min{p, |A′|+ |B′| − 1} = min{p, |A|+ |B| − 1}
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One interesting remark is that e-transforms had very little to do with Fp. All we really required was an abelian
group. Indeed, if (G,+) is an abelian group with identity element 0, we can replace ’Fp’ with ’G’ and the
lemma and definition of e-transforms still holds. The only place we used the fact that p is prime was to prove
|A + B| > |A|, so we can try to generalise. Since we’re doing induction, we also assumed (and used) the fact
that |A′ +B′| > |A′|, so our generalisation is not as simple as one might hope.

Corollary 2.3.2. Fix k and let (G,+) be an abelian group such that for all A,B ⊂ G with 1 < |B| < k, we
have |A+B| > |A|. Then in fact, |A+B| ≥ min{|G|, |A|+ |B| − 1}.

(N.B. the case where A or B is infinite is trivial)

This means, provided G has the property for k, sum sets involving subsets cardinality at most k have gap in
the possible cardinality for the sum set. Later we will see an incredible result that says we can take k to equal
the size of the smallest subgroup of G for any group G (abelian or not) and the conclusion of Corollary 2.3.2
remains true.

To prove Fp had the property that |A + B| > |A| for all A,B ⊂ Fp, we only needed to show that S(A), a
subgroup of Fp, must be trivial whenever A 6= Fp. This was easy because Fp only has two subgroups, the trivial
group and itself. Sadly, the only finite groups with this property are precisely the Fp by Cauchy’s theorem.
However, we can adapt our proof to a large class of infinite groups.

Definition 2.4. A group is torsion-free if it is infinite with no non-trivial finite subgroups

Lemma 2.5. If (G,+) is a group and A ⊂ G is finite, then S(A) is finite. In particular if G is torsion-free,
then S(A) is the trivial group.

Proof. If h ∈ S(A) then A · h = A. In particular, for some a, b ∈ A, ah = b. Thus h ∈ A−1 · A (where
A−1 := {a−1 : a ∈ A} has cardinality |A|), and |A−1 · A| ≤ |A|2 therefore |S(A)| ≤ |A|2. Since S(A) is finite
and the only finite subgroup of a torsion-free group is the trivial group, we are done.

Corollary 2.5.1. Let (G,+) be a torsion-free abelian group. Then |A+ B| ≥ |A|+ |B| − 1 for all A,B ⊂ G.
In other words, the Cauchy-Davenport inequality holds in G.

2.2 The Cauchy-Davenport Inequality for Groups

We previously saw that if G has a finite non-trivial proper subgroup A, then the Cauchy-Davenport inequality
fails because |A+A| = |A| < 2|A| − 1. It turns out that these are in some sense the ’worst’ examples.

Definition 2.6. We say a group (G, ·) is Cauchy-Davenport-like if for all A,B ⊂ G, |A ·B| ≥ min{p(G), |A|+
|B| − 1} where p(G) is the size of the smallest non-trivial subgroup of G (or equivalently if G is finite, the
smallest prime divisor of |G|).

For example, we just proved all torsion-free abelian groups are Cauchy-Davenport-like. This inequality is
trivial when |A| or |B| are greater than or equal to the cardinality of the smallest non-trivial subgroup of G.
In particular, the inequality now holds when A is a subgroup. It is no longer clear how we would come up with
a group which doesn’t satisfy this condition, and it turns out there are none!

Theorem 2.7. (Kneser 1953)[12] If G is an abelian group, then G is Cauchy-Davenport-like.

Theorem 2.8. (Károlyi 2005)[13] If G is a finite group, then G is Cauchy-Davenport-like

Theorem 2.9. (Ruzsa 2009)[14] If G is a group, then G is Cauchy-Davenport-like
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Kneser’s theorem is slightly more than what is written here and says a more general fact involving the stabiliser
subgroup S(A). Károlyi’s proof requires deep facts about the ‘solvability’ of a group. We will showcase here a
surprisingly elementary proof of Ruzsa’s result.

Theorem 2.10. (DeVos 2016)[15] If (G, ·) is a group, then G is Cauchy-Davenport-like

Proof. Suppose A,B ⊂ G with |A|, |B| < p(G) is a counterexample to the Cauchy-Davenport-like inequality,
i.e. |A ·B| ≤ min{p(G), |A|+ |B| − 1}. We may assume,

1. |A ·B| is minimum

2. |A|+ |B| is maximal subject to 1

3. |B| is minimum subject to 1 and 2

It follows that |B| ≤ |A|, otherwise the pair (B−1, A−1) satisfies 1 and 2, but contradicts minimality of 3.

Assume |B| ≥ 2. The plan here is the same as in the proof of Cauchy-Davenport. We will come up with a new
pair (A′, B′) such that A′ ·B′ ⊆ A ·B, but |A′|+ |B′| ≤ |A|+ |B| and |B′| < |B|, contradicting our minimality
assumptions.

Fix g ∈ G\{1} such that gB ∩ B is non-empty. For example, if x, y ∈ B, then we can take g = yx−1, then
y ∈ gB, so gB ∩B 6= ∅. If gB = B, then gnBg = B for all n ∈ N. Fix b ∈ B. Then for every 0 ≤ n < order(g),
gnb are distinct and contained in B. But |B| < p(g) ≤ order(g) by assumption, a contradiction. Thus B ∩ gB
is a proper nonempty subset of B.

Our candidate for B′ will be B ∩ gB. It is certainly the case that A · (B ∩ gB) ⊆ A · B, however, we need to
make A bigger otherwise we have no hope of contradicting minimality assumption 2. Fortunately, we can make
A bigger. If ag−1 ∈ Ag−1, then for any gb ∈ B ∩ gB we have ag−1gb ∈ A ·B. Thus,

(A ∪Ag−1) · (B ∩ gB) ⊆ A ·B

and so our candidate pair is (A′, B′) = (A ∪Ag−1, B ∩ gB).

We know that |B′| < |B| and |A′ ·B′| ≤ |A ·B|, so to contradict minimality of (A,B), all we need to show is

(a) (A′, B′) does not satisfy the Cauchy-Davenport-like inequality

(b) |A′|+ |B′| ≥ |A|+ |B|

In fact, all we need to show is (b), because (b) =⇒ (a). Indeed, if |A′|+ |B′| ≥ |A|+ |B|, then

|A′ ·B′| ≤ |A ·B| ≤ min{p(G), |A|+ |B| − 1} ≤ min{p(G), |A′|+ |B′| − 1}

Thus (A′, B′) would be a counterexample to the Cauchy-Davenport-like inequality.

Sadly, we have no reason to believe (b) is true. All we know is B′ is non empty, it could be tiny, and we have
no control over the size of |A′| either. The key idea that will save us (and the real reason why (A′, B′) was a
great pair to look at) is,

|B ∩ gB|+ |B ∪ gB| = 2|B|

If B′ is small, then B ∪ gB is big. Similarly for A′,
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|A ∪Ag−1|+ |A ∩Ag−1| = 2|A|

Altogether,

(|A′|+ |B′|) + (|A ∩Ag−1︸ ︷︷ ︸
A′′

|+ |B ∪ gB|︸ ︷︷ ︸
B′′

) = 2(|A|+ |B|) (4)

If (A′, B′) didn’t work out (i.e. (b) didn’t hold), our new candidate counterexample will be (A′′, B′′), which is
like a flipped around version of (A′, B′). There are a few things to check,

(i) A′′ is non-empty.

(ii) |A′′ ·B′′| ≤ |A ·B|

(iii) |A′′|+ |B′′| > |A|+ |B|

(iv) (A′′, B′′) does not satisfy the Cauchy-Davenport-like inequality

If we can show all of these (under the assumption (b) does not hold), then (A′′, B′′) contradicts minimality
condition 2 of (A,B) and we can conclude that G is Cauchy-Davenport-like.

(i) holds because,

|A′|+ |B′| < |A|+ |B|
≤ 2|A|

∴ |A′| < 2|A|

Since A′ = A ∪Ag−1, it follows that A and Ag−1 cannot be disjoint, thus A′′ is non-empty

(ii) holds by the same argument used to show A′ ·B′ ⊆ A ·B.

(iii) holds by applying (b) to (4)

(iv) is implied by (ii) and (iii) as we saw for (A′, B′)

2.3 Balog-Szemerédi-Gowers Theorem

Recall, that for A ⊂ R, we defined the ’multiplicative energy’ of A as,

E×(A) = {(a, b, c, d) ∈ A4 : ab = cd}

We can generalise this idea to groups.

Definition 2.11. If (G,+) is an abelian group and A ⊂ G, we define the additive energy of A as,

E(A) := |{(a, b, c, d) ∈ A4 : a+ b = c+ d}|

If G is written multiplicatively, we refer to the same quantity as the multiplicative energy.

Previously we noted that E(A) and |A + A| are obviously related, and Lemma 1.6 quantified that with the
bound |A+A|E(A) ≥ |A|4. This was in R, but our argument works in a general group G.
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Theorem 2.12. (|A+A| and E(A) cannot both be small) If (G,+) is an abelian group and

|A+A|E(A) ≥ |A|4

(N.B. G need not even be abelian, but we will focus on abelian groups in this section)

This bound does not tell us that we cannot have both |A+A| and E(A) large. In the next lemma, we will give
the largest possible asymptotic orders for |A+A| and E(A) and show that these can be obtained simultaneously.

Lemma 2.13. (|A+A| and E(A) can be as large as possible simultaneously[11])

(i) |A| ≤ |A+A| ≤ |A|2, so the largest asymptotic order is |A+A| = Θ(|A|2)

(ii) E(A) ≤ |A|3, so the largest asymptotic order is E(A) = Θ(|A|3)

(iii) InG = R, it is possible to have both |A+A| and E(A) asymptotically as large as possible simultaneously for
|A| arbitrarily large. In other words, there is a sequence of sets An with |An| → ∞, |An+An| = Θ(|An|2),
and E(An) = Θ(|An|3).

Proof. We have mostly seen these results already

(i) For the lower bound, pick any a ∈ A, then |a+A| = |A|. Also a+A ⊆ A+A. Thus |A+A| ≥ |A|.

For the upper bound, there is a surjection from A×A to A+A by (a, a′)→ a+ a′. Thus |A+A| ≤ |A|2.

(ii) By Theorem 2.12, |A+A|E(A) ≥ |A|4. Since |A+A| ≥ |A|, we have E(A) ≤ |A|3.

(iii) Fix n and let A = An. The idea is to write A = B t C for some B = Bn and C = Cn such that

(a) |B| and |C| equal 1
2 |A| (or at least on the order of |A| for all n)

(b) E(B) is large, i.e. E(B) = Θ(|B|3)

(c) |C + C| is large, i.e. |C + C| = Θ(|C|2)

Then (a) implies E(B) = Θ(|A|3) and |C+C| = Θ(|A|2). Since E(A) ≥ E(B) and |A+A| ≥ |C+C|, it follows
that E(A) = Θ(|A|3) and |A+A| = Θ(|A|3).

Let us give an explicit construction in R. In Section 1.1 we saw C := {2, . . . , 2n} maximises |C + C| and
B := {1, . . . , n} minimises |B + B| to Θ(|B|). Therefore by Theorem 2.12, E(B) = Θ(|B|3). To ensure B and
C are disjoint, we can instead consider B := {2n + 1, . . . , 2n + n}. These sets satisfy (b) and (c), so we can
define A = B t C.

Another way of thinking about our construction for (iii) is: We have a set B which has high additive energy,
but |B + B| is very small (minimal even in our case). We add some new elements to B (i.e. union C to get
A) to pump up |B + B| to maximality, and we don’t need to add that many new elements, so E(B) is still
maximal relative to the new size of the set. However, we still have this huge subset B ⊂ A, which has |B +B|
small. The question the Balog-Szemerédi-Gowers theorem aims to answer is, if A has E(A) and |A+A| large,
must there be a big subset B of A with |B +B| small?

Theorem 2.14. (Balog-Szemerédi-Gowers[11]) Let A be a finite subset of an abelian group (G,+) with
E(A) = Θ(|A|3). Then there is a large subset B ⊆ A with |B +B| = Θ(|B|).

More precisely, if for some K > 1,

E(A) ≥ |A|3/K (i.e. E(A) big)
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then there is a B ⊆ A with

|B| ≥ K−c|A| (|B| big)

and |B +B| ≤ Kc′ |B| (|B +B| small)

where c and c′ are constants dependent only on K.

Originally this theorem was proven by Balog and Szemerédi, but their proof makes c and c′ very large compared
to K. The improvement due to Gowers made these constants much more practical. The actual result proven
by Gowers doesn’t look related to this question at all. In fact, it is much stronger. We will state it, then show
that it does in fact imply Theorem 2.14.

Theorem 2.15. (Gowers[16]) Fix K > 1 and let A and A′ be a finite non-empty subsets of the same abelian
group with |A| = |A′| and let X be a subset of A×A′ with

|X| ≥ |A||A′|/K (i.e. X is a big subset of A×A′)

Define
EX(A,A′) := |{a+ a′ : (a, a′) ∈ X}|

and suppose
EX(A,A′) ≥ |A|3/K (i.e. EX(A,A′) is large)

Then there exist B ⊆ A and B′ ⊆ A′ with

|B| ≥ cK−c|A|
|B′| ≥ cK−c|A′|

for some absolute constant c (i.e. they are large subsets) such that for every b ∈ B and b′ ∈ B′, there are at
least cK−c|A|5 solutions (b1, b2, b3, b

′
1, b
′
2, b
′
3) ∈ B3 ×B′3 to the equation

b− b′ = (b1 − b′1)− (b2 − b′2) + (b3 − b′3).

To show Gowers’ Theorem implies BSG, we will need two lemmas which we will not prove.

Lemma 2.16. (Plünnecke’s Inequality[11]) Let X be a finite subset of an abelian group. Then for any
K > 0,

|X −X| ≤ K|X| =⇒ |X +X| ≤ K2|X|

[We’ll see a much stronger form of Plünnecke’s Inequality later]

Lemma 2.17. (Ruzsa Triangle Inequality[11]) If X,Y, Z are finite subsets of the same abelian group, then

|X||Y − Z| ≤ |X − Y ||X − Z|.

[If we define ρ(A,B) = log |A−B|√
|A||B|

, the ’Ruzsa distance’, then the Ruzsa Triangle Inequality says ρ(B,C) ≤
ρ(B,A) + ρ(A,C)]

Corollary 2.17.1. (Gowers’ theorem implies BSG[11])
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Proof. Assume the hypothesis of BSG, so we have A, a subset of an abelian group, and K > 1 such that

E(A) ≥ |A|3/K.

Let A′ = A and X = A×A. Then

EX(A,A′) = E(A)

≥ |A|3/K

By Gowers’ theorem, there exist large subsets B,B′ ⊆ A such that for any b, b′ ∈ B, there are at least cK−c|A|5
solution tuples to the equation,

b− b′ = (b1 − b′1)− (b2 − b′2) + (b3 − b′3) (∗)

So for each element of B − B′ on the LHS, we have a large set of solution tuples. For different elements of
B −B′, these sets are disjoint. Also, each of these solution tuples lives inside |A|6. Thus,

|B −B′| × cK−c|A|5 ≤ |A|6

∴ |B −B′| ≤ 1

c
Kc|A| (†)

Now we will use the previous two lemmas to show B satisfies the conclusion of BSG. By the Ruzsa Triangle
inequality with X = B′ and Y = Z = B,

|B′||B −B| ≤ |B′ −B|2

Putting this into (†),

|B′||B −B| ≤ 1

c2
K2c|A|2

|B −B| ≤ CKC |A| (because |B′| ≥ cK−c|A|)

where C is a new absolute constant.

By Plünnecke’s inequality,

|B +B| ≤ C2K2C |A|

≤ Kc′ |A| (for some absolute c′ > 2C)

Recall |B| ≥ cK−c|A|, thus |B| ≥ K−c|A| for some c absolute. Therefore B satisfies the Balog-Szemerédi-
Gowers (Theorem 2.14) conclusion as required and the constants c and c′ are absolute.

3 Sums and Products in Fp
3.1 Overview

The Cauchy-Davenport inequality gave an answer to how small sum-sets can be in Fp, but we are yet to consider
the multiplicative structure of the field. In this section, we will explore some similar problems which will serve
as useful lemmas in later sections.

18



3.2 Dilated Cauchy-Davenport

Over a (not necessarily prime order) finite field F , the minimum of |A + B| is trivially attained when A = B
is a subfield. One way we can make this question interesting is to ask how small is max{|A+ ξB| : ξ ∈ F×}?.
This extra ξ dilation factor means that subfields are now terrible examples, because if A = B < F , consider any
ξ /∈ A. Then a+ ξb is unique for every a, b ∈ A, thus the dilated sumset is maximal. Indeed, if a+ ξb = a′+ ξb′,
then a − a′ = ξ(b′ − b). If a = a′ or b = b′, then a = a′ and b = b′. Otherwise, ξ = (a − a′)(b′ − b)−1 ∈ A×, a
contradiction.

Theorem 3.1. (Dilated Cauchy-Davenport)[12] Let A,B be finite non-empty subsets of a finite field F .
Then

max
ξ∈F×

|A+ ξB| ≥ min{1

2
|A||B|, 1

10
|F |} (∗)

Proof. Note this lower bound is huge compared to our previous results.

Suppose |A||B| > 1
2 |F |. Then min{ 12 |A||B|,

1
10 |F |} = 1

10 |F | because |A||B| ≥ 1
5 |F |. We could remove some

elements from A and B such that |A′||B′| ≥ 1
5 |F | still, but |A′||B′| < 1

2 |F |. Since this doesn’t change the LHS
of (∗) and |A′ + ξB′| ≤ |A+ ξB| for all ξ, we may WLOG assume |A||B| ≤ 1

2 |F |.

Let ξ ∈ F×. Consider the sets Ca(ξ) = a + ξB for every a ∈ A. We will perform the inclusion-exclusion
principle on them.

|A+ ξB| =

∣∣∣∣∣ ⋃
a∈A

Ca

∣∣∣∣∣
≥
∑
a∈A
|Ca| −

1

2

∑
a,a′∈A,a6=a′

|Ca ∩ Ca′ | (inclusion-exclusion principle)

Lets look at each term separately. Since ξ is invertible,

|B| = |Ca| (∀a)

∴
∑
a∈A
|Ca| = |A||B|

and

∑
a,a′∈A,a6=a′

|Ca ∩ Ca′ | =
∑

a,a′∈A:a 6=a′

 ∑
b,b′∈B

1a+bξ=a′+b′ξ


=

∑
a,a′∈A:a6=a′

∑
b,b′∈B:b′ 6=b

1ξ=(a−a′)−1(b′−b)

The trick here is to notice that we have no idea if our fixed ξ satisfies (a − a′)−1(b′ − b), but we know
(a−a′)−1(b′−b) equals something in F×. So, if we sum over all ξ ∈ F , for any (a, a′, b, b′), there will be exactly
one ξ equal to (a− a′)−1(b′ − b).
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∑
ξ∈F×

∑
a,a′∈A,a6=a′

|Ca(ξ) ∩ Ca′(ξ)| =
∑

a,a′∈A:a 6=a′

∑
b,b′∈B:b′ 6=b

∑
ξ∈F×

1ξ=(a−a′)−1(b′−b)

=
∑

a,a′∈A:a 6=a′

∑
b,b′∈B:b′ 6=b

1

≤ |A|2|B|2

Putting this all into the inclusion-exclusion inequality,

∑
ξ∈F×

|A+ ξB| ≥
∑
ξ∈F×

|A||B| − 1

2
|A|2|B|2

∴
1

|F×|
∑
ξ∈F×

|A+ ξB| ≥ |A||B| − |A|2|B|2

2(|F | − 1)

≥ |A||B| − |A|
2|B|2

2(|F |/2)

≥ 1

2
|A||B| (We assumed |A||B| ≤ 1

2
|F |)

Since the average of |A + ξB| over all ξ ∈ F× (the LHS) is at least 1
2 |A||B|, there must be some ξ∗ with

|A+ ξ∗B| ≥ 1
2 |A||B|.

3.3 Bounds on |p(A)| for a polynomial p

We’ve seen |A + A| = O(|A|2). A very similar argument would show |A + A + A| = O(|A|3), and extend to
more terms. We can make this question more interesting though. If |A+A| is small compared to |A|, then we
would expect |A+A+A| to also be small compared to |A| too. Our next lemma quantifies this notion.

Lemma 3.2. (Plünnecke–Ruzsa Inequality[11]) Let A,B be non-empty finite subsets of the same abelian
group such that |A+B| ≤ K min (|A|, |B|). Then,

|A±A · · · ±A| ≤ CKC |A|

where C is a constant dependent only on the length of the additive combination.

In particular, note the case when B = A and the additive combination is A + A + A, which shows our initial
expectation was correct. Also note the case when B = −A and the additive combination is A+A, we retreive
Lemma 2.16 (Plünnecke’s inequality). Indeed, this result underpins many fundamental results in additive
combinatorics. The proof relies on the Lemma 2.17 (Ruzsa Triangle Inequality).

One thing we have not talked about yet is combinations of sum sets and product sets. For example, |AA+A|.
These naturally lead to polynomials. There is a rich theory about these combinations, but surprisingly we
will only need to quantify the intuitive claim that if |A + A| and |AA| are small, then |AA + AA| is small (or
equivalently, by Plünnecke, |AA − AA| is small). Although the claim is intuitive, the proof is far from simple
and requires Gowers’ Theorem (Theorem 2.15).
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Lemma 3.3. Suppose A ⊂ F satisfies
|A+A|, |AA| ≤ K|A|

Then there is a large subset A′ ⊆ A with

|A′| ≥ cK−C |A|
|A′A′ −A′A′| ≤ CKC |A′|

for some absolute constants c and C.

The proof of the bound of |p(A)| is really about this well behaved subset A′ ⊂ A. We will only attempt to
bound |p(A′)|. To obtain the bound, we say x ∈ F is good if xA ⊂ S + (A − A) for some small set S of
cardinality |S| ≤ CKC . Using the fact that |A′A′ − A′A′| is small, one can show that every element of A′ is
good and if x and y are good, then so are x± y and xy. Therefore, every element of p(A′) is good.

Theorem 3.4. (Polynomial Bound[12]) Suppose A ⊂ F and A′ is the set obtained from Lemma 3.3. Then
for any polynomial p of several variables and integer coefficients, we have

|p(A′, . . . , A′)| ≤ CKC |A|

3.4 The Sum-Product Estimate

One of the main results about sum sets and product sets in Fp is the Sum-Product Estimate. It is answers one
version of the Erdős-Szemerédi problem framed in Fp instead of R. The proof relies on Theorem 3.1 (Dilated
Cauchy-Davenport) and Theorem 3.4 (Polynomial Bound).

Theorem 3.5. (Bourgain-Katz-Tao[12]) Let A ⊂ Fp such that

pδ < |A| < p1−δ

for some δ > 0. Then,
max{|A+A|, |AA|} ≥ c|A|1+ε

for some positive constants c and ε depending only on δ.

Recall that the first result in R by Erdős-Szemerédi took this form. One can show that this result is a lot tougher
to improve. In [17] it is shown that for every p, there is a subsetA ⊂ Fp such that max{|A+A|, |AA|} = o(|A|3/2),
which is much smaller than |A|2, and so it is difficult to imagine a meaningful translation of the Erdős-Szemerédi
conjecture from R into the prime order fields.

In [12] many interesting corollaries of Theorem 3.5 are obtain. In particular, one can prove a version of Lemma
1.6 (Szemerédi-Trotter) for finite fields.
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