The Eight Types of Algebraic Surfaces

Douglas Barnes*

Abstract: We proceed from the end of Part II Algebraic Geometry and
first aim to prove Riemann-Roch. Sheaf theory is developed from scratch
and we show there is a natural correspondence between divisors and
invertible sheaves. We then define sheaf cohomology and use it to prove
Riemann-Roch for curves. In the last section, we study cohomology on
surfaces, leading to the Riemann-Roch theorem for surfaces. With the
hard work done, we sit back and survey the classification of minimal
complex algebraic surfaces.
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1. Introduction

We proceed from the end of the Part II Algebraic Geometry course and aim
to prove the Riemann-Roch theorem for curves:

Riemann Roch: If X is a projective smooth curve over an algebraically
closed field k, then for any divisor D

I(D)—I(K —D)=degD+1—g

where [(D) = dimg{f : div(f)+ D effective}, K is the canonical divisor, and
g :=[(K) is the genus.

The first step is to recast our current understanding of algebraic geometry in
terms of ‘sheaves’, which are not specific to geometry and interesting in their
own right. In Section 5, we see the true face of divisors swept under the rug
in IT Algebraic Geometry, which are the simplest class of sheaves acting on
a variety. In Section 6, we see a new algebraic concept ‘cohomology’ which is
exclusive to sheaves and apply it to prove Riemann-Roch for curves, which
leads to the classification of curves.

Though Riemann-Roch for curves is an important result, it can be proven by
elementary means, see Section 8 in [14]. In Section 7, we see Riemann-Roch
for surfaces, which is a different beast altogether and proving it is widely
considered intractable without the consideration of cohomology (discussed
in [15]). Next, we change gears to a ‘bedtime-read’ style and survey the
classification of complex algebraic surfaces, proving only the very easy parts.
The relevant citations are provided for the purist, which are approachable
given the tools developed in this article.
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Sections 3 to 6 largely follow the text of Kempf [1] and this article serves as a
‘reader’s guide’, including extra details in the proofs. The proof of Riemann-
Roch for curves presented in [1] is Kempf’s original proof (see [17]), which
was of course not the first proof but still an innovation at the time. A
memoriam to Kempf by David Mumford is found in [16]. Section 7 follows
the texts of Beauville [3] and Barth, Peters, Van de ven [10].

We assume the reader is familiar with the material taught in the Part II
Algebraic Geometry course at the University of Cambridge. The reader is
referred to the notes of Scholl [20] or the condensed notes of Wilson [19]

Natural next steps after reading this article would be the study of schemes,
which this article avoids, see the classical text of Hartshorne [2]. Many ap-
plications of cohomology are also discussed in [1]. More can be said about
compact complex surfaces, which are the subject of [10].

The author thanks Prof. Pelham M.H. Wilson for many hours of inspiring
discussions.

2. Preliminaries
2.1. Categories

A category is roughly a collection of objects with arrows between them.
For our purposes, object means set and arrow means function (also called
morphisms or maps). Key examples include:

e The category of sets Set. Every function between two sets is a mor-
phism.

e The category of groups Grp. The morphisms are the group homomor-
phisms.

e The category of abelian groups Ab. The morphisms are the group
homomorphisms.

e The category of topological spaces Top. The morphisms are continuous
maps.

e The category of rings Ring. The morphisms are the ring homomor-
phisms.

The nice kind of map between categories is the functor. A functor F' from
C to D is a map that



(i) maps objects in C to objects in D

(ii) maps each morphism f: X — Y in C to a morphism F(f) : F(X) —
F(Y)in D

such that:

(iii) F(idx) = idp(x) (preserves identity morphisms)
(iv) F(fog)=F(f)o F(g) (respects composition)
Key examples include:

e The ‘forgetful functor’ Ab — Set which maps an abelian group to its
underlying set and the morphisms map in the natural way. Similarly
there is a forgetful functor Ring — Ab.

e The functor Set — Grp mapping a set to the free group on that set.
A set functions maps to a group homomorphism by acting on each
letter in a given string.

The next simplest type of map between categories is the contravariant func-
tor, a map which reverses arrows. A contravariant functor F' from C to D
is a map that

(i) maps objects in C to objects in D

(ii) maps each morphism f : X — Y in C to a morphism F(f): F(Y) —
F(X) in D.

such that:
(iii) F(idx) = idp(x) (preserves identity morphisms)
(iv) F(fog)=F(g)o F(f) (flips composition)

We will see later that ‘sheaves’ are an examples of a contravariant functors
and the reversing of arrows is exactly what we want.

2.2. FExact sequences of abelian groups

An exact sequence is a compact form of notation for a common occurrence
in algebra. Suppose B is an abelian group with subgroup A. We have the
(injective) inclusion map ¢ : A — B and the surjective map ¢ : B — B/A
with kernel A. This data is written compactly as,

(*) 0-A5BL B/A—0
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where the first and final maps are trivial (one is inclusion, the other maps
everything to the identity) and their purpose will be illuminated shortly.
Thus we define:

Definition 2.1. A short exact sequence of abelian groups is a sequence of
the form
0—-A—-B—-C—0

where the map A — B is injective and the map B — C' is surjective with
kernel (the image of) A.

It is useful to think of any given short exact sequence as subgroup and a
quotient, as in (*). Another way to phrase this definition would be ‘each
map has kernel equal to the image of the previous map’. Thence we see how
to generalise this definition:

Definition 2.2. An exact sequence of abelian groups is a countable collec-
tion of groups (G,,)n and group homomorphisms (fy,), such that f, : G,, —
Gn41 and im(f,) = ker(f,+1) for all n. When the collection is finite, we
write

e NN L N L NN

This definition generalises to categories other than abelian groups by re-
placing ‘group homomorphism’ with morphisms of the relevant category.
However, it doesn’t make sense for every category since we need ker f,, 1 to
make sense.

Example 2.3. Let A and B be abelian groups. Saying the sequence
0—+A—B

is exact is equivalent to saying A embeds into B. Saying the sequence
A—-B—=0

is exact is equivalent to saying there is a surjective map from A to B. These

are common shorthands.

2.3. Tensor products

Tensor products will be a useful construction for us later, but we won’t use
them in any difficult way. One interesting application will be turning a set
of modules into a group with tensor product as the group law.

The definition should be reminiscent of usual multiplication:
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Definition 2.4. Let R be a ring with R-modules M and N. The tensor
product over R, denoted M ®gr N, is the R-module,

{m®&grn:me M,neN}
with the relations
(mi+me)@n=m;@n+ma@n
(rm1) @ n =r(m; ®n)
and vice versa in the other component, for my,mes € M, n € N, r € R.
We drop the subscript when the context is clear.
Proposition 2.5. For R-modules M, N, and P:
e MRN~N®M (symmetry)
e M@ (N®P)~(M®P)®d(M®N) (distributive law)

Proof. Exercise.

Definition 2.6. Let M be an R-module
e For k a positive integer, we define M®* = M ® ---® M.
—_——

k times
e Define 7;; : M®* — M®* by swapping the ith and jth components.
e The exterior product N*M is M®* with the additional relations:
V= —T;jv
forallve M® and 1 <i<j<k.

Thus the exterior product contains the anti-symmetric tensors.

2.4. Varieties

The definitions of a ‘variety’ vary amongst I Algebraic Geometry lecturers.
We briefly establish our convention here, with respect to a fixed algebraically
closed field k.

Definition 2.7.
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An affine variety is the topological space given by any closed set of
A™ equipped with the Zariski topology (for any n).

A quasi-affine variety is the topological space given by any open subset
of an affine variety (with the subspace topology)

A projective variety is the topological space given by any closed set of
A™ equipped with the Zariski topology (for any n).

e A quasi-projective variety is the topological space given by any open
subset of a projective variety (with the subspace topology)

e For a polynomial f, define the vanishing set V(f) := f~1(0).
Remark 2.8.

e Zariski closed sets are vanishing sets of polynomials, thus we often do
not distinguish between the topological space and the corresponding
vanishing set embedded in A"™.

e We don’t require varieties to be irreducible

e Every type of variety defined above is a quasi-projective variety (ex-
ercise), thus we say variety to refer to a quasi-projective variety.

Definition 2.9. For X and Y varieties, a morphism is a map ¢ : X — Y
which is locally given by polynomials

With these morphisms, the varieties over the field k£ form a category.
Definition 2.10.

e A rational function on A™ is a map of the form = — p(x)/q(x) for
p,q € k[X1,..., X,

e A rational function on P™is amap x — p(z)/q(x) with p, ¢ € k[ X1, ..., X,)]
homogeneous and degp = deggq.

e A regqular function on a variety X is a map X — k which is locally
given by rational functions. The set of all regular functions on X is
denoted k[X], or Ox. Later, Ox will mean something related but
different.

Fact 2.11. Let X be a smooth curve. Then for every x € X, the ring Ox ,
is local. A generator of the maximal ideal is called a local parameter.



3. Sheaf Theory
3.1. Presheaves

Let X be a topological space.

Definition 3.1. The category Open(X) consists of the open sets of X with
inclusion morphisms (i.e. for every U C V' we have a morphism ¢ : U — V')

Note that this differs greatly from the category Top defined previously.

Definition 3.2. A presheaf of abelian groups F' on a topological space X is
a contravariant functor F': Open(X) — Ab.

In words, a presheaf assigns an abelian group to each open set of X with the
extra condition that ‘U is a subset of V’ becomes ‘F'(V') subgroup of F(U)’
in the image. This condition might seem backwards, which comes from the
‘contravariant’ part. We’ll see why this is what we want in an example soon.

Definition 3.3. If U C V are open with inclusion map ¢ : U — V then

res); := F()

is the restriction map, a group homomorphism F (V) — F(U).

The usual rules of a contravariant functor apply:

(3.1) resy; is the identity map.

(3.2) if U C V C W then res;l = res}; ores}/

These equations will be stated in much simpler notation shortly. Though
the definition seems daunting, restriction maps are never an obstruction
and always line up with restriction in the function sense.

Example 3.4. Let X a variety and consider the presheaf F' given by the
following data:

(i) For U C X open, F(U) is the set of regular functions on U (an abelian

group under addition).
(ii) For U C V open, the restriction map res‘é is given by restricting func-

tions in the usual sense.
Remark 3.5.

e Most presheaves arise in a similar way to Example 3.4 — for U open,
F(U) is the set of functions on U satisfying some property.
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e This example also illuminates why presheaves were defined as ‘con-
travariant’ functors: for U C V open sets and a presheaf F' which
maps open sets to functions, we can naturally map F (V') into F(U)
by restriction (but it would be much less obvious how to map F(U)
into F(V)).

o In this article, the restriction map will always be obvious in any exam-
ple and we often don’t say what it is when defining a presheaf. Thus we
will frequently define presheaves by saying ‘F' is the presheaf defined
by U — {f : f regular on U} for U open.’

Definition 3.6.

e If I is a presheaf and U open, a section of F over U is an element
f € F(U). It is custom to drop “of F” or “over U” when the context
is clear or irrelevant.

e If U CV and f is a section over V, then f|y := resgf.
In this notation, equations 3.1 and 3.2 become

(3.3) flu = f when f is a section over U
(3.4) (flv)|lv = flu when f is a section over W, where U C V C W

respectively.

3.2. Sheaves

In Algebraic Geometry, it is often of interest to study local behaviour of
functions. In this section we will define sheaves, which are presheaves with
extra conditions to capture local behaviour.

Definition 3.7. Let F be a presheaf on X and z € X. If f is a section over
U and g is a section over V', we say f and g are germ equivalent at x, written
f ~uz g if there exists a non-empty open W C U NV such that flyw = glw.

The stalk of F' at x, written F, is the set of sections defined on a neigh-
bourhood of x up to germ equivalence,

F,={f:f€F(U) for some open U}/ ~,

If f is a section of F' over some neighbourhood of x, then the quotient
projection naturally defines an element f, in F,.
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A natural first question is whether a section is determined by its local be-
haviour. That is, can there be two different sections f and g over U such
that f; = g, for all x € U? The broad definition of a presheaf does not
prevent this.

Definition 3.8. A presheaf F' is decent if any section of F' is determined
by its local behaviour, i.e. if f and g are sections over U such that f, = g,
for all x € U, then f =g.

Many results in Algebraic Geometry are described as ‘local to global’; we're
given local information, i.e. on stalks, and want to deduce global information,
i.e. on open sets.

Proposition 3.9. If f and g are sections of F' over U, then f, = g, for all
z € U if and only if there is an open cover U = | J U, such that f|y, = glv,.

Proof. If f, = g, then fly = g|w for some neighbourhood W of z, thus
giving an open cover. The converse is ‘global to local’, so straightforward
indeed. O

Given a section f over U and an open cover U = |JU,, let f, = f|u,. The
set {fo : a} is not arbitrary. It satisfies the patching condition:

(3.5) falvanus = foluanu, Vo, B

It is a common and desirable property that ‘nice’ functions that agree where
they are both defined can be glued together to give another ‘nice’ function
defined on both domains. Indeed, the functions we study often have this
property e.g. morphisms of varieties. Thus we make the most important
definition of today,

Definition 3.10. A sheaf of abelian groups F on X is a presheaf of abelian
groups with the properties:

Given any open U, open cover U = | JU,, and sections f, of F' over
U, for all a such that the set {f, : o} has the patching condition
(3.5), there exists a section f of F' over U such that f|y, = f, for
all a.

F is decent, or equivalently (by Proposition 3.9) the section obtained
in (i) is unique.

(3.6)

(3.7)

Key examples include:
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Example 3.11.

(i) If X is a variety, the sheaf of reqular functions on X defined by U —
{f:U — k| f regular on U}, is denoted Ox. In this case, (3.6) and
(3.7) are trivial as two regular functions which agree on an open set
agree everywhere they are defined.

(ii) Let X and Y be varieties. Then U — {f : U — Y | f is a morphism}

is a sheaf on X.

The functions we deal with often form a ring or module, not just an abelian
group, thus we ought to extend our definition of (pre)sheaves to make use
of this information. In fact, we can define a (pre)sheaf of any category:

Definition 3.12. Given a category C, a presheaf of C on X is a contravari-
ant functor Open(X) — C. A presheaf F'is a sheaf of C on X if it satisfies
conditions (3.6) and (3.7).

Example 3.13. For a variety X, Ox is a sheaf of rings. Given « € X,
the stalk Ox , is naturally a ring, identifying functions which agree near x.
This is the sheaf theoretic definition of the local ring seen in II Algebraic
Geometry.

Remark 3.14. Although sections of sheaves are almost always functions in
practice, it is better to view functions as sections rather than view sections as
functions. The key results we develop in this article come from abandoning
the pointwise interpretation of functions and only comparing them on open
sets. A stalk can be thought of as seeing the action of a function on a limit
of smaller and smaller neighbourhoods.

Definition 3.15. A morphism « of (pre)sheaves F' and G of the category
C is a collection of morphisms of C, a(U) : F(U) — G(U) for each open U,
such that a(U) commutes with the restriction maps: if U C V open and f
is a section of F' over V, then

(3.8) a(U)(flv) = [e(V)(N)]lo-
Often we abbreviate a(V)(f) as a(f), thus (3.8) becomes

(3.9) a(flv) = a(f)lu-

With these morphisms, the sheaves of C on X form a category, denoted
Sh(C)(X).
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Definition 3.16. Let F' and G be sheaves and « : F' — G a morphism
e « is surjective if for all U open, the map «(U) is surjective.
e « is injective if for all U open, the map «(U) is injective.
e « is an isomorphism if it is injective and surjective.

We establish our first local to global result on sheaves:

Proposition 3.17. (Local to global for isomorphisms) Let F and G
be sheaves. A morphism « : F — G is an isomorphism if and only if the
induced map on stalks a, : F' — G is an isomorphism for all z € X

Proof. The forwards direction is clear, so assume «, is an isomorphism for
all z.

a is injective If a(f) = a(g), then a,(f) = a,(g) for all z, so by injectivity,
for every x there is some neighbourhood U, with f|y, = g|u,. Since sections
of a sheaf are determined by their local behaviour, we have f = g.

« is surjective Let g be a section of G(U). For all x € U, there are sections
fz € Fy such that a;(fz) = gz. Choose a section f(x) of some open set V()
such that f(z)y = fz. Then a(f(z))s = guz, so by shrinking V() we may
assume o(f(z))|v(z) = 9lv(z)- Thus for all z,y € U,

a(f(@)vanve) = vanve = alf@)lvenve)

so by injectivity, f(2)|v(@)nvy) = f(W)|v@nvy). Therefore since F is a
sheaf, {f(x) : * € U} can be patched to give a section f € F(U) and we
have a(f) = g. O

Remark 3.18.

e The proof only required G to be a presheaf, but we will not concern
ourselves with presheaves much longer.

e This proof does not say that two sheaves are isomorphic if all their
stalks are isomorphic. It tells us that we don’t need to check that
the inverse isomorphisms of stalks glue together to give an inverse
morphism of sheaves.

Definition 3.19. We say F is a subsheaf of G or write F' C G if there is
an injective morphism from F' to G, referred to as the inclusion map.
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Example 3.20. If F' is a sheaf of category C on X and U C X open then
the restriction of F to U is the sheaf denoted F|y and defined by

VS FUNYV)

for V. C X open. There is an injective morphism ¢ : F — F|y given by
t(V)(f) = flu, thus F is a subsheaf of F|y.

Example 3.21. If a : FF — G is a morphism of sheaves of abelian groups,
we define the kernel of «, denoted ker(a), as the sheaf defined by

U — a(U)"10)

In words, U maps to the sections of U which map to the identity under
a. The reader should convince themselves that ker(«) is indeed a sheaf of
abelian groups and moreover a subsheaf of . When F' is a ring, ker(«) is a
sheaf of ideals.

Definition 3.22. A sequence of sheaves of abelian groups on X

RSR5S. . SE,
is exact if the corresponding sequence of abelian groups with the induced
stalk maps

(F1)e 225 (Fy)e 25 5 (B,
is exact for all z € X.

Remark 3.23.

e The stalk of a sheaf of abelian groups is naturally an abelian group,
to which this definitions refers. Similarly, a stalk of a sheaf of rings is
naturally a ring. However, this wouldn’t make sense for an arbitrary
category, but it does generalise to so-called ‘abelian categories’.

e In light of the previous remark, an ezact sequence of sheaves of rings
is defined by replacing ‘abelian group’ with ‘ring’ in Definition 3.22.

e These definitions extend in the obvious way if the sequence is countably
infinite.

Unfortunately, the world is not perfect and not every presheaf we are inter-
ested in is a sheaf. There is a natural construction to get around this, which
involves identifying sections which agree locally and dding in glued-together
sections — though we won’t get into the details here. Moreover, whenever we
are required to apply this procedure in this article, the reader is encouraged
to ignore it and pretend we already had a sheaf.
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Definition 3.24. For a presheaf F', a sheafification of F, is a sheaf of the
same category F# and a presheaf morphism ¢ : F' — F# such that

(i) any sheaf morphism « : F' — G can be written in the form
a=a"o¢
for some unique sheaf morphism o# : F# — G.

(i) for all # € X, the induced map on stalks ¢, : F — Fj' is an isomor-
phism

Remark 3.25. The reader should reconcile (ii) with Proposition 3.17, also
considering the case when F' is a sheaf.

Example 3.26. Let F' and G be sheaves.

e The tensor product sheaf over the ring R, denoted F ®p G, is the
sheafification of the presheaf defined by

U— F(U)®r GU)

e Let a : FF — G. The image sheaf im(«) is the sheafification of the
presheaf defined by
U— aF(U))

e Let GG be a subsheaf of F' over a suitable category. The quotient sheaf
is defined by the sheafification of the presheaf defined by

U — F(U)/GU)

4. Sheaves of modules

For a ring R, the category R-modules exists and Definition 3.12 applies.
However, this would not be a very useful notion of a ‘sheaf of modules’
because R is fixed over the entire domain. We would like R to represent
functions, thus should depend on the open set in question.

Definition 4.1. Given a sheaf of rings R, a sheaf of R-modules M is a
sheaf of abelian groups on X such that

e M(U) is a R(U)-module for all U open

e (a-m)ly =aly-mly for all V C U open, a € R(U), m € M(U). Le.
restriction is a module homomorphism.
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Remark 4.2. Definition 3.22 generalises in the obvious way to sheaves of
R-modules.

The simplest example is given by the following:
Example 4.3. Let R be a sheaf of rings.
e Let I be a set, the direct sum of R by I, denoted R!, is the sheaf of

R-modules, defined by
U— PRrRO)
I

for U C X open. We will only ever concern ourselves with direct sums
and not Cartesian products, so there will be no ambiguity in notation.

e Let a: R — S be a sheaf morphism then ker a (see Example 3.21) is
a sheaf of R-modules (naturally, as ideals are R-modules).

The following definition provides further examples, which will be useful later:
Definition 4.4. Let M and N be sheaves of R-modules.

e The sheaf tensor product M @z N is the sheafification of the presheaf
defined by U — M(U) @x @y N (U).

e For n € N, the sheaf exterior product A" M is the sheafification of the
presheaf defined by U — A" M(U).

Recall that if R is a ring, an R-module M is free if M = @; R for some set
I and |I] is the rank of M. These notions generalise to sheaves of modules.

Definition 4.5. Let R be a sheaf of rings and M a sheaf of R-modules.

e M is locally free if every x € X has an open neighbourhood U such
that M(U) is free.

e M is rank n if every x € X has an open neighbourhood U such that
M(U) is free with finite rank n. In the case n = 1 we say M is
invertible or a line bundle.

Remark 4.6. The most interesting sheaves of modules are sheaves of Ox-
modules. In fact, for an arbitrary topological space X and an arbitrary sheaf
of rings Ox called the ‘structure sheaf of X', one can study the so-called
‘ringed space’ (X, Ox). The remainder of this article could be summarised
as the study of ringed spaces when X is a variety and the structure sheaf is
the sheaf of regular functions. The question of what happens when X is not
a variety leads to the study of ‘schemes’.
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Example 4.7. Let 7 be the projection from A"\ {0} to P". Define Opn (m),
a sheaf of Opn-modules, by

U— {f € Or-1y : f homogeneous with degree > m}
Thus,
e Opn = Opn(0)
e For mi,mo € Z, there is a natural isomorphism

(4.1) Opn(m1) @ Opn(ma) — Opn(my + ms)

e Let X, be a coordinate variable. Then
Opn(m)|x,20 = X" - Opn

Hence Opn(m) is invertible. Later we will see all invertible sheaves of
Ox-modules on P" are isomorphic to Opn(m) for some m.

Inspired by (4.1), we define
Definition 4.8. Let M be a sheaf of Ox-modules and m € Z, then

M(m) = M®p, Ox(m)
is a sheaf of Ox modules.

Definition 4.9. If M is locally free of rank n, we define the determinant
sheaf det M := A" M.

4.1. Quasi-coherent sheaves

Locally free is usually too much to ask for. Instead, we often have a local
generating set with linear relations between them.

Definition 4.10. Let R be a sheaf of rings and M a sheaf of R-modules.
A presentation of M is an exact sequence of sheaves

RISRI S M—=0

If J is finite, we say M is finitely generated. If both I and J are finite, we
say M is finitely presented

For the reader who is new to exact sequences, the following example gives
an illustration of Definition 4.10:
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Example 4.11. We consider the simplest case of Definition 4.10 when the
sheaves are constant: we have a ring R, an R-module M, and an exact
sequence of R-modules:

(4.2) Rl R M=o

Suppose |J| = n is finite and let (e;)} be a basis of R’. Equation 4.2 tells
us there is a surjective map from R’ to M, thus we can identify the (ej)}
with a spanning set for M.

Let (f;)r be a basis of R! with images under the first map
aizel +---+apie,, €1

Equation 4.2 tells us these expressions generate the kernel of the second
map. We can view this statement as telling us precisely what the relations
between the elements of the spanning set (e;)} are:

aigielr + -+ apien = 0, Viel

Altogether, J is the number of generators and I is the number of relations
between them.

Definition 4.12. A sheaf of R-modules M is quasi-coherent if any x € X
has an open neighbourhood U such that there is an exact sequence of sheaves

of R|y-modules
RI’U — RJ‘U — M|U —0

for some sets I and J. We say M is coherent if I and J can be taken to be
finite for all .

In light of Example 4.11, we informally say that M is quasi-coherent if it is
locally given by generators with linear relations. While this definition is easy
to picture, it is surprisingly difficult to prove things with. For the remainder
of this section, we work towards a more productive characterisation of quasi-
coherent sheaves.

Definition 4.13. For a sheaf F', we define I'(X, F') := F(X). The map
F = T'(X,F) is called the global sections functor on X.

Example 4.14. For a variety X, we have I'(X, Ox) = k[X], the space of
regular functions on X (aka the ‘coordinate ring’).

Definition 4.15. Let M be a R(X)-module. Define M ®g(x) R to be the
sheafification of the presheaf of R-modules

U — M®R(X) R(U)
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Our next fact says that quasi-coherent modules are precisely the sheaves of
modules which are locally of this form.

Fact 4.16. Let M be a sheaf of R-modules on a variety X. The following
are equivalent:

(i) M is quasi-coherent

(ii) for all z, there is a neighbourhood U and a R(U)-module M such that
M|y = M gy (Rlv)

Proof. Kempf [1] Section 5.
O
We will not prove or use this. It is used to prove the following fact, which
we will use:
Fact 4.17. Let M and N be sheaves of Ox-modules on a variety X
(i) If M is locally free of rank n, then every stalk M, is free of rank n.

(ii) If M is coherent and every stalk M, is free of rank n, then F is locally
free of rank n.

(iii) If M is (quasi-)coherent and o : M — N, then kera and im « are
(quasi-)coherent.
Proof. Also Kempf [1] Section 5.
O
Example 4.18. Let Y be a variety and X a subvariety with inclusion map

¢ : X — Y. There is a morphism of sheaves of rings ¢ : Oy — Ox given
by precomposition:

PFU)f)=food

for U open and f a section. Define the ideal sheaf of regular functions on Y
vanishing on X, denoted Iy,

Ix := ker(¢)
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Let f be a real polynomial in n variables. Given a point a € R", f is equal
to its (finite) Taylor series:

of
81’1'

(x; —a;) + O ((SL‘Z - ai)Q) , VreR"

a

f(2) = fla)+ >
=1

Consider the differential map df : R" x R™ — R,

df (z,a) = f(x) — f(a) mod (z; — a;)*.
Let
A = Venypre (21 — a1, ..., Tn — ay)

and I(A) be the ideal sheaf of regular functions on R x R™ vanishing on
A. Then df is an element of the ‘sheaf of differentials on R™: Qgn :=
I(A)/I(A)?, where the quotient and square is taken on ideals. This mo-
tivates the next definition.

Definition 4.19. Let X C A" be a quasi-affine variety and write X x X =
{(z,a) : z,a € X} with projections 7; and 2. Define

A=Vxyx(xi=ai,...,z, = ap)

then the sheaf of differentials Qx is the sheaf of Ox-modules obtained by
taking the sheafification of the presheaf defined by

U = I(8)(U)/1(8)(U)?

for U open with Ox-module structure given by acting on the first compo-
nent: for f € Ox,w € Qx

frw=(fom)w.

By Fact 4.17, I(A) and Qx are coherent. The differential map from Ox to
Qx is given by
f—=df .=fom — fom

Remark 4.20. Definition 4.19 extends to quasi-projective varieties by tak-
ing affine patches.
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4.2. Tensor products of Ox modules

Tensor products will be essential in the following sections and we establish
some preliminary results here. In this section, and following sections, we will
almost always be considering sheaves of Ox-modules rather than any other
sheaf of rings.

Proposition 4.21. If M and N are locally free sheaves of R modules of
ranks m and n respectively, then M @& N is locally free of rank mn.

Proof. Let U be an open set such that M(U) = R™ and N (U) = R", where
R = R(U). It suffices to show the purely algebraic fact:

R™ Qr R™ ~ R™™

The proof is thus not relevant to us, nor difficult, and we briefly outline it
below and suppress subscripts.

~(R"@R" )@ (R"®R)

O]

Corollary 4.22. If F' and G are invertible sheaves of R-modules, then
F ®% G is invertible.

This motivates the following definition:

Definition 4.23. The Picard group Pic(X), is the set of isomorphism classes
of invertible sheaves of Ox-modules on X with the tensor product as the
group law.

It is not yet clear that the Picard group is a group. Commutativity, asso-
ciativity, and now closure are clear. Ox acts as the identity. We have not
mentioned inverses.

Definition 4.24. Let M be a sheaf of Ox-modules. Then the dual sheaf
M* is defined
M* := Hom(M, Ox)
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which denotes the set of sheaf morphisms M to Ox. This is a sheaf of
Ox-modules, mapping

U — Hom(M |y, Ox|v).

Remark 4.25.

e Unlike previous examples of sheaves, M*(U) does not contain func-
tions which act on U

e M* is indeed a sheaf of Ox-modules since any Ox|y-linear combina-
tion of sheaf morphisms defines another sheaf morphism: for f € Ox|y

and «, 5 € Hom(M|y, Ox|v)

(a+fB)(t) :=alt)+ f-B(t), te M)

e In this definition we could replace Ox with any other sheaf of rings,
but this wont be of use to us.

Proposition 4.26. If M is invertible, then M ®o, M* ~ Ox. Thus,
Pic(X) is an abelian group with M~1 = M*.

Proof. Consider ¢ : M®p, M* — Ox defined by f®a — a(f). By Propo-
sition 3.17, it suffices to show the induced stalk maps ¢, are isomorphisms
for all z € X.

Invertible sheaves have rank 1 stalks (as Ox z-modules), so we can let M, =
(fz) and M% = (ag). Then au(f;) is a non-zero element of Ox 4, so by
rescaling we can assume ag(fy) = 1. Thus the space (M ®p, M*), =
M, ®o M3 is generated by fr ® o, and ¢(fz @ o) = 1.

Moreover the inverse morphisms 1), are defined by 1,(1) = f, ® ay O
5. Divisors
5.1. Divisor-Line bundle correspondence

In this section, we assume that X is an irreducible variety. Divisors on curves
naturally generalise to arbitrary varieties:

Definition 5.1.
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e An irreducible divisor D is a closed subvariety D C X with dim D =
dim X — 1. For each D, we have the ideal sheaf Ip taken with respect
to X.

e The (Weil) divisor group Div(X) is the free abelian group of finite
support on the set of irreducible divisors. Thus every D €Div(X) is of
the form EZ n; D; with D; irreducible and finitely many non-zero n;.

e D is effective if n; > 0 for all 1.

Remark 5.2. This is the right generalisation of divisors on curves. Co-
dimension one subvarieties coincide with hypersurface cuts of X.

We also assume the following fact:

Fact 5.3. If X is a smooth variety, then all local rings Ox , are UFDs.

Proof. The Auslander-Buchsbaum theorem. See Appendix 7 in [5].
U

Remark 5.4. A variety is called factorial if all its local rings are UFDs.
There exist non-smooth varieties which are factorial, e.g. 22 + 3% + 2° = 0,
but this is hard to prove, see [4].

Lemma 5.5. Let D be an irreducible divisor. Then Ip is an invertible sheaf.

Proof. Let f € Ip, irreducible. Taking X to be smaller, we may assume X
is quasi-affine and f extends to a regular function f* on X. Write f*_l(()) =
DUC. D and C are closed distinct varieties, so from II Algebraic Geometry
we can find a polynomial ¢g* that vanishes on C' but not D.

Let h* # 0 be arbitrary but vanishing on D. Then h*g* vanishes on f*~1(0),
so by Nullstellensatz f* divides (h*g*)" for some n. Taking germs at = we
have f divides (hg)", but f does not divide g since g doesn’t vanish on
D. Thus f divides h as Ox, is a UFD. Therefore (f) = Ip,, so Ip is an
invertible sheaf.

O]

We will study the following new concepts:

Definition 5.6.
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Define the field of rational functions on X by
KX)= |J ov
UCX open

Every element of k(X)) is defined on all but a closed subset of X.

Let Rat(X) denote the sheaf of rings defined by U — k(X)|y for U
open, where the restriction is in the function sense.

A sheaf of fractional ideals I is any coherent subsheaf of Rat(X).

IFI(X) denotes the group of invertible fractional ideal sheaves, with
ideal multiplication as the group law.

The key theorem we want to prove is:

Theorem 5.7. (Divisor-Line bundle correspondence) There is an iso-
morphism ¢ : Div(X) — IFI(X)

Given this theorem, we can make the following definition

Definition 5.8. For any divisor D, there is a corresponding invertible sub-
sheaf of Rat(X), denoted Ox (D). Moreover, every invertible subsheaf of
Rat(X) arises in this way.

Remark 5.9.
e Since v is a homomorphism, we have Ox (D + E) = Ox(D)Ox(E).

e In the proof, we'll see Ox(D)(U) = {f € Oy : D + (f) is effective},
where (f) is the divisor of zeroes and poles as seen in II Algebraic
Geometry.

In the proof, we will assume the following facts:
Fact 5.10. Let g be a non-zero regular function on an irreducible variety X.
Then each irreducible component of the closed subset ¢~1(0) has dimension
dim X — 1.
Proof. Kempf [1] Section 2.6.

O

Proof of Theorem 5.7. A homomorphism 1 is determined by its action on
the irreducible divisors. For D irreducible we define

W(D) = I
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where we recall the inverse of an invertible sheaf is its dual. Then ¢ defines
an injective homomorphism.

Let I be an invertible ideal. We prove the following:
Claim: If I C Oy, then I = ¢)(—D) for some effective D

Note Ox = Ox(0). By induction we may assume the claim is true for all
ideals strictly containing I. Define V = {z € X : I, = 0}, which is a closed
subvariety since it can be written as an intersection of the sections of I.

Subclaim: dimV =dim X — 1

Recall that for any variety, dim X = dim U for any non-empty open U C X.
Applying this fact to V, it suffices to show V N U has dimension dim X — 1
for some U open. By invertibility of I, choose U such that V N U # () and
I(U) = (f) for some f € Ox. Then VNU =V (f)NU and by Lemma 5.10,
V(f) has dimension dim X — 1, hence V N U does too. [

Let W be an irreducible component of V' such that dim V = dim W. Then
W is an irreducible divisor. The ideal I’ = IOx (W) is an invertible ideal

strictly larger than I, so by induction I’ = ¢(—D’) for some D’ effective.
Hence I =¢(—-D' — E) L.

Now let I be an invertible fractional ideal. Let J =1 N Ox.

Subclaim: J is invertible

Let € X. Locally, I is generated by some f/g with f,g € Ox(U). Since
Ox is a UFD, if f, and g, are not coprime in Ox ;, then they have a ged
given by a germ h,, which after shrinking U we may assume is an element of
Ox(U). Thus we may assume f, and g, are coprime. But then g, is a unit
in Ox , so non-vanishing on a neighbourhood V' C U of . Thus locally, J|y
is free generated by f and the subclaim is proven.

To conclude, we observe I = J(JI~1)~! thus I has the form Ox(D) for
some D.
O

We now see some applications of Theorem 5.7.

Fact 5.11. Every dimension n — 1 irreducible subvariety of A" is of the
form V(f) for some irreducible polynomial f. The same is true for P" but
additionally f is homogeneous.
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This can be proven using the methods of IT Algebraic Geometry. For ex-
ample, if X C A" is irreducible and dimension n — 1, then we can choose
an irreducible f € I(X). Then V(f) C I(X) and V(f) is dimension n — 1.
One can conclude by showing an irreducible variety cannot have a proper
subvariety of the same dimension.

Corollary 5.12. Pic(A") = {Opn}

Proof. By Theorem 5.7, it suffices to show Ip is principal whenever D is an
irreducible divisor. By Fact 5.11, D = V() for some irreducible f, therefore
ID - fOAn. D

Fact 5.13. The only regular functions defined on all of P™ are the constants
This fact is also an exercise in II Algebraic Geometry.

Corollary 5.14. Pic(P") = {Opn(m) : m € Z}, as defined in Example 4.7.
In other words, Pic(P") =~ Z.

Proof. By Fact 5.11, if D is an irreducible divisor then D = V(f) for some
irreducible and homogeneous f of degree d. Any section of Ip is a multiple
of f and is a ratio of two homogeneous polynomials of the same degree, thus
Ip = fOpn(—d) =~ Opn(—d).

Lastly, suppose Opn(a + b) ~ Opn(a). Then by Example 4.7, Opn(b) =~
Opn (0). By Fact 5.13, Opn(b) has no global sections for b > 0. However, Opn
has global sections (the constants).

O]

5.2. Divisors on curves

In this subsection we fix X to be a projective non-singular curve. We have
seen there is a correspondence between divisors and invertible subsheaves of
Rat(X). For curves, every coherent subsheaf of Rat(X) is invertible:

Proposition 5.15. Let I be a non-zero coherent subsheaf of Rat(X). Then
I is invertible.

Proof. Let x € X. Then I, is an ideal of Ox,. Since Ox, is a DVR,
I, = t"Ox , for some generator t. Since I is coherent with every stalk being
a rank 1 Ox ,-module, it follows that I is locally free of rank 1. O
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Definition 5.16. Let F' be a sheaf of Ox-modules on X. For sections f
over U and g over V, we say f and g are rationally equivalent and write
f ~ g if there is a non-empty open W C U NV such that f|w = g|lw.

The rational sections of F' are defined,

Tet(F):= | | FU)/~

UCX open

Let Rat(F") denote the sheaf on X defined by U — TI'yat(F)| with restriction
in the functional sense.

Remark 5.17.

e ~ is indeed an equivalence relation, which uses the fact X is an irre-
ducible variety.

e Previously we defined k(X), which coincides with I'vat (Ox).

e We have seen a similar notion of ‘rational maps’ in II Algebraic Ge-
ometry.

Proposition 5.18. If F' is coherent, then Rat(F) is a finite dimensional
k(X)-vector space

Proof. Since F' is coherent, we can find a non-empty open set U with F|y
finitely generated, i.e. there are sections (f;)} over U such that for every
V. c U, F(V) is generated by (fi|v)] as an Oy-module, and thus as a
k(X )-module.

Let g be a section over W C X. By density, W N U is non-empty, so we can
take V. =W NU, then g|y € spany x)(fi)7. Thus (f;)7 span Rat(F). O

Note that in the proof of the previous proposition, we see if F' is locally free
of rank n, then the dimension of Rat(F') is n. This motivates the following
definition:

Definition 5.19. If F is a coherent sheaf, then rank(F") := dimyx)Rat(F).

Recall that an R-module M is torsion if for all m € M there exists r € R\0
such that rm = 0. This notion generalises to sheaves:

Definition 5.20. Let F be a sheaf of Ox-modules.

e ['is torsion if F, is a torsion module for all x.
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e I is torsion-free if F, is a torsion-free module for all x.
e The support of F is the set Supp(F) = {z € X : F, # 0}.
Proposition 5.21. Let F' be a coherent torsion sheaf on X. Then
(i) F has finite support.

(ii) For all x € Supp(F), F; is a finite dimensional k-vector space.

Proof. (i) Let U be a non-empty open subset such that F|y is generated
by sections fi,..., fn, over U. Pick x € U, then (g1)(f1)> = 0 for some
g1 € Ox;\0. Pick g; for i < n similarly and let ¢ = g1...95, # 0. Then
gfi =0 for all ¢ thus gf = 0 for all f € F(U). Since U is a neighbourhood
of x, we have F, = 0 and this holds for all x € U. As X is an irreducible
curve, non-empty open sets are co-finite.

(ii) Recall since X is a non-singular curve, Ox , is a DVR. Let t generate
the maximal ideal, then all we know all ideals of Ox , are of the from (")
for some n. In particular, Ox, is a PID. Applying Structure Theorem to
the finitely generated Ox ,-module F, we have

~ OX,m

@)
F, ~ DD X,z

(&) ()

as Ox -modules with n; # 0 since otherwise F, would not be torsion.
Recall that dimy Ox ,/(t™) = m for all m > 0 (from II Algebraic Geometry,
otherwise an exercise). Thus F, is finite dimensional. O

We can thus define:

Definition 5.22. Let F' be coherent and torsion. Then we define its divisor

Div(F) := Z(dimk F,))x;

(2
where (x;) is the finite set of points where F' is supported.
Proposition 5.23. Let F' be coherent and torsion. Then, for U open,
FU)~ P F,
z; €U

as Ox (U)-modules and in particular, dimy I'(X, F') = deg Div(F).
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Proof. We have an Ox (U)-linear evaluation map ev : F(U) — @4, cvFy, by
taking germs. Without loss of generality, assume x; € U for all 1.

ev injective

If f is a section of U and f,, = 0 for all ¢, then since this the entire support
of Fin U, we have f, =0 for all x € U. Thus f = 0.

ev surjective

Let f; be germs in Fj, for each i and lift them to sections of open sets
Ui such that z; ¢ U; for all j # i. By taking stalks, we see for all i # j,
filvinu; = filvinu; = 0, thus the set {f; : i} satisfies the patching condition
(3.5), so they can be patched to give a section in F(U) as desired. This
inverse map is clearly Ox (U)-linear.

O

Next we consider the torsion-free case:

Proposition 5.24. Let F' be coherent and torsion-free. Then there is a
sequence of sheaves
0OCckhC---C Frank(F)

such that

(i) F is locally free of rank = rank F. Moreover, F; is coherent for each 4
and locally free of rank 3.

(ii) F;/F;—1 is an invertible sheaf

Proof. We proceed by induction, noting the case rank F = 0 is trivial. Let
f € T'rat (F') be a non-zero rational section and let L be the constant subsheaf
of Rat(F') defined by U — f|y. Define Fi1 = L N F, which is an invertible
sheaf. Then the quotient sheaf F'/F; C Rat(F')/L is torsion-free of one less
rank, so induction applies. O

Definition 5.25. For F' coherent and D a divisor, define

F(D) := F-Ox(D)
~ F ®(9X Ox(D>



29

which is the subsheaf of Rat(F") defined by U — F(U)-Oy (D) with element-
wise multiplication. Moreover if D is effective we define,

F|p := F/F(-D)
OD = OX’D'

Proposition 5.26. Let F' be coherent and torsion free. Then,
(i) F|p is torsion
(ii) Div(F|p) = (rank F')D
(iii) dimg I'(X, F|p) = (rank F')(deg D)
Proof. Recall Ox (D) = {g € Ox : (9) + D is effective}. Since X is a curve,
D =nip1 + - - - + nipg for some p; € X and positive integers n;

(i) Let t; be a local parameter at x;, then ¢; is a regular function on an open
subset of X. Since X is an non-singular curve, t; extends to an element of
I'(X,Ox). Thus take t = t* ... ¢3" € I'(X, Ox)\0 and we have tf € F'(—D)
for any f a section of F'. Thus F|p is torsion.

pi and (b) dimy, Fj,, = (rank F)n; for each i. We recall the general fact that
quotients commute with stalks: (F/F(—D)), = Fy/F(—D),.

(a) For any q ¢ {p; : i}, F(—D)q = Fy, thus (F|p), = 0.
(b) Fix p = p;, n =n; and t = t;. Then
(F|p)e = Fu/(Fx(t"))
as a Ox p-module. This is naturally isomorphic to the k-vector space k" @y,

F,, as we recall dimy, Ox p,/(t") = n. Thus dimy(F|p), = nrank F. O

5.3. The Cousin problem

In this subsection, we let F' be a locally free sheaf on a smooth curve X
Definition 5.27.

e For x € X, the group of principal parts at x is

Pring (F) := Tyt (F)/ Fy
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e The sheaf of principal parts, denoted Prin(F'), is the sheaf defined by

U— @ Prin, (F)

for U open and restriction to V' C U forgets coordinates outside of V.

e The principal sections of F are
Lprin (F) == T'(X, Prin(F))
= €P Prin,(F)

zeX

Proposition 5.28. There is an exact sequence of sheaves
(5.1) 0 — F — Rat(F) % Prin(F) — 0

We need to define a homomorphism «(U) : Rat(F)(U) — Prin(F)(U). Let f
be a section of Rat(F') over U. Then f € I'yat(F) so there is an open V .C U
with f € F(V). Define

a(U)(f) = fumod F,
uelU

This is a finite sum because f, € F, if u € V. This definition commutes
with restriction, thus « is well defined. Note also ker(«) = F. It remains to
show « is surjective, so suffices to show «, is surjective for all z € X. But
oy Dhat(F) — Dot (F) / Fy is just the quotient projection, thus surjective.

By taking global sections of (5.1), we obtain:
Corollary 5.29. The sequence

(5.2) 0= T(X,F) = Tt (F) = Tppin(F)
is exact.

The Cousin problem asks whether « is surjective. Cokernel(«) is an impor-
tant global invariant of F', we will see it is the ‘cohomology group’ H!(X, F).

Definition 5.30. F'is ordinary if « is surjective.

Remark 5.31. One can show that if X is affine, then « is always surjective.
On the other hand, if X is projective and F' = Ox, then « is surjective if
and only if X ~ P!
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Lemma 5.32. The following are equivalent,
(i) F is ordinary

(ii) For all z € X and D an effective divisor,
dimy (I'(X, F(D + x))/I'(X, F(D))) = rank F.
Proof. Let D be effective. By Proposition 5.26,
dimy I'(X, F(D)/F)) = (deg D)(rank F)

and embeds naturally to a subspace of I'pin(F') denoted Vp. Note that
Lorin(F) = Up offective VD thus a is surjective if and only if its image contains
Vp for all D. Observe that the intersection of the image of a with Vp is
isomorphic to I'(X, F(D))/T'(X, F), thus « is surjective iff

dim;, I'(X, F(D))/I'(X, F) = (deg D)(rank F)

which is equivalent to (ii). O

6. Sheaf cohomology
6.1. Definition

In Algebraic Topology, ‘cohomology’ refers to ‘number of holes’ amongst
other exciting things. To us, cohomology will be a powerful proof device
with no interpretation. In this section, we let C be the category of sheaves
of Ox-modules.

In the next section we will study the following class of sheaves, which are
also used in the definition of cohomology:

Definition 6.1. A sheaf F' is flabby if every section over U extends to a
section over X, i.e. the restriction map resys : F(X) — F(U) is surjective.

Example 6.2. Rat(X) is a flabby sheaf. If X is a curve, then any torsion
sheaf is flabby (Hint: Proposition 5.23) and Prin(F’) is flabby.

We are now ready to define cohomology:

Fact 6.3. There exists a sequence of functors H'(X,- ) : Sh(C)(X) — C
such that the following hold:

(i) H(X,F)=T(X,F)
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(ii) Given a short exact sequence of sheaves
0E—-F—-G—=0
there exists a long exact sequence of sheaves

0— HX,E) - HYX,F) - H'(X,G) - HY(X,E) — ...

(iii) There is a class of sheaves called injective satisfying the following:
(a) any injective sheaf is in the kernel of H(X,-) for all i > 0
(b) any sheaf embeds into some injective sheaf
(c) injective sheaves are flabby

Definition 6.4. The i-th cohomology functor H'(X,- ) is the functor de-
scribed in Fact 6.3. For a sheaf F, H'(X, F) is an Ox module called the i-th
cohomology group. We drop the ‘X’ and write H*(F) when the context is
clear.

Surprisingly, this definition and Fact 6.3 have little to do with sheaves. A
general construction in homological algebra called a ‘derived functor’ allows
one to go from a short exact sequence to a long exact sequence in an ‘abelian
category’. An insightful exposition without proofs is provided in Hartshorne
[2] page 207.

The properties listed in Fact 6.3 almost uniquely determine the functor
H*(X,-). We will not concern ourselves with such issues and only use these
properties of cohomology. H'(F) is naturally a k-vector space, which will be
important later sections.

6.2. Flabby sheaves

In this section we prove the following theorem,

Theorem 6.5. (Flabby sheaves have no cohomology) If F is a flabby
sheaf, then H(X, F) = 0 for all i > 0.

We will use this theorem in the proof of Riemann Roch and it also serves as
a simple demonstration of cohomology.

We will use the following fundamental fact about flabby sheaves:

Fact 6.6. Let 0 — F; — Fy — F3 — 0 be an exact sequence of sheaves of
abelian groups with F} flabby. Then
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1. the sequence of groups
0— F(U)— F»p(U) — F3(U) — 0

is exact for all U open.

2. if Iy is flabby, then F3 is flabby.

Proof. Exercise. Only the basic definitions from Section 3 are required.

O]

Proof of Theorem 6.5. By Fact 6.3 there is an injective sheaf I such that the
sequence

(6.1) 0F5125 050

is exact, for @ = I/a(F) the quotient sheaf. Thus we have a long exact
sequence

6.2) 0—=T(X,F)—=TI(X,I)—=T(X,Q)— H(F)— HI) — ...
Since I is injective, H'(X,I) = 0. Hence the following is exact,
I(X,I) »T(X,Q) 5 HY(F)—0

We can take the first map to be induced by £ from (6.1), thus by Lemma
6.6 is surjective. Therefore kery = I'(X, @) but the last map tells us ~ is
surjective. Hence, H'(X, F) = 0.

Looking at the next part of (6.2), we have
(6.3) <o = HYQ) — H*(F) — H*(I) — ...

By Lemma 6.6, @ is flabby. Thus from what we have already established,
H'Y(Q) = 0. We also know H?(I) = 0 as it is injective. Hence, (6.3) gives
H?(F) = 0. This continues for all i. [

6.3. Direct and inverse itmages

In this section, we develop some more machinery required for Riemann-
Roch. Given varieties X and Y and a continuous (in the topological sense)
map between them, we wish to ‘push forward’ a sheaf on X to a new sheaf
onY.
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Definition 6.7. Let f : X — Y continuous. The direct image functor f, is
a map from Sh(C)(X) to Sh(C)(Y) defined by

(fF)(U) = F(f~1(U))

for FF € Sh(C)(X) and U open. The sheaf (f,F) is called the push-forward
sheaf .

Remark 6.8. Continuity of f is precisely what is needed for f~(U) to be
open, thus sheaves act on it. We leave it as an exercise to argue (f.F) is
indeed a sheaf.

Example 6.9. Let X =V xV,Y =V, and f = m, the projection onto the
second factor. Then

(mF)U) = F({y | 3z : (z,y) € U})

This example will re-emerge in the proof of Riemann-Roch.

The next thing to do is go the other way around: we still have f: X = Y,
can we ‘pull back’ sheaves from Y to sheaves on X7 The answer is less
straightforward. Let G be a sheaf on Y, and we naively attempt to define
a sheaf on X by U — G(f(U)). This falls at the first hurdle, because f(U)
is not necessarily open. The next best thing we can do is approximate f(U)
by open sets. To do this, we use a similar construction to stalks:

Definition 6.10. Let (V,,) be a collection of open subsets of ¥ and G a
sheaf on Y. We say G(V3) ~ G(V,) if there exists a non-empty open set
W C V3NV, such that G(Vs)|w = G(V5)|w. If ~ is an equivalence relation,
then we define the direct limit

lim G (Vo) := | |G(Va)/ ~.

Whether ~ is an equivalence relation or not depends on the collection (V)
and G.

Example 6.11. Let y € Y. Then

Gy = lim G(V)

Under the hood, we have been using direct limits all along.
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Definition 6.12. Let f : X — Y and G a sheaf on Y of category C. The
inverse image f~'G is the sheafification of the presheaf defined by

U— lim G(V)
VO f(U)

and also a sheaf of category C.

This is still not the perfect sheaf. Often we have a sheaf of Oy-modules on
Y and the inverse sheaf would also be a sheaf of Oy-modules on X. In the
abstract world of sheaves this is not an issue but this is morally wrong in
the philosophy of ringed spaces — the ‘natural’ sheaves on X are sheaves of
Ox-modules.

Definition 6.13. Let X and Y be varieties and f : X — Y a morphism
of varieties. For a sheaf of Oy-modules G on Y, the pull-back sheaf is the
sheaf of O x-modules,

G = f'G®s1p, Ox.

Fortunately, this concept is not used too much in algebraic geometry.

Remark 6.14. A morphism of varieties, which has not made an appearance
in our exposition so far, is a special case of a ‘morphism of ringed spaces’.

The last interesting part of maps between varieties is what happens to the
cohomology. The following result which we state but do not prove gives an
answer for affine varieties

Fact 6.15. Let f : X — Y be a morphism of affine varieties and F a
quasi-coherent Ox-module. Then for all ¢ we have a natural isomorphism

H{(X,F)~ H\(Y, f.F)

Proof. Kempf [1], Corollary 8.2.3, page 102
O

In general, life is not this simple. The same construction from homological
algebra, the ‘derived functor’ which when applied to the global sections
functor I'(X,-) gives the cohomology functors H'(X,-), can be applied to
the direct image functor.

Definition 6.16. The i-th higher direct image functor R'f, : Sh(C)(X) —
Sh(C)(Y), is the i-th derived functor of f,.
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Of course, we do not know what direct functors are. Instead, we use the
analogous properties described in Fact 6.3.

Fact 6.17. The functors R'f, : Sh(C)(X) — Sh(C)(Y) satisfy
(i) BO(fF) = f.F
(ii) Given a short exact sequence of sheaves
0O—=E—=F—-G—=0

there exists a long exact sequence of sheaves

0 Rf,E— R f,F - R'f,G = R [.E — ...

Remark 6.18. R'f,F is the sheaf associated to the presheaf defined by
U— H(f'U, F) for U open in Y.

Example 6.19. If Y = {y} is a point, then R'f,F(Y) = H (X, F).

We briefly recall that given a k-vector space V', we can define the sheaf of k-
vector spaces Ox Qg V' by the sheafification of U — Oy ®; V. The following
result is what we use in the proof of Riemann-Roch.

Lemma 6.20. Let X and Y be varieties, F' a quasi-coherent sheaf on Y,
and mx and 7y the usual projections on X x Y. Then for all 7,

(R'mxy) (13 F) ~ Ox @ H'(Y, F)
Proof. Kempf [1], Lemma 8.3.3, page 103 O

We understand this result as saying, if we have a sheaf on X x Y which is
constant in X (i.e. the push-forward of a sheaf on Y'), then the higher direct
image only depends on the cohomology of Y.

6.4. Cohomology of curves

In this subsection, F' is a locally free coherent sheaf of C on a smooth pro-
jective curve X. Our goal is to understand the cohomology groups H*(X, F).

Proposition 6.21. H/(F) =0ifi > 1
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Proof. Recall (5.1), the exact sequence
0 — F — Rat(F') — Prin(F) — 0
From the corresponding long exact sequence, we have
.- — HY(Prin(F)) — H*(F) — H*(Rat(F)) — ...

Rat(F) and Prin(F) are flabby, so have no cohomology. Thus H?(F) = 0.
This argument repeats for all higher cohomology groups. O

Remark 6.22. The first part of the long exact sequence gives
0 — H°(F) — Rat(F) — Prin(F) — H'(F) — 0
Thus the prophecy in Section 5.3 is fulfilled: H!(F) is the cokernel of o and
hence measures the obstruction to solving the Cousin problem.
Corollary 6.23. F is ordinary if and only if H(F) = 0.

We recall that cohomology groups (of C) are naturally k-vector spaces and
define:

Definition 6.24.
e hi(F):=dimy H(X, F).
o X(F):=h(F) — h'(F) is the Euler characteristic of F.
e g:=h'(Ox) is the genus of X.

The numbers h¢(F) are not specific to curves. In general, they are an in-
credibly important invariant of varieties. In the definition, we already see
two main characters of geometry appear, though proving equivalence of the
various definitions is always difficult. With that in mind, our next theorem
should seem intimidating;:

Theorem 6.25. Let F' be a locally free coherent sheaf of O x-modules. Then
(i) hO(F),h'(F) < o0
(i) x(F) = deg(det F) + (rank F)(1 — g)

We require some tools before we can prove this theorem.
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Lemma 6.26. (Long sequence trick) Suppose we have a long exact se-
quence of vector spaces:

JELSN V., =0

0—-W f—1> ..
with f; of rank r; and v; = dim V;. Then
(i) vi <vic1+vi2

(ii) If all the v;’s are finite, then

D ovi= v

i odd j even
Proof. We have
(exactness) rank f; = null f;
(rank-nullity theorem) rank f; +null f; = v;

Thus r; 4+ r;—1 = v; for all 4, so (i) follows and
Z(—l)i(ﬁ +ric) =r+ (=)
i>2

Z(—l)ivi =+ (=1)" o,

i>2

D vi=) v

i even i odd

O]

Lemma 6.27. (High degrees have no cohomology) Let F' be an in-
vertible sheaf.

(i) ¥ I'(X,Qx ® F*) =0, then h}(F) = 0.
(ii) If deg F > degQx, then h!(F) = 0.

Proof. We first note (i) implies (ii) since deg(2x ® F*) = deg Qx —deg F' < 0
thus has no global sections. For (i), we aim to show F' is ordinary and then
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we’re done by Corollary 6.23. To this end, we use the criterion in Lemma
5.32. Let G = F(D) for some effective D, Then

X, Qx ® G)

I'(X, (Qx ® F7)(=D))
CI(X,Qx ® F)
0

Let z € X. We have the exact sequence 0 — F — F(x) — F(x)|; — 0. The
corresponding long exact sequence is

(6.4)
0 T(X,F) > T'(X, F(z)) —» T'(X, F(z)|,) 2 HY(F) - H\(F(z)) = 0

Claim: ¢, is zero

The idea of the proof is to see how §, varies with z globally in X in order
to upgrade (6.4) to a global statement. To do this, we look at the diagonal
A in the product X x X and recall m; and 7y are the natural projections.
We have the exact sequence of sheaves,

0—>OX><X_>OXxx(A)—>Q;(—>O

where we recall Qx = Oxxx(—A)/Oxxx is the sheaf of differentials with
dual % = Oxxx(A)/Oxxx. Tensoring with 77 F, this becomes the exact
sequence:

0= mMF — m{F(A) = 1 F Qo Qx — 0

Taking the long exact sequence corresponding to the higher direct image of
T, We obtain the exact sequence

(6.5) 0 — mouf F — moumi F(A) — mou (7 F @0, V) — (R, ) (71 F)

There is a natural isomorphism from 7o, (77 F' ®0, Q%) to F®p, Q%. Using
this and Lemma 6.20, we can rewrite (6.5) as

0 T(X,F) ® Ox — 7oy (TTF(A)) = F @0, O > HY(X, F) ®), Ox

We know that F* ®¢, {2x has no non-zero global sections, but given a sheaf
morphism « : A — B we can define its dual o* : B* — A* by precomposi-
tion: a*(f) = f oa. Applying this to d, we obtain a sheaf morphism ¢* from
HY(X,F)* ® Ox to F* ®o, Qx. The domain consists entirely of global
sections and the image has none, so §* must be the zero map. It follows that
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§ must also be the zero map. Moreover, any J, : I'(X, F(z)|,) — HY(F)
being non-zero would lift to a map & : F ®p, Q% — H'(F) ®, Ox which
was not identically zero, and the claim is proven.

We conclude as follows. The exact sequence (6.4) becomes
0—->T(X,F(D)(z)) - T(X,F(D)(z)) - T'(X,F(D)(x)|.) — 0
where D is any effective divisor. This completes the proof as
dim; I'(X, F(D)(x)|,) = rank F

by Proposition 5.26.
O

Proof of Theorem 6.25. We induct on rank(F"). The base case i = 1 is difficult
and we do it later. Let F' have rank greater than 1, then we have an exact
sequence

0O—->L—>F—>Q—0

where L is invertible and @ is locally free of rank = (rank F') — 1. Consider
the corresponding long exact sequence of k-vector spaces:

0— HYL) - H°(F) - H(Q) - HY(L) - H'(F) - HY(Q) — 0

with the last 0 coming from Proposition 6.21. By the long sequence trick,
we have that h°(F) and h!(F) are finite and

hO(L) +h(Q) + h'(F) = h(F) + h°(Q) + h'(L) + h'(Q)
Thus,

X(F) = x(Q) + x(L)
= deg(det L) 4+ (1 — g) + deg(det Q) + (rank F' — 1)(1 — g)
= deg(det(L ® Q)) + (rank F)(1 — g)
(

= deg(det F') + (rank F')(1 — g)

and we’re done. We now turn to the base case where F' is invertible. Recall
that F¥ = Ox(D) = {f : D + (f) is effective} for some divisor D. We

saw in IT Algebraic Geometry that dimy I'(X,Ox (D)) < deg D + 1. Thus
RO(F) < oc.
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By Lemma 6.27, we can find an invertible sheaf with h'(F) = 0. Suppose L
is such a sheaf and x € X. Recall that invertible sheaves of the form Ox (D)
for some divisor D. In particular, they are torsion free and F'(x) is invertible.
Thus we have an exact sequence

0—F — F(x) = F(x)l, —» 0

The corresponding long exact sequence is
0— HYF) — H(F(z)) — H(F(2)|,) - H'(F) — H'(F(z)) = 0

By Proposition 5.26, we have h°(F(z)|;) = 1. By the long sequence trick,
we have h!(F) < oo if and only if h'(F(x)) < co and

X(F(z)) = x(F) + x(F(2)l)

F(z)|; is torsion, so flabby, thus h!(F(x)|,) = 0 by Theorem 6.5. Altogether,

We can write F' = L + D where D = > z; — > y; for some z;,y;, € X.
Applying the previous argument repeatedly, we have:

h'(F) < oo <= R'F+) y) <o
X(F+Y i) = x(F) +deg ) ui

and
h'(L) < oo = h'(L+) x5) <o
XL+ @) = x(L) + deg Y _ x;

thus h'(F) < oo and x(F) = x(L) + deg D. In the case F = Oy, we
have x(Ox) = x(L) + deg(—FE) where L = Ox(FE). In this notation, F' =
Ox(FE + D), thus

X(F)=x(0Ox) +deg (E+ D)
= (dim; T'(X,Ox) — k' (Ox)) + deg F
=1—g+degF O

Corollary 6.28.
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(i) hY(F) > degdet F + (rank F)(1 — g)
(i) hY(F) > —degdet F — (rank F)(1 — g)
Remark 6.29. Before this point, we didn’t know there were sheaves F' with

h'(F) # 0. Corollary 6.28 tells us if F is invertible and deg F' is sufficiently
negative, then h'(F) can be arbitrarily large.

Lemma 6.30. There is a canonical vector space isomorphism from H*(Q2x)
to k.

Proof. By Lemma 6.27 and Corollary 6.28, we can find an invertible sheaf
L with h'(L) # 0 but h'(L(x)) = 0 for all z € X. Recall from the proof of
Lemma 6.27 we have the exact sequences

(6.6) (X, L(x)|,) LEN HY (M) — HY (M (z))
0

Thus 6, is surjective, and since h%(L(z)|;) = 1 it must also be injective.
Hence h'(L) = 1. From the same proof, we have the global map

5:F®0XQ§(—>H1(F)®/€OX

which is therefore an isomorphism of sheaves. Since h'(F) = 1, we have
HY(F) ® Ox =~ Ox as sheaves. Hence, by uniqueness of inverses in the
Picard group, F' =~ x as sheaves. Thus,

§:0x — H'(Qx) ® Ox

is an isomorphism. Altogether, §(1) = e®1 where e is the canonical generator
of H'(Qx), thence we obtain a vector space isomorphism k — H'(Qyx). O

The last piece of the puzzle is to show the first cohomology groups are iso-
morphic to zeroth cohomology groups (of some other sheaf). Results of this
kind are known as ‘duality’. With the results to follow, we will completely
understand cohomology and can prove Riemann-Roch.

For an arbitrary locally free sheaf F' on X, if &« € Hom(F,Qx) then we have
an exact sequence
0 F5Qx—>Q—0

so by taking the long exact sequence, and recalling H'(2x) = k, we have a
linear map

HY(a): HY(F) = k
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Thus we have a map
H':Hom(F,Qx) — HY(F)*

Theorem 6.31. (Serre duality) H' is an isomorphism between Hom(F, Qx)
and H'(F)* as k-vector spaces.

The bulk of the theorem is in the following lemma. We recall a commutative
diagram has arrows which represent functions and the any composition of
arrows from the same starting point and to the same end point gives the
same function. We distinguish two copies of the global map § (with respect
to different sheaves) with a tilde.

Lemma 6.32. Assume we have a commutative diagram

0:Qx oy Uy —— HY(Qx) @ Ox

a®11\ TA®1

5:F®@X Q} e Hl(F)®kOX

where o € Hom(F,Qx) and A : H'(F) — H'(Qy) is a linear map. Then «
determines A and vice versa.

Proof.

Claim: )\ determines «

The top arrow is an isomorphism so we can run the arrow backwards, i.e.

a®l=00)"1A®1)(6)

Claim: o determines \

From the diagram we have
do(la®l)=(A®1)0d

Thus A is determined on the image of 0. Recall im(J) is the image sheaf
contained in H'(F) ®; O, which projects to give a subspace of H!(F).

Choose distinct points (z;)} such that h*(F(D)) = 0 where D = 5", z; (by
Lemma 6.27). We have an exact sequence
0—->I(X,F)—-T(X,F(D)) —TI'(X,F(D)|p) o, HI(F) —0

and for each 4, thus H!(F) is spanned by the images of a basis of the (finite
dimensional) k-vector space I'(X, F(D)|p). Thus is spanned by im(d)|,, for
1=1,...,n. ]
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Proof of Theorem 6.51. In the language of Lemma 6.32, we have the com-
mutative diagram and the map o — X is H! and the inverse is given by
A — «, thus an isomorphism.

Now we come to the gem.

Corollary 6.33. (Riemann-Roch) Let F' be a locally free sheaf of Ox-
modules on a smooth projective curve X. Then,

hO(F) — dimy, Hom(F, Qx) = degdet F + (rank F)(1 — g)

Proof. Combine Theorem 6.31 with Theorem 6.25

6.5. Classification of curves

In this section we use Riemann-Roch to give a classification of smooth pro-
jective curves up to isomorphism over an algebraically closed field k. The
ideas in this section will be similar to those in the classification of surfaces.

First, we use deduce the form of Riemann-Roch seen in IT Algebraic Geom-
etry from Corollary 6.33.

Definition 6.34.

e A canonical divisor K is a divisor such that the corresponding line
bundle Ox (K) is isomorphic to Q.

e For a divisor D, I(D) := h%(X,0x (D))

The bulk of the proof of Corollary 6.33 was proving the case of invertible
sheaves. Indeed, we retain a lot of information by specialising to this case,
which we can state in terms of divisors:

Theorem 6.35. (Divisor Riemann-Roch) Let X be a smooth projective
curve of genus g and D a divisor. Then

(D) — (K — D) =degD +1—g

Proof. To arrive at this from Corollary 6.33, all we have to do is show
(K — D) = dim; Hom(Ox (D), 2x). We use the fact from algebra:

Hom(Y ® X, Z) ~ Hom(Y, Hom(X, 7))
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which holds for arbitrary modules X, Y, Z (proof: stare at it). We deduce
this holds for sheaves, because it holds on stalks. Thus
Hom(Ox(D),Qx) ~ Hom(Ox (D) ® Q%, Ox)
= (Ox(D) ® )"
= Ox(-D) ® Ox(K)
= Ox(K - D)

Thus since X is a curve, dimy Hom(Ox (D), Qx) = dim I'(X, Ox (K — D))
as required. ]

Corollary 6.36. Let X be a curve with canonical divisor K. Then

(i) degK =2g—2

(ii) I(nK) < (2n—1)g+1 for n > 1.
Proof. (i) is from taking D = K in Theorem 6.35, noting also [(0) = 1. (ii)
is from taking D = nK. O
The following definitions are motivated by (ii):
Definition 6.37. Let X be any smooth variety (not necessarily a curve)

e The canonical bundle or sheaf of differential forms, written wyx is
A"Qx, where n = dim X.

e A canonical divisor is any divisor K such that Ox(K) =~ wx.

e The n-th plurigenus of X is P,(X) := h%(X,nK) where K is a canon-
ical divisor.

e The Kodaira dimension k(X), is the smallest k£ € NU{—o0} such that
sup,, P,(X)/n* < oo

Remark 6.38. On a smooth surface X, {2x is locally free of rank 2. Suppose
the generators at p € X are dr and dy. Then wy is generated by dx A dy
(since dz A dy = —dy A dz, we get everything), thus wx is invertible and
canonical divisors exist (by the line bundle correspondence).

By Corollary 6.36, if X is a curve then & is either 1, 0, or —oo (when
I(K)=0)
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Corollary 6.39. For a curve X of genus g,

—o00 g=20
K(X)=10 g=1
1 g>2
Proof. Apply Riemann-Roch to the cases g = 0,1 and g > 2 O

We conclude by recalling the classification obtained in IT Algebraic Geometry
(phrased instead in terms of Kodaira dimension)

L~ | Type |
—00 conics (isomorphic to PT)
0 elliptic curves (isomorphic to a degree 3 curve in P*)
1 general type

Fic 1. The classification of smooth curves

Classification of curves beyond genus 1 becomes very difficult, hence ‘general
type’. We'll have similar disappointment in classifying surfaces, but there is
much more to say about those.

Theorem 6.40. Let X be a variety. Then x(X) < dim X.
Proof. Difficult. Theorem 8.1 in Ueno [7] O

Definition 6.41. A variety X is of general type if k(X) = dim X.
There is often not much we can say about varieties of general type.
Example 6.42.
o K(P") =—00
e k(X xY) = k(X) + k(Y). Thus arbitrary Kodaira dimensions are
possible.

7. Surfaces
7.1. Overview

In this chapter, a surface refers to a smooth variety of dimension two over C,
except in Section 7.2 where the results (notably, Riemann-Roch for surfaces)
hold over any algebraically closed field k.
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Our goal is to classify all algebraic complex surfaces. By the end of this
section, we will understand the following figure:

L] - L] -
clcl . LR b *s “a
L] L] L] L] -
L] L] L] L] L]
L] L] L] L] L]
Ey - [ - . -
= u. n' l. n- ll
3 =, General = - L
N *, type ". . "e
~ - L] L] L] L]
A |. -' l. -- -.
g .u '- .l '- .l
L] L] L] L] L]
Plape . L L L *
L] L] L] L] L]
L L] L L] L]
.- n- .. l- - @ 7 Y
Hyperellipt --_ ". .'_ gatner
Abetian €2
Kodair Enriques K3 Elliptic
IS Chern numbers of
. =
> N minimal complex surfaces
3 4
& 7

F1G 2. Plot of the ‘Chern numbers’ ¢? against co, which we will define later

Unlike with curves, classifying up to isomorphism is too much to ask. Instead
we classify up to ‘birational equivalence’, which we recall here:

Definition 7.1. Let X and Y be varieties.

e A rational map f, written f : X --» Y is a morphism from a non-
empty open U C X to Y.

e A birational map is a rational map with rational inverse.

e If a birational map is defined everywhere (i.e. a morphism), we call it
a birational morphism.

e We say X and Y are birationally equivalent, written X ~ Y, if there
is a rational map with rational inverse from X to Y.

Remark 7.2. Recall open sets in the Zariski topology are huge, so this is
not a weak condition. From II Algebraic Geometry, we recall a birational
map on curves is in fact an isomorphism.

There is a very neat description of birational morphisms between surfaces.

Definition 7.3. Let X be a surface and x € X. Then there exists a surface
X called the blow-up of X at x and a morphism € : S — S, which are unique
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up to isomorphism, such that
(i) the restriction of € to e *(S — {p}) is an isomorphism onto S — {p}.
(ii) e !(p) = E (the ‘exceptional curve’) is isomorphic to P!

Remark 7.4. We have seen the construction of € in II Algebraic Geometry.

Theorem 7.5. Let f: X — Y be a birational morphism of surfaces. Then
there are a sequence of blow-ups €, : S — Sk_1, £ = 1,...,n and an
isomorphism w : S — .S, such that

f:elo...oenou
Proof. Theorem II.11 in Beauville [3]. O

Definition 7.6. Let X be a surface.

e B(X) denotes the set of isomorphism classes of surfaces birationally
equivalent to X

o If 51,5 € B(X), then S; dominates Sy if there is a birational mor-
phism 57 — S5.

o X is minimal if for every surface Y, every birational morphism X — Y
is an isomorphism.

The following should not be surprising.

Proposition 7.7. Every surfaces dominates a minimal surface

Proof. Proposition I1.16 in Beauville [3]
0

Thus, every surface is obtained by a finite sequence of blow-ups of a minimal
surface.

7.2. Riemann-Roch for surfaces

In this section, we develop machinery required to begin the classification of
surfaces. We allow k£ to be an arbitrary algebraically closed field, but we
will switch back to C in the next section. Recall that irreducible divisors
are co-dimension 1 subvarieties, thus divisors are now curves. Our plan is to
extract information about X from curves on the surface.
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Lemma 7.8. Let C be a curve on the surface X. Then locally, C' is cut out
by one polynomial, i.e. for all x € X and I = I¢

for some polynomial f dependent on x.

Proof. This is not obvious and uses Fact 5.3. If g € I, then V(g) is a finite
union of irreducible components, one of which is C. This corresponds with
(g9) an intersection of prime ideals. Since g factors into irreducibles, one of
those factors f satisfies V(f) = C. O

Definition 7.9. Let C and C’ be two distinct irreducible curves on a surface
X. The intersection multiplicity at = is defined,

mm((] N C/) = dimy OX,m/(f, g)
where C' and C’ are locally cut out by f and g respectively.

Remark 7.10. We know that in a local ring, the only ideals are multiples
of the maximal ideal.

Example 7.11. Let X = A? with coordinates = and y.

e Consider C' = V(z) and C" = V(y). Then Ox,/(z,y) = k so the
intersection multiplicity is 1.

e Consider C = V(y — 2?) and C' = V(y). Then Oxo/(y — 22,y) ~
Oxo/(z) is 2 dimensional.

Proposition 7.12. m,(C' N C") is finite

Proof. Assume x € C N C’. In the notation of Definition 7.9, we choose a
local affine neighbourhood such that f and g belong to a polynomial ring
klxi,...,zy,]/I with each x; vanishing at z. Let m, be the maximal ideal of
Ox . and I(-) be the ideal generated by a variety.

V(me) CV(fNyg)
(Vi) s € I(V(fNg))
(Nullstellensatz) s €4/ (fNg)

ozt e(fNg)

for some integers r;. Choosing r = max; r;, we have m., C (f Ng), and we
know (else exercise) that Ox ,/(m;)" is a finite dimensional k-vector space.
Thus Ox ,/(f,g) is finite dimensional. O
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Definition 7.13. Let C and C’ be distinct irreducible curves on X. Their
intersection number is

(C.CY= > m(CNnC
zeCnC’

Remark 7.14. The intersection of two distinct irreducible curves is a closed
subset of each curve, thus a finite number of points, so this sum is finite.

Example 7.15. Recall from the proof of the Divisor-Line bundle correspon-
dence that the ideal sheaf I is given by the invertible sheaf Ox(—C'). We
can define the sheaf I + I in the obvious way: U — Io(U) + Ic(U) for
U open. We define the intersection sheaf

Ocncr = Ox/(Ic + 1cv)

The stalks behave, i.e.

(OCOC’)m = OX,x/(IC,a; + IC’,x)

and we note Z¢ , = Ox, for ¢ C. Thus Ocncr is supported on the finite
set C' N C" and at each of those points (Ocne)e = Ox/(f,g), for the
respective local cut-outs f and g. The conclusion is,

(C, C/) = d1m F(X, OCQC’)
= h%(X,Ocner)

Definition 7.16. For a sheaf F' on any variety Y, the Fuler characteristic
of F is
X(F) = (~1)'hi(Y, F)
i
which generalises the same notion on curves.

Alarm bells should be ringing as we don’t even know h*(Y, F) is finite, never
mind whether the series converges (i.e. the hi(Y,F) are eventually zero).
The following theorems address this, and we will certainly not attempt to
prove them:

Theorem 7.17. (Grothendieck’s Vanishing Theorem) Let X be a
variety of dimension d. Then for any F, h(F) = 0 for i > d.
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Proof. See Grothendieck’s famous ‘Tohoku paper’ [6]. The Wikipedia page
will likely be just as inspiring to the reader as the paper itself.

O

Theorem 7.18. (Cartan-Serre Finiteness Theorem) Let X be a proper
projective variety. Then hi(X, F) is finite for all i if I is coherent.

Proof. See Serre [8]. O

We also take note of the following result which we already used in the proof
of Theorem 6.25:

Lemma 7.19. (Additivity of Euler) Let
0—->F—F = -—=F =0

be a long exact sequence of sheaves on a variety X. Then

> x(F) =D x(Fn)

1 odd i even
Proof. Long sequences trick with Theorem 7.17.
O

Our next result shows, intersection numbers can be entirely recovered from
Euler characteristics.

Theorem 7.20. For F' and G in Pic(X), define
(71 (F,G)=x(0x) = x(F ™) = x(GT) +x(F '@ G™)

Then

(i) this coincides with our previous definition in the sense that

(Ox(C),0x(C) = (C,C")

(ii) and (-,-) is a symmetric bilinear form on Pic(X), i.e. (L,G) = (G, F)
and (L@ G,H)=(L,H)+ (G, H).
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Proof. One should remind themselves that divisors correspond with Pic(X),
so the fact this definition itself extends to Pic(X) is not exactly surpris-
ing. We prove (i) here, and the proof of (ii), which is non-trivial and uses
Riemann-Roch for curves, is Theorem 1.4 in Beauville [3].

Consider the sequence of sheaves
(72) 0= Ox(—C—C") % Ox(—C) & Ox(—C") 2 Ox = Ocper — 0

where v and  are given by the following: fix sections s € I'(X, Ox(C)) and
s € T'(X, Ox(C")) which are non-zero and vanish on C' and C’ respectively.
Then

a(t) = (t/s,~t/s)
B(r,t)=r/s +1t/s

Claim (7.2) is exact.

Let f,g9 € Ox 4 be local equations for C,C" at x. Taking stalks of (7.2) we
have 5
0— OX@ N OXJ D OXJ; = OX@ — OX’x/(f, g) — 0

where the local maps are a,(t) = (t/f,—t/g) and B,(t) =r/g+t/f.

Clearly a is injective. For B, if r/g+t/f = 0 then rf = —tg so since Ox
is a UFD and f, g are irreducible we have r = kg and ¢t = kf for some k and
Bz(k) = (r,t), so the kernel is the image of «,.

With the claim proven, by the additivity of Euler characteristic on (7.2) we
obtain

X(Ox(=C = C")) = x(Ox(=C) ® Ox(~C")) + x(Ox) = x(Ocncr) = 0
and we have a long exact sequence
0= Ox(—C) = Ox(—C) & Ox(-C") = Ox(-C") = 0
so applying additivity of Euler again,
(7.3) X(Ox(=C)) = x(Ox(=C) @ Ox(~=C")) + x(Ox(~C")) = 0.

Combining these and noting x(Ocncr) = h%(Ocner) as it is flabby, we get
the required equality. ]
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Remark 7.21.

e Although (i) provides interpretation of this symbol, (ii) allows effective
computation which we will see in the remainder of this section.

e Note the RHS of (7.1) depends only on their Euler characteristic, thus
if F ~F' and G =~ G’ then (F,G) = (F',G").

Definition 7.22. Let D and D’ be any divisors on X. Then
D.D/ = (Ox(D), Ox(D/))

Corollary 7.23. (Bezout) If C,C’ C P? are curves of degree d and d’
respectively, then the number of intersections counted with multiplicity is
dd'.

Proof. Let C and C’ be degree d and d’ curves. Recall Pic(P?) = {Ox(m) :
m € Z}. The proof of this (Corollary 5.14) shows that any curves of the
same degree have their corresponding invertible sheaves isomorphic. Let L
and L' be any pair of distinct lines in P2, then C' ~ dL and C’ ~ d'L thus

C.C' =dL.dLl’
(bilinear) =dd (L.L')
(lines intersect at a point) =dd'

O

We now turn to Riemann-Roch for surfaces, quoting the following difficult
result:

Theorem 7.24. (Serre duality for surfaces) Let X be a smooth projec-
tive surface and F an invertible sheaf. Then h?(Qy) = 1 and for i = 0, 1,2
we have an isomorphism of k-vector spaces

H* Y (wx @ F7') ~ HY(F)*

In particular, y(F) = x(wx ® F~1).
Proof. Hartshorne [2] III 7.7 O

Theorem 7.25. (Riemann-Roch for surfaces) Let F' be an invertible
sheaf and X a smooth projective surface, then

X(F) = x(0x) + % (F.F — FQx)
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Proof. By Serre duality for surfaces, we have y(wx) = x(Ox) and x(wx ®
F~1) = x(F). To make these terms appear in the definition of the intersec-
tion product, we compute

(FTLF@wy') = x(0x) — x(F) = x(wx ® F~") + x(wx)
=2(x(Ox) — x(F))
Also
(FLFowy')=—-F.F+ Fuwx

and we’re done. O

Corollary 7.26. (The genus formula) Let C' be an smooth curve on a
smooth projective surface X. The genius gc := h'(C, O¢) is given by

1
go =1+ §(C.C+ C.K)
where K is a canonical divisor on X.

Proof. We have an exact sequence 0 — Ox(—C) — Ox — O¢ — 0. By
additivity of the Euler characteristic, we have x(O¢) =1 — go = x(Ox) —
X(Ox(—C)). Applying Riemann-Roch for surfaces to Ox (—C'), we are done.

O]

Remark 7.27. We can again interpret Riemann-Roch in terms of divisors.
Recall for D a divisor, h(D) = h*(X, Ox(D)). Then Serre duality says, for
any canonical divisor K and i = 0,1,2, we have h'(D) = h*~*(K — D) and
Riemann-Roch says

1
h(D) + h°(K — D) — h}(D) = x(Ox) + 5(D-D = D.K)

Usually, we do not have any information about h!(D) and we use the so-

called Riemann-Roch inequality

h(D) + h°(K — D) > x(Ox) + %(D.D — D.K)



55
7.3. Birational invariants

We now specialise to k = C.

Definition 7.28. Let X be a surface.
e The geometric genus is py(X) := h*(X,Ox)
e The irregularity is q¢(X) := h' (X, Ox).
e The arithmetic genus is pe(X) := 1+ x(Ox)

Remark 7.29. Suppose X were instead a curve and we defined p, = 1 —
x(Ox) and p; = h'(Ox) (i.e. the usual definition). Then p, = py. So for
surfaces, the irregularity ¢ measures the departure from the nice situation
where both types of genera coincide.

Fact 7.30. The integers q,pg, Py, pa, < are birational invariants. Le. if X ~
Y then ¢(X) = q(Y) as with the others.
Proof. Proposition II1.20 in Beauville [3]. The proof is short.
O

These invariants are far from independent from each other. Much can be
said about the relations between them.
Proposition 7.31. p, = P
Proof. Serre duality O
Definition 7.32. Given the complex structure on X, we can also define the
following

e The de-Rham cohomology are H'(X,R), where R is the constant sheaf.

e The Betti numbers are b;(X) = dimg H'(X,R)
(—1)"bi(X).

Remark 7.33. The quantities in Definition 7.32 are those studied by the
algebraic topologists. For example, the i-th Betti number is interpreted as
the number of i-dimensional holes in X.

e The topological Euler characteristic is defined by xtop(X) =D,

7
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Example 7.34. Let X = P2, Using the techniques of algebraic topology, one
can show (bg, b1, ba, b3, by) = (1,0,1,0,1). A fake projective plane is a surface
with the same Betti numbers as P2 but is not isomorphic to it. There are
exactly 50 (non-isomorphic) fake projective planes, see [11]. One can show
a fake projective plane is always of ‘general type’ — to be discussed later.

Fact 7.35. ¢(X) = b1(X)

Proof. This is a result from Hodge theory, see Weil [9].
O

The relationship between the usual Euler characteristic x(X) := x(Ox) and
the topological genus xiop(X) is given by the following, which we will not
attempt to prove:

Theorem 7.36. (Noether) For X a smooth complex surface and K a
canonical divisor,

1
X(X) = 2 (KK + yiap(X))
Remark 7.37. K.K and by are not birational invariants, though their im-
ages under birational maps is understood, see Proposition I1.3 in [3].

Definition 7.38. Let X be a surface. The Chern numbers ¢3 and cp are
K.K and xtop(X) respectively.

Remark 7.39.

e There is much more to this definition in higher dimensions which we
have swept under the rug.

e Chern numbers are not birational invariants, but for most of the classes
in our classification we can determine them.

Proposition 7.40. (Noether’s inequality Version 0) Let X be a min-
imal surface. Then

Lo
pg£§¢1+2'

Proof. See Theorem 3.1 in [10]. O
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Corollary 7.41. (Noether’s inequality) 5¢ — ¢z + 36 > 0

1
E(C%+Cz)=pg—q+1

1
“12

(Theorem 7.36)

1
(Proposition 7.40) (3 +ec2) < ic% +2

and the conclusion follows.

Remark 7.42. This corresponds to ‘Noether’s inequality’ as written in
Figure 7.1. A discussion of the surfaces that satisfy Noether’s inequality can
be found in VIIL.10 in [10].

We also have:

Theorem 7.43. (Bogomolov-Miyaoka-Yau) ¢? < 3cz
Proof. Theorem 4.1 in [10] O
Remark 7.44. This is the ‘BMY inequality’ as written in Figure 7.1. It was

shown in [11] that there surfaces with ¢ = 3¢z = 9n for every n. Mumford
found a fake projective plane with ¢ = 3¢y, see [12].

We now define more numbers:
Definition 7.45. Let X be a surface.
e The sheaf of differential i-forms is the sheaf A'Qx.
e The Hodge numbers h* are b/ (X, Q%) for 0 <i,j <2

Remark 7.46. We often write the Hodge numbers in a diamond

/\
/\/\
\/\/

\/

FiG 3. A Hodge diamond
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Proposition 7.47. We have:
(i) h¥I = 25273,
(i) %0 = h22 =1.
(iii) All ‘outer’ Hodge numbers are birationally invariant (i.e. all but k).
)

(iv) Blowing up a point increases h! by one.

Proof. (i) is Serre duality. (ii) is clear given (i). (iii) uses the same proof as
Proposition II1.20 in Beauville [3]. (iv) is tricky. O

Most of the numbers we have seen so far can be written in terms of Hodge
numbers:
Fact 7.48.
(1) q = h071> bg = h0’27 Pa = h072 - h071-
(i) x(X) = hr%% — % 4 1.
(111) bl — h2,1 + h1,27 b2 — h2’0 + hl’l + h0’2.

7.4. Ruled surfaces

Definition 7.49. A surface is ruled if it is birational equivalent to C' x P!
for a smooth curve C. If C = P! then the surface is rational.

Ruled surfaces will give a large class of surfaces in our classification.

Proposition 7.50. Let X be ruled over C. Then

9(X) = 9(C)
pg(X) =0
P,(X) =0, n>2
Proof. Proposition III.21 in Beauville [3]. O

This proposition has an incredible converse!

Theorem 7.51. (Enriques) Let X be a surface with (a) Py = Ps = 0 or
(b) P12 = 0. Then X is ruled.
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Proof. Theorem VI.17 in Beauville [3].

O
Corollary 7.52. Let X be a surface. Then x(X) = 0 if and only if X is
ruled.
Another fantastic criterion exists for rational surfaces:
Theorem 7.53. (Castelnuovo’s Criterion) If X is a surface with ¢ =

Py = 0 then X is rational.

Proof. Theorem V.1 in Beauville [3].

Corollary 7.54. A ruled surface with p, = 0 is rational.

Remark 7.55. In the proof, one shows that P» = 0 implies p, = 0. However,
there are many non-rational surfaces with ¢ = py = 0, as we will see later.
A classification of all surfaces with p; = 0 and ¢ > 1 is in Chapter VI of
Beauville.

Proposition 7.56. Let X ~ C x P be a ruled surface with g = g¢. Then,
(i) co =4 —4g and ¢ = 2cy
(ii) X has Hodge diamond

1
g / \ g
0 RN 2 RN 0
AN ) RN ) /
AN 1 /
Proof. We prove (i). A useful fact from topology states xiop(A X B) =
Xtop (A) Xtop(B). Thus, 2 = Xtop(C)Xtop(P). One can also show that for

curves, Xiop(C) = 2x(C), thus ¢ = 2(2 — 2g). By Proposition 7.50 we have
pg = 0 and ¢ = g thus
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1
(Noether) E(C% +c)=14+p;—q
o =209

Remark 7.57. This proves the line on Figure 7.1 for ruled surfaces.

7.5. Surfaces with Kodaira dimension one

Definition 7.58. A surface X is elliptic if there is a smooth curve B and
a surjective morphism ¢ : X — B such that the preimage of a generic point
is a smooth elliptic curve. This map is called an elliptic fibration.

Remark 7.59. Generic point here means ‘holds on a non-empty open sub-
set’. A non-generic point is called a ‘singular point’. There is a complete
description of what the fibres at the singular points can be, see Section V.7
in [10)].

9/1\9
v o
NSNS
N

Fic 4. Hodge diamond of an elliptic surface over a base curve B, where g = gp and
C = 10x(Ox) + 2g. For a proof, see Section 6.10 in [13].

An elliptic surface can have Kodaira dimension —oo, 0, or 1. This usually
depends on the genus of the base curve B. For example, if gg > 2 (i.e. a
general type curve) then one can show x(X) = 1.

Definition 7.60. A properly elliptic surface is an elliptic surface of dimen-
sion 1.
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Theorem 7.61. Let X be a surface.

(i) If X is elliptic, then ¢ = 0 and cg > 0.

(ii) If X is minimal and x = 1, then X is elliptic.
Proof. (i) is proved along the way to proving (ii). (ii) boils down to giving
a canonical morphism into some projective space whose image is a curve,
then showing that curve has genus 1. See Proposition IX.2 in Beauville [3].

The proof relies on the last third of II Algebraic Geometry more than the
ideas we have developed. ]

7.6. Surfaces with Kodaira dimension zero

Theorem 7.62. Let X be a minimal surface with k = 0. Then X belongs
to one of the following cases:

(i) pg =0;¢ =0, then 2K ~ 0 and X is a ‘Enriques surface’.
(ii) pg =0;¢ =1, then X is a ‘hyperelliptic surface’.
(iii) pg =1;¢ =0, then K ~ 0 and X is a ‘K3 surface’.
)

(iv) pg = 1;¢ = 2, then X is an ‘Abelian surface’. where ~ denotes linear
equivalence of divisors.

Proof. Theorem VIIL.2 in [3]. O

A hyperelliptic surface is a product of two elliptic curves quotiented by a
finite group of automorphisms. One can show that there are only seven
possibilities for this group: Ca, C3, Cs, C’g, Cy, Cy x Co, or Cg. From the
figure below, one can deduce the Chern numbers are ¢; = ¢ = 0.

1/1\1
VANVAN
NN S

N

F1G 5. Hodge diamond of a hyperelliptic surface
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A K38 surface is a surface with trivial canonical bundle and ¢ = 0. They are
named after the three K’s of algebraic geometry: Kummer, Kahler, Kodaira.
If X is K3, we have ¢ = 0 and x(X) = 1 + p; — ¢ = 2, thus by Noether’s
theorem we have co = 24. By Fact 7.35 and Serre duality, we have the
Betti numbers b7 = b3 = 0 and from the previous sentence we deduce
(bo, b1, be,b3,bs) = (1,0,22,0,1).

0/1\0
NN
NN\ S

N/

Example 7.63. The following are (non-trivially) K3 surfaces,
e asmooth quartic in P, e.g. % + y* + 2 + w* = 0,
e the intersection of a quadric and a cubic in P4,
e the intersection of three quadrics in P°.

An FEnriques surface is a surface with ¢ = 0 and K non-trivial but 2K ~ 0.
This can be shown to imply p, = 0, and given that we deduce the Chern
numbers ¢ = 0 and ¢y = 12. One can show all Enriques surfaces are elliptic
and arise as quotient of a K3 surface by a group of order 2 acting without
fixed points. They have p, = ¢ = 0, thus serve as a class of counterexamples
to the obvious strengthening of Castelnuovo’s criterion. A calculation similar
to that done with K3 surfaces gives ¢; = 0 and ¢ = 12.



0/1\0
NN
NSNS

N/

Fic 7. Hodge diamond of an Enriques surface

Example 7.64. Consider the K3 surface X given by % 4+ 3% 4+ 24 + w* = 0
in P2 and let T be the order 4 automorphism (z,y, z,w) — (x,iy, —2, —iw).
Then T2 has eight fixed points. Blowing up these eight points and taking
the quotient by T2 gives a K3 surface with a fixed-point free involution 7T
and the quotient of this by 7" is an Enriques surface.

A complex torus is any complex surface homeomorphic to a power of S?.
An Abelian variety is any variety which is a complex torus. They are a
generalisation of elliptic curves and are studied in algebraic number theory.
Together with the K3 surfaces, abelian surfaces are the only ‘Calabi-Yau’
manifolds of dimension two (manifolds with K ~ 0). In particular, ¢; = 0.
One can show py, = 1 and ¢ = 2, thus x(Ox) = 0 so by Noether’s theorem
Cy) = 0.

2/1\2
NN
NN\

N/

Fi¢ 8. Hodge diamond of an Abelian surface
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7.7. Compact complex surfaces

In this section we address the the following question: what about surfaces
which are not varieties?

Definition 7.65.

o A complex manifold is a manifold whose charts in C" and the transition
maps are holomorphic.

e A complex manifold is compact if the image of the atlas is a compact
topological space.

o A complex surface is a complex manifold of dimension two.
o A complex manifold is algebraic if it is a variety.
Example 7.66.
(i) CP? is a compact complex manifold.

(ii) A Hopf surface is a compact complex surface defined as follows: quo-
tient C2\{0} by group action z — %z. This gives a non-algebraic sur-
face.

Remark 7.67. One can more generally define canonical line bundles, pluri-
genera, Hodge numbers, and all the other invariants discussed for compact
complex manifolds. All of these definitions agree with the corresponding
definitions for varieties.

The most surprising fact in this article is that the classification of compact
complex surfaces is essentially the same as the classification of algebraic
surfaces we have given here:

l Class [ K [ Algebraic? [ ci [ ) [ Smallest n s.t. K™ ~ 0 ‘
rational Always 8,9 , 3
class VII —0o0 Never <0 >0
ruled of genus g > 1 Always 8(1-g) | 4(1-g)
Enriques Always 0 12 2
hyperelliptic Always 0 0 2
Primary Kodaira 0 Never 0 0 1
Secondary Kodaira Never 0 0 2,3,4,6
K3 Sometimes 0 24 1
Abelian Always 0 0 1
Elliptic 1 Always 0 >0
General type 2 Sometimes >0 >0

Fic 9. Enriques-Kodaira classification of minimal compact complex manifolds
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Remark 7.68. Mumford [18] showed the analogous classification of surfaces
in positive characteristic is similar to Figure 7.7, except in characteristic 2
and 3 there a couple more cases to consider.

Example 7.69. The Hopf surface is class VII.

As well as the definitions of the invariants for varieties agreeing with those for
complex compact surfaces, the theorems we have seen for algebraic surfaces
also hold more generally for complex compact surfaces. In particular, the
Noether and BMY inequalities, which restrict the Chern numbers of surfaces.
A good question is whether these are the best inequalities possible. The
following result gives an answer: half of the time, almost always.

Theorem 7.70. (Persson) Let n,m € N such that
(i) n+m =0 mod 12

(ii) n <2m (note: not 3m)

(ifi) 5n—m +36 >0

then there exists a minimal compact complex surface of general type with
¢} = n and ¢y = m, except possibly if n — 2m + 3k = 0 where k = 2, or

k=19, or k is odd and less than 16.

Proof. Theorem 9.1 in [10].

Remark 7.71.

e (i) is a requirement of Noether’s theorem. (iii) is Noethers inequality.
(ii) is half of the BMY inequality.

o It is currently unknown whether there exist positive integers n, m sat-

isfying (i), (iii), and » < 3m such that no compact complex surface

has Chern numbers ¢ = n and cp = m.
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sheaf of abelian groups, 10

sheaf of differential forms, 45

sheaf of differential i-forms, 57

sheaf of differentials, 19

sheaf of fractional ideals, 23

sheaf of principal parts, 30

sheaf tensor product, 15

sheafification, 14

short exact sequence of abelian
groups, 5

stalk, 9

subsheaf, 12

support, 27

surface, 46

surjective, 12

tensor product of R-modules, 6

tensor product sheaf, 14

the sheaf of regular functions, 11

topological Euler characteristic,
55

torsion, 26

torsion-free, 27

vanishing set , 7
variety, 7
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