Infinite-dimensional Bayesian inference for time evolution
PDEs

Based on lectures given by Richard Nickl at Warwick in July 2025

1 Introduction and Setting

1.1 Non-linear dynamics

We work on the torus = (0,1]¢ and define A = Z?Zl 9?2 and LP(Q) and the periodic Sobolev

Hilbert spaces H*(2) for o > 0 as usual. The negative Sobolev Hilbert spaces are defined to be the
duals H=*(Q) = (H*(2))'. Define also

L3 :=L*N{h: | hdx =0}
Q
a space on which A has an inverse, or in the context of the incompressible Navier-Stokes equations
(NSE)
L2 ;:L%{h;/hdx:()andv.h:o}
Q

which restricts us to consider only incompressible functions. The spaces H§ are defined similarly.
Lastly, P : L? — L3 is the orthogonal projection.

Consider (ug(t,z) : t € [0,T],z € ) which solves a particular PDE with initial condition 6(z) =
u(0, z). We study two relevant examples:

0
8—1; —Au—fou=0 (reaction-diffusion)
on [0,7] x ©, where f : R — R is known and for simplificty in CS°(R), although can be roughly

relaxed to C.(R). Another more complicated example is

% —vPAu+ B(u,u) =0 (NSE)

where u : R? — R?,

Given observations of ug throughout [0,7] x © (to be described in detail shortly), we seek to learn
the initial condition §. Typically we assume 0 € Hg.

The following result is standard PDE theory:

Proposition 1.1. Let § € H}, T > 0, f € C°(R) then there is a unique solution ug € C([0,77], L*(2))
to reaction-diffusion and the NSE.

Thus, given 6, all subsequent values of ug are determined.

Remark 1.2. For the NSE, § € L2 implies ug(t,-) € L2 for all ¢t > 0, i.e. mean-zero and incom-
pressibility are preserved. This isn’t the case for reaction-diffusion. Nevertheless, this requirement
still be useful statistically going forwards.



1.2 Discrete observations

Consider (Y;,t;, X;)Y, which follow a regression model
Yi = ug(ti, Xi) + € (1.1)

We will assume
(1) €; ~iid N(O, 1)
(11) (tl, Xz) ~iid Unlf( [0, T] X Q)

This is simplistic, one expects the noise ¢; to depend on (¢;, X;), but we need to make some decision
here to get an initial understanding. The uniform assumption is called probabilistic numerics, and
justifications are given in Dioconis (1988). We denote Z(N) = (V;, t;, X;)N,.

This type of problem is called ’data assimilation’, where we are given Z\) and typically wish to
predict ug at later times or different points. It turns out the best way to do this is to recover the
initial condition, which, by Proposition allows us to go forwards again. See [I] which treats
even the case where the PDE is misspecified, i.e. the data doesn’t exactly fit the PDE, although we
study the correctly specified case here.

Statistically, this is just a non-parametric regression problem, but we know wug solves a particular
PDE. Classical frequentist statistical methods construct an estimate 4 from this data, and it is
not clear how to use the fact uy actually solves this PDE, so while & may estimate ug well near
the observations, it will estimate poorly for larger times. Moreover, the estimate u will have zero
probability of actually solving the PDEEI, whereas this is something our Bayesian approach will get
for free. The joint distribution of Z() has probability density

N
PBNZHPGO/Z'atini) (1.2)

i=1

where py(y,t,x) o exp(—%|y — ug(t, )[?). The log-likelihood is
| N
— - A
In(9) = 3 Z-E,l |Y; —ug(t;, X)|°, 0€0O (1.3)

for some parameter space © C Hi. The textbook approach to statistics would try to maximise this
over 0. There are several issues with this. For example, the parameter space is infinite dimensional,
so we’d probably need to regularise by adding a penalty term. The more fundamental problem is
that the map 6 — wuy is the map that sends the initial condition to the solution of a non-linear PDE,
hence is non-linear and —Ix(6) is not convex, so optimisation is very difficult.

One of the reasons people opt for Bayesian methods is because in Bayesian methods one computes
averages (e.g. the posterior mean) instead of optimising a function and this may be more robust
to such problems of non-convexity (though to actually prove it is more robust is quite a different
story). In principle, given a convex surface, one expects computing its integral may be easier than
computing its maximum, and so in order to do this we want to reweight the likelihood and compute
the average instead of the mode. To get started, we need to define a prior.

10r prove otherwise...



1.3 Gaussian process priors

The main part of this introduction is to take away some of the fear away from Bayesian statistics,
that priors are not anything dangerous. On one hand, they serve the role of regularisation (having
a penalty in the likelihood). On the other hand they correspond to a randomisation scheme in our
algorithm. The prior is not a subjective belief about whether it will rain tomorrow, rather a tool to
introduce randomisation in the class of algorithms we will use. Nevertheless, we must declare what
types of priors we will use. Since the influential work of Andrew Stuart (or even Kalman), the use of
Gaussian priors has been advocated, for computational reasons. Since we are modelling a parameter
in a function space, we need to use Gaussian random fields.

For 6 we consider prior Gaussian random fields (6(z) : z € Q) over L2 of the form
0 ~ 1L, ~ N(0,p*(—A) " f

where we have used the fact —A is invertible on L2 and in fact positive definite so that fractional
powers make sense, and p is some positive scaling, and v models the smoothness of trajectories. We
assume v > 1+ d/2, so that by the usual Hilbert-Schmidt embedding argument we have § € H! a.s,
or in fact HOB for all 0 < 8 < v — d/2. These priors have full support in H} so we will not rule out
any particular choices for 6.

If (ej,A;) are the eigenfunctions of the Laplacian so that Ae; = —\je; then one has the series
representation
oo
0= pz A 7gje; L*-as. (1.4)
i=1

where g; ~ N(0,1). Note that on the torus, the e; are just the exponentials. We also let §' = 6/p
be the unscaled parameter.

Remark 1.3. We don’t use them for any particular reason other than that they can be numerically
implemented and have full support in H{ in a way that we can also quantify which is important in
the proofs and we will see later. The usage of these priors has been common in the literature for
some time, in machine learning, inverse problems, data assimilation, so this nice family of Gaussian
fields have been part of the ‘standard toolkit’.

In data assimilation, it is not just important to assign a prior to the initial condition, but also to the
regression function (in our case wugy), which is what the statistician actually needs. We can obtain
such a prior by pushing forward 6 to uyg, i.e.

Mou, ! in C([0,T], L*())

where ue_l denotes the image measure. Because the PDEs we are considering are numerically
solvable, this gives us an implementable prior in the space of all trajectories whose draws solve the
PDE in question with probability one. However, it is not a Gaussian prior any longer because of
the non-linearity, so the main challenge of the statistician will be to deal with the regression model
where the prior is not Gaussian, rather the push-forward of a Gaussian through the solution map of
a non-linear PDE.

Remark 1.4. This is one of the main reasons why people choose to model the prior at the initial
condition because it is not clear how otherwise how to pick a random function that at a given time

20r —PA for the NSE



t solves the NSE. A good problem for a probabilist: give me a prior which describes at time ¢ solves
the NSE for some initial condition, without first modelling the initial condition. For the probabilist,
modelling the initial condition is fine, but for the statistician by delcaring this to be our statistical
parameter, we inherit an inverse problem which is hard (recovering the initial condition 6 from
observations of uy which solve a PDE). We will be able to do it, though it would be much more
convenient if we did not have to go back to the initial condition and then solve forward again, but
this is how all the algorithms people have ever used have gone. It would be very attractive to have
a different projection onto the solution manifold, but this seems computationally hard, so people do
this.

1.4 Posterior measure

The extension of Bayes theorem to infinite dimensions is not difficult, but we spell it out here.
Suppose the map (0,t,2) — ug(t,x) is jointly measurable for some o-field over the product space
O x[0,T]x Q. Then P (y,t,x) is jointly measurable and if we define the density on © x R x [0, 7] x {2
by

dQ(0,y,t,x) = pe(y, t, x)dydtdzdll, (6) (1.5)

so by the standard rules for expressions of conditional densities in a product space, we have
Mg ~ PN (1.6)
and the posterior distribution is
0|1ZzN) ~11(0| 2N
122, po (¥ i Xi)dIL (6)

(1.7
f@ i= 1p9 }/ZatlaX )dH (0)
o eI (6) (Gibbs measure form)
and we have the push-forward posterior
ug|ZW) ~ Law(ug : 6 ~ TI(0| Z2N))) (1.8)

whose time marginal distributions we denote by (ﬁt 2t > 0). For t* = max;<n t;, we call ﬁt* the
filtering distribution because it is the last thing a sequential algorithm like the Kalman filter would
target.

The posterior TI(9]Z(N)) is a Gibbs measure with potential I,y which is not concave and has very
complicated fluctuations in principle due to the non-linearity, so is certainly not Gaussian on the
level of . Then, we solve another non-linearity forward, and we will see later that the resulting
posterior distributions Ht actually converge to a Gaussian process as N — oo. In fact, the Ht are
much more regular than one may expect and therefore also computable in other ways.

1.5 Posterior computation

Two questions we wish to answer are: how should I compute the posterior? and should I compute
the posterior? We have not shown yet that the posterior has any useful statistical guarantees. We
will assume a fixed ground truth 6, generated the data and show somehow that the output from our
algorithm is close to the ground truth dynamical system that we have actually observed, in some
distance, and moreover find a convergence rate. Before we do that, we answer the first question.



The algorithms to follow came out fifteen years ago by Andrew Stuart, Gareth Roberts, Martin
Hairer, among others, which can at least in principle reliably compute the posterior. The first thing
one could try to do is find the 6 which maximises the posterior density 6 — II(0) (called mazimum
a-priori (MAP) estimates), which we recall from the Gibbs measure form is somewhat equivalent
to minimising the non-convex function l5. More precisely, one can show the effect of the prior is
adding a penalty term, i.e. formally MAP estimates maximise

N
1
In(6) + explogdll, (0) “=" — 3 D Yi = uglts, Xo) P = p°116117; (1.9)
i=1

This is what statisticians called penalised least squares or people in inverse problems call a Tychonov
regulariser: the sum of least squares is kept small but also the solution cannot be too rough. The
point of our discussion is that after one has survived the Bayesian setup (choosing a prior etc), we
get something very intuitive. But we have solved nothing becasue the problem is still not convex
and so we still cannot compute it.

Instead, let us compute the posterior mean Oy := E™(A|Z(N)). Given fy, we can estimate the
regression function by finding the plug-in ug ~which solves the PDE with initial condition Oy, and
for the two examples we have in mind this is well understood numerically. From a Bayesian point
of view, one should consider the posterior mean and not the mode. If you go to a decision theory
class in statistics, they will tell you the quantity that minimises the Bayes risk is the posterior mean
and not the mode, so as a statistician one should go for that anyway and later we can prove it is
a good estimate. Computing an integral in infinite dimensions is not necessarily easy, one can ask
whether polynomial time algorithms even exist. Computing the mean of the posterior from its Bayes
rule definition is not something we want to do, it is not even clear how to compute the the
normalising constant in the denominator. Instead the big idea is to use Markov Chain Monte Carlo
methods: we come up with a Markov chain v, with invariant measure II(-|Z(")) and use + Zszl Vg
to estimate fy. Given the output of such an algorithm, one can forget the whole Bayesian story

and try to prove that the plug in w 15K, converges to the ground truth dynamical system.

Example 1.5. (pCN algorithm) Initialise vy, step size § > 0, and compute the proposals as
follows:

(i) Given o, ..., vk_1, let pp = VI — 26v,_1 + /206 where & ~ I1,.
(ii)

oy = {pk with probability min(1, !~ Pr)=in(Pr-1)) (1.10)

vp_1 otherwise

iii) Estimate Oy by & S°X v, with K large.
K Z2ik=1 g

We always accept the proposal py if Iy (px) > In(vi—1), but even if I (px) < In(vk—1) we have some
probability of accepting. This is necessary for the Markov chain to explore the whole space (c.f.
Metropolis-Hastings). When this is actually implemented on a computer, one usually takes a large
finite dimensional subspace RP C ©.

Proposition 1.6. v from the pCN algorithm has invariant measure II(:|Z (v )) for Gaussian priors

Proof. This is a straightforward calculation that we wont do.



Example 1.7. (Unadjusted/Metropolis-adjusted Langevin) For © = R” with D large, ini-
tialise vg and compute the iterates

Vpy1 = vk — 0V log IT(v| ZNV)) + ¢4, (1.11)

where &, ~ N(0,1).

One shows this also has invariant measure TI(:|Z(¥)), even for non-Gaussian priors. The iterates
resemble gradient descent, except we keep § fixed not tending to zero so the Markov chain explores
the whole space.

Remark 1.8. This approach is popular for non-linear problems because it doesn’t involve any opti-
misation. In summary, nowadays we don’t think of Bayesian statistics as some school of philosophy,
we think of it as a class of algorithms that instead of optimisation use averaging.

2 Posterior consistency for data assimilation

So far we have laid out our algorithm, and we return to the question of whether it actually works.

Suppose 6 is the ground truth initial condtion. Can we prove u; or u LK is close to ug, under

the law PGJX ? We quantify this as follows: We seek to prove (suppressing ),
(0 € ©: |0 — |2 > Min|Z™N)) — 0 in P} probability (2.1)

This sequence of probabilities is random because Z(N) is random. Here, dy is the contraction rate
and tends to zero. M is some constant. The L? norm could be replaced by some other norm or
metric.

Remark 2.1. The rate of convergence of these probabilities to zero is not important in the theory
so far. dy cannot be asymptotically smaller than the parametric rate N~/2, but we will need it to
be sufficiently small for later results.

2.1 Hellinger distance
Define the Hellinger distance

h(po.pa,)* = / (/o — /Fag) P dydtdz (2.2)

where py and pg, are the Gaussian densities from before.

Remark 2.2. This definition is specific to our statistical model, but it can be extended to other
models similarly and some of the results we give in this section remain true.

For reasons we will discuss shortly, the Hellinger distance is the natural distance in which one would
first prove a posterior contraction result. In our regression model, one shows the Hellinger distance
is equivalent to the Bochner L2. norm:

Lemma 2.3. Suppose Oy C © containing 6, such that for some upper bound U,

sup sup ||ug(t)]|eo < U < 0 (2.3)
0O, 0<t<T



Then there exists a constant Cy such that for all 8 € ©g

1
Cullug — u90||L2T < h(p97p00)2 < ZHW - U90||%2T (2.4)
where
T
115 = [ 10 eyt 25)
and Cy = (1 — e~U*/2) /202
Proof. Proposition 1.3.1 in [2]
O

Remark 2.4. The assumption is not unexpected, one can only expect to do regression when
the regression functions are not completely wild. If the regression function can have lots of poles
everywhere and we only have discrete measurements, there is little hope we will be able to reconstruct
anything from it, and so we need the assumption to hold on an appropriate subset.

Remark 2.5. This result is specific to our regression model and perhaps one of the reasons why
it is a good idea to use probabilistic numerics in the way we have set it up. It is convenient in the
proofs to follow that the natural statistical/information theoretic distance for results we are trying
to prove is equivalent to the Bochner L2 norm which not only has a very clear interpretation but
shows up naturally in PDE analysis. If one chooses a different measurement model, life becomes
significantly more complicated here, this is one of the things we harvest from our uniform sampling
regime.

We will show that if one is able to construct a statistical test/decision rule ¥ = 1hn(Z™)) (i.e. an
indicator function 14, ) that distinguishes between 6y and 6, then posterior contraction holds. The
fundamental result from non-parametric statistcs we will use due to Le Cam is that it is possible to
construct such a test using the Hellinger distance in complete universitality without any regularity
assumptions other than on the metric complexity of the space of densities:

Proposition 2.6. There exists a test ¥y = wN(Z(N)) =14, such that

2 A752
Eg,n + sup Eg(1 —epy) < e M Ny (2.6)
N—— €O N Y——~—"
Type 1 error Type 2 error

where ¢ is some constant, Oy is a suitable alternative hypothesis space of which we will not go into
the details but is infinite dimensional, provided Ve > 0

log N(On, h,€) < Né (2.7)
where N(Oy, h, €) is the number of radius ¢ Hellinger balls required to cover O y.

Proof. See Section 7.1 in [3]. O

Remark 2.7. The metric entropy condition (2.7]) measures the compactness of a space.

Remark 2.8. In words, the type 1 and type 2 errors are exponentially small uniformly in the
alternative © . dy decays slower than N—1/2, so N2, — .



We now sketch the idea of posterior contraction. From (|1.7)),

e (O dI1(6)

N)y —

(2.8)

To bound posterior probabilities, we need to control the normalising constant in the denominator.
More precisely, we need it to not be too close to zero. One shows that with high probability,

efaNEZQV

In(0)—In (60) JTT(0) > 2.
Le 0)> = (29)

(lup — ug, [l 2. < 6n)

see Lemma 1.3.3 in [2] for details. Note that oy > N~'/2 so N2 — oo so the RHS numerator
converges to zero, so for this inequality to be meaningful we need II(|[ug —ug, |12, < dn) to also tend
to zero exponentially fast. This is a statement about how ‘good’ the prior is, which we will discuss
in the next section.

Hence, letting © = {6 € On : ||0 — Op||2 < My} C © for convenience, for any b we have

B - zN(e)—lN(Go)dH(e)
N (™) onsdy _ pn [ Jece NG
Py (I(©|Z2W)) > e "Non) = Py ( J e O ~In 00 dTT(6) et

_py (/ oL (0)-x(600) 411 () > e(b+a>N6?v> +o(1)
-

Applying Markov’s inequality,

e(b+a)]\r§fV Eo, /

[N @-In o) gr1(g) = OHOINRE, / ety O =t (@) gT1(9) (1 — 9hn) + 0(1)
-

o°

= ebTa)NdY L Ege!~ (O =Ix(00) (1 — 4\ )dII() + o(1)
-

where we have used (2.6) in the first equality and Fubini plus a change of measure argument to
change Eg, into Ey, which we will not justify here. Finally, we see by (2.6) again that the RHS tends
to zero provided b+ a is sufficiently small compared to M. For the details, see Theorem 1.3.2 in [2].

Remark 2.9. What we learn from this proof is that posterior contraction will always hold if we
can write down a prior which is not bad in the sense of at a contraction rate that is as good as
the best test we can construct. We have seen that for the Hellinger distance, such tests can always
be constructed under the metric entropy assumption.

2.2 The prior on C([0,T], L*(Q))
The result to follow shows that the prior II, is ‘good’.

Lemma 2.10. Let 6y € H?, Il = I, ~ N(0,p*(1 — A)™7) where p = py = 1/(Ndy), on =
N=/@7+d) 5 > 1 4+d/2. Then 3A, ¢ such that for reaction-diffusion (with f € C°) or the 2D NSE
we have ,
IO : sup [luglloc < U, [lug — ug,llz2 < dn) > e ANy (1)
0<t<T

and for 0 < 8 <y —d/2 and M sufficiently large

H(@ : ||0HH[3 < M,0 =04+ 05, ||01||H'y <M, H92||L2 < M(SN) >1- e_CMN(;JzV (H)



Remark 2.11. Here, (I) says that the prior assigns enough mass near the ground truth; we know
already that the prior has full support on H! but we need to quantify this. (II) says that draws
from the prior are likely to be ‘regular’ in the sense it can be decomposed into a sum of H” and L?
functions. Note that the prior II depends on N via p.

Proof. Straightforward PDE regularity arguments give ug, € L>([0,T], H). It suffices to prove (I)
with [|ug —ug, ||oo instead of L2.. Assuming ||6]| e +||0o]| e < U for some & > max{d/2, 1}, standard
arguments for dissipative PDEs give the regularity estimates

lug — g, |z < Cull0 —bollL> (2.10)

and
g — way 1z < Culld — ol e (2.11)

Given these results about the PDE in question, the inverse problem is solved for our purposes and
the remainder of the proof is clever deviation theory for Gaussian processes. Bounding the RHS of

@,

(0 : sup [luglloc < U,[luo — ug,llrz. < on)
0<t<T
> 10 : |0 — bollge < U/Cu, |6 — bollr2 < dn/Cu)

by the regularity estimates. There are two issues with bounding this probability. Firstly, we can
usually only compute small deviation asymptotics for Gaussian processes centered at zero. Secondly,
it is an intersection of two events. We will use two standard tricks to deal with these. To shift back
to the origin, the price we pay is the RKHS norm of the shift ||y 7+, and this can be proven using
the Cameron-Martin theorem plus convexity:

> o NI 19 < 10| e < VNSNU/Cu|I6/||2 < VNS /Cu)
The Gaussian correlation inequality (proven only ten years ago) tells us that the probability of the
intersection of two symmetric events centered at the origin is lower bounded by the worst case which
is the independent case i.e. the product of the probabilites

> e~ NN - [0/ 17e < VNONU/Co)TI(O : (|6 22 < VN /C)

It remains to bound the probability that the norm of a Gaussian process is small. For this we use
a results of Lindner and Li from the Annals of Probability 1999. One can compute this probability
in terms of the metric entropy of the RKHS of the Gaussian process, and it works out.

2
> o~ AN

For (II) we give an even rougher sketch. Because 6§ = \/ﬁlé 0’ and @' € HP almost surely and we
N

know that the norm of a Gaussian vector in infinite dimensions is sub-Gaussian, so after rescaling
this is the usual Fernique’s theorem which tells us these two norms have sub-Gaussian tails, then
everything is in the v/ Ndy scale. The other bit is the Borel’s isoperimetric inequality for Gaussian
processes with RKHS v/ Ny H? (where the scaling means the norm is scaled, not the RKHS) : one
can always find a large support set tells you that somehow the prior will live in some sort of RKHS
ball, not in an almost sure sense, rather it can be enlarged in the ambient Banach norm L? and still
have overwhelming mass. O



From the results of this section and the previous section, one can deduce the event that regularises
survives in the posterior:

(6 : [|0]| ;s < M, |Jug — gyl 2 < Mén|Z™N) =1 in Py probability. (2.12)

This is our first consistency result which tells us that what we’ve done to infer our dynamical system
does work, at least in this parabolic L2 norm which averages in space and time. Also by a uniform
integrability argument, one can further deduce convergence of plug-in estimates using the posterior
mean:

lug — ug,llzz. = Op(6n) (2.13)
where 6§ = EM(0|Z(N)) is the posterior mean.

Remark 2.12. We do compute the posterior mean at the level of the initial condition because there
we have a linear space and so it makes sense to average. One could in principle take the expectation
of ug, but this is not what is done in MCMC, where we want a linear space to iterate but the
solution space of a non-linear PDE is not a linear space. We don’t talk about the posterior mean of
the dynamical system, rather the plug-in estimate using the posterior mean of the initial condition,
and we have shown in this case we have convergence at the same rate as posterior contraction.

2.3 Stability estimates

We conclude from the previous two sections that the posterior contracts on sets with [lug — ug, |2
small. We have not yet seen that this implies || — 6] is small. Until about ten years ago, people
in Bayesian non-parametric statistics just stopped here. But from a PDE perspective, one expects
that for well-posed problems, if ug and wug, are close and we have some regularity bound on both,
then 0 and 6y themselves should be close. If the map 6 — uy were injective with Lipschitz inverse
then what we have done here should already be enough.

2
For the 2D NSE one obtains a differential inequality for ®(¢) = %
2

show

Theorem 2.13. For ||0|| g1 + [|6o]|g: < U and wug(t), ug, (t) solutions to the 2D NSE. Then 3Cy 1
such that for all £ > 0

where w = ug — ug, to

Cu,r -1/
16— 0oll2 < Cur <log : ) (2.14)
[[ug (£) — uay (8)] >
and
c —1/2
lug(t) — ugy ()| S Cur | log —— . (2.15)
o — ug, || 2.

Corollary 2.14. (Posterior consistency)

il (9 sup [[uo(t) — g, (8)| 1 > —ok |z<N>> P, g (2.16)
N S — 2 .
Ogth o fo L5 = Vieg N

Remark 2.15. When there is no forcing, one shows there is an initial condition such that the
logarithmic bound is sharp for ¢ > 0, so polynomial rates are not possible at this level of
generality. More specifically, initial conditions can be chosen so that the NSE takes the form of a
heat equation, see Theorem 2 in [4].



We now explore the analogous result for the Reaction-Diffusion equation, which has a more difficult
but more intuitive proof than the NSE.

Theorem 2.16. (Reaction-Diffusion) Assume ||6|| g1 + ||6o]| g2 < U. Then,

T
/ a0 () — gy (1) 12y lt > Corr 16 — ol 1+ (2.17)
0

Proof. Take w = ug — ug, so that

(;lt — A) w = f(ug) — f(ug,)
= f'(@)w
= 0(t)w

by the mean value theorem and defining a new function (¢). Thus w solves a linear time-dependent
equation with initial condition 8 — 6y. The story so far suggests ‘all’ of the information of the PDE
is contained at ¢t = 0, so we proceed by considering the perturbed time-independent equation:

d
— —A = 2.1
(dt ) We = VW, (2.18)

where v. = f'(@(0)) for ¢t € [0, €] (and take a piecewise linear continuation for later ¢, or whatever, as
long as a solution w, exists). Then v, is time-independent on [0, €] so considering the LHS of (2.17]),
we can roughly say (cheating with the €) ,

T €
/0 a0 () — 16, (D112 oyt 2 / |2t

Solutions to the perturbed time-independent equation (a heat equation) are well understood: we
have for ¢ € [0, €]

we(t) =Y e (e;,0 — fo)e; (2.19)

j=1

where (e, A;) are eigenpairs such that
(A - ve)ej = —)\jEj. (220)

Since these form an orthonormal basis, we have by Parseval,

/0||w€H%2dt:/O D emNi(e;, 0 — 0o)3dt (2.21)
j=1

J
= i(l — e N ) {ej,0 — 0p)2.dt (2.22)
£ 2\
j=1
2116 = 6ol (2.23)

where we have used that ) )\%(ej, 0 — 6p)2, is like the H~! norm (bookkeeping).



Interpolating L? between H” and H~! and applying Lemma (2.10] we have the important corollary,
~ o\ P
I (9 N6 s < M, [0 — bo]| 12 < MSn |2 >) oy q (2.24)

8
=~ __a B B=-1 . .
where 0y = N™ #2731 = § " comes from interpolation.

Remark 2.17. If we choose a more regular model by. increasing v so that both the prior and
the ground truth get smoother, then 8 can also increase (see Lemma and this exponent will
approximate —1/2 which is the y/n parametric rate. One may ask whether the rates in Theorem
are optimal, and in fact they are not, it is possible to get the \/n rate which will come from
the Bernstein von Mises theorem to follow. The proof will involve Theorem [2.16] which allows us to
localise the posterior of the non-linear model, so we cannot skip this step.

3 Bernstein von Mises Theorems

If © = RP with D fixed and the prior density dII is positive on R” and the Fisher information
of the model In(6y) (to be defined shortly) is invertible, then any posterior obtained from an i.i.d
sample will be approximated by a normal distribution on R? in the sense

N

1 P,
Iy () )y =20 (3.1)

(-|Z™)Y) — Nen (0
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where 6 is the posterior mean or maximum likelihood estimator and TV is the total variation norm,
which is half the L' distance between the densities. This is the Bernstein von Mises theorem in finite
dimensions and one can ask even without the PDE context in mind whether this result generalises
to infinite dimensional models. Friedmann (1999) showed BvM fails in infinite dimensions for
the #2 norm instead of TV with a very simple counterexample, which was a famous negative result
and meant for a long time people didn’t even investigate Bayesian methods in infinite dimensions.
Castillo/Nickl (2013) showed that BvM holds in Friedmann’s example with the weaker H ¥
norm with k& > d/2.

3.1 Main result
The laws 11 ~ are (random) Borel probability measures on the separable Banach space

C= C([tmim tmax]a C(Q))

with the ||-||cc norm induced topology and 0 < tmin < tmax. We will want to say that these posterior
laws converge to some limiting law on C and for this we need to introduce a metric on the space of
probability measures. We define the Wasserstein distance by

Wiclnn) = sw_ | [ Ha)duta) - avio)) (32)

H:C—R
1 H]|Lip<1

where ||-||rip is the Lipschitz constant.

Theorem 3.1. Let 6y € Hj with v sufficiently large. Then

N

Wie (Law(ﬁ(ue —uy )| ZM), Law(U)) Do (3.3)



where ug is drawn from the posterior and ug, is the posterior mean. Moreover,
VN (ug, — ug,) —aiss Law(U) (3.4)

where convergence in distribution is the usual convergence in distribution on C and U is the Gaussian
random field in C solving the linear PDE

d

£U — AU = f'(ug, U (3.5)
in the case of reaction-diffusion or
d
(% _A)U+B(UGO7U)+B(Uau90) =0 (36)

in the case of the NSE with (random) initial condition u(0, ) ~ X ~ Ny, =: N (0, (I Is,) ") defining
a Gaussian Borel probability measure on H~* for k > 1+ d/2.

Remark 3.2. This theorem says the centering of BvM does converge to the right thing, and so in
particular once we’ve proven that the limit is a Gaussian random function, shows that fluctuations
around the ground truth wu,, — ug, are at the V/N rate of the central limit theorem even though
the model is infinite dimensional. This is uncommon in non-parametric statistics and comes from
the parabolic structure of the PDEs. The most delicate part of the proof is the construction of the
limiting process U.

3.2 Information operators

For h € L?, define the information operator lp,(h) = Uy, where Uy, is the solution to the linearised
PDE (3.5) with initial condition h. One shows the information operator is the linearisation of the
solution map € — uy in the sense

Hu90+h — Ugy — H90 (h)||L2 = O(”h‘H%?) (37)

If Ty, : L3 — L% has a Hilbert space adjoint I, : L3 — L2 then the Fisher information operator
is T; Tp, : L§ — Lg. In general, difficulties in our theory will arise from this adjoint, whereas in
the finite dimensional case the adjoint is simply the transpose. In a standard regression model, the
Fisher information is just the identity operator, but when the regression function is non-linear the
local identifiability of the statistical model is encoded in the Fisher information.

Once one has a conssitent estimator, the non-linear structure itself doesn’t matter much any more,
rather just the Fisher information which drives the local convexity of the expected log likelihood
function at the ground truth tells us everything — in particular in infinite dimensions it’s mapping
properties such as invertability. Studying this object in the context of PDEs is not only difficult, but
we quickly arrive at problems that people in PDEs haven’t studied yet. For the reaction-diffusion
equation and NSE, we will be able to do it, but there are non-trivial examples such as the Darcy
flow problem (the standard example every applied mathematician uses when they study non-linear
Bayesian inverse problems) where the Fisher information is not invertible, even when restricted on
the space of smooth functions. So not only is our goal difficult, it might even be wrong, and in
this caseBvM theorem does not hold true. It may be that the fluctations of the posterior are not
Gaussian, and this depends on whether the Fisher information can be inverted on suitable domains.
Currently we have several positive/negative examples but we do not yet have a clear intuition on
when the Fisher information is invertible.



The adjoint usually heavily interacts with the type of measurement model chosen as it maps into
L2~ we recall L2 is not arbitrary, it comes from the Hellinger distance which was forced upon us
by the measurement model. Therefore when we compute the adjoint, the inner product contains
all the information of how we made our measurments; dealing with this can be mathematically
nasty. However, we can prove for data assimilation problems with a laplacian and a non-linearity
which is a lower order than the Laplacian, one can show the Fisher information operator is a nice
homeomorphism and up to a compact perturbation of the identity, the inverse Laplacian. We now
prove this for the reaction-diffusion equation.

Theorem 3.3. For 1 > 0, the operator Alj Iy, is a homeomorphism of H{ = H"N L2

Proof. We omit the subscript . Without the potential in (3.5]), we have the standard heat equation:

let I(h) = Uy where

4 _AU=0

dt (3.8)
U,-)=h

Thus the operator [ is just the forward solution of the standard heat equation and I* is the backward
solution integrated over time, and because this is reversible, going backwards then forwards is the
same as going twice forwards. When one integrates the eigenfunctions which are just the exponen-
tials, we get the recipocals of the eigenvalues (like we did in the injectivity estimate Theorem ,
so applying the Laplacian after integrating I*I(h) cancels them and we are essentially left with the
identity— philosophically why the result holds in this case.

In general it is not quite as easy as we have a time-dependent potential. The idea is to use Fredholm
theory: a compact perturbation of the identity is surjective if it is injective. If we can show first T*I
is injective (which is necessary for invertibility anwyay), then perhaps we can show the difference
A(T*I—1I*I) is compact on H, hence I*I is a compact perturbation of the identity which is injective
hence surjective by Fredholm theory. These turn out to be true though we wont prove them here,
we summarise that once we have injectivity, the mapping properties of the linearised flows with
time dependency are similar to those of the standard heat equation where we can compute things
explicity.

We first do the computation for the standard heat equation:

T
(AI*I)(h) = A/ I I(h)dt
0
00 T
= AZ/ e (e;, h)e;
j=1"0

where we have solved the standard heat equation explicitly in terms of the eigenfunctions of the
Laplacian
= 1 —2T\;
=> (=\) o (€ = ey hey
; J

j=

—

——Id+ Uh(QT)

| —

where h — Up(2T) is evaluation at time 27, not multiplication, hence a compact operator. We
think of this as saying (I*I)~! is essentially —2A~! (plus a compact thing).



To show I is injective, assume AI*Ih = 0. Then by injectivity of A on L3 we have I*ITh = 0 on L3.
Thus,

(I*Th, k)2 = 0
= ||Ih]|7-
2 1l - (3.9)

where the inequality is a straightforward stability estimate for the linearised Schrodinger equation
which I solves (which is strictly easier to prove than Theorem since we don’t need the mean-value
perturbation argument). We conclude A = 0 hence I*I is injective.

O

Remark 3.4. We think of this theorem as saying the inverse Fisher information is ‘basically’ the
inverse Laplacian at least in terms of its mapping properties (though this is far from being the same
as the inverse Laplacian). This explains why we have the condition k£ > 1 + d/2 in Theorem
because U is the image of the white noise process under the half-Laplacian.

Remark 3.5. The difference A(I*I — I*I) being compact is not unexpected: the potential in
(or in the NSE case, the B term in ) is at most a first order differential operator whereas the
Laplacian is second order and there is a 2-smoothing property of solutions to parabolic equations
on the source term, so one expects Al and AI*I to be similar. More precisely one shows using
standard parabolic regularity estimates that I*I— I*I maps H into H67+37 hence A(T*I— I*I) maps
H{ into HJ*", thus compact.

Remark 3.6. The computation in the proof for the standard heat equation would be very difficult
to do in the general case because of the time dependence: the information operator is not reversible
in general and so when we run it backwards in time one runs into serious issues. The main takeaway
of the proof is that whatever is written next to the Laplacian, as long as it is lower order, doesn’t
matter for the mapping properties of the solution.

Remark 3.7. This result is true for the NSE but the proof above doesn’t work because the lineari-
sation is not a symmetric operator so we cannot use spectral theory, where as in I (ug,)U
is. In general, for any data assimilation problem with a Laplacian perturbed by lower order terms,
one should expect the Fisher information to be approximately the inverse Laplacian.

3.3 BvM for initial condition

We will show that there is a Gaussian approximation to the posterior distribution in a weak sense,
in particular some negative Sobolev space topology.

Theorem 3.8. For k > 2d + 3,

N

~ P,
Wi g (Law(VN(0 — 03)|Z3)), Ny, ) 2 0 (3.10)

and VN (O — 60) —>aist No, -

Remark 3.9. We cannot expect a stronger convergence here than in a negative Sobolev space
(except possibly optimising & which we didn’t try to do). The negative result of Friedmann tells us
this cannot hold in L2. Tt is necessary to have k > 1+ d/2 because the measure Ny, is only tight in
H~* when k > 1+ d/2, we will never have any type of weak convergence of unless we enforce
this weak topology because we have to have a tight limit.



Proof. Our proof strategy has nothing to do with data assimilation, we could have any likelihood
model where we can invert the informational operator.

Idea:

(i)

(iid)

Localise: We already know the posterior contracts around the ground truth. The question
is, what is the best way to use that? A clever idea due to LeCam when he first wrote these
proofs in finite dimensions is to look at a posterior that comes from a prior which is already
concentrated on the set we like. We consider TP~ (-|Z(V) where

H( ﬂDN)
nboy = —_ %/ 3.11
(Dn) (3:11)
where R

Dy ={0:0llps < M, |0 — Oo|L2 < My} (3.12)

By virtue of our previous results, we can assume our prior has already guessed that I am in
some neighbourhood of the ground truth. The rate Oy is strictly slower than 1/v/N so it will
not allow me to grind out the v N in -, but it will modulo some expansions of the log
likelihood.

To prove convergence in H %, we will look at all the actions on test functions by integration
and then we will prove a result that is uniform in ¢» € H~* and from this we can reconstruct
the norm of the space. Indeed, given ¢ € HE, we define the ’least favourable direction’
Q= (]I;O]Igo)*lw which belongs to H{f‘Q by the mapping property result for the information
operator we proved. We specifically proved this for reaction-diffusion, but it is conceivable one
could prove this for other models.

Study the Laplace transform of the posterior with argument ¢. In the next display, the expec-
tation is taken over 0, 1 is fixed, and v is a convenient centering.

[ etVN(0.4)—dn+in (0) gT1(9)

PN (VN0 —on) | 7 (V) —
E (e ¥z ) - [ O] (3.13)
VN ((0,4) =N +n (0)+In (0)=In (00 )+In (60)) GTT ()
_ e ©) (314
[ et Odr1(6)

where ;) = 60—t/ V/N4 is a perturbation of € in the least favourable direction. The hard work

is in controlling etVNUNO)=In(Ow) in the previous display uniformly in 1) and N. One needs to
not only show that this is small, but tht the first order terms will conveniently cancel and use
infinite dimensional central limit theorem techiniques — see Chapter 3 in [3]. After expanding,

Un = (0,0 267]190 )(ti, ) (3.15)

and (3.14) using a ‘quantitative LAN expansion’, everything cancels and is small and we are
left with o
_ /20T 4op () | J €N dIL(0)
felN(e)dH(G)

The first term looks like a Gaussian moment generating function that we would like to see. The
second term looks like it should be close to 1; 6 is a small perturbation of 6 for fixed ). One

(3.16)



can show this by using the Gaussian process prior formula explicitly and the Cameron-Martin
theorem. Here, we use not only that the prior is supported everywhere, but we need to be
able to quantify how much a shift into the least favourable direction affects the prior. For bad
priors, this might be huge and explode but for Gaussian process priors it can be controlled.

(iv) So far, we have convergence for fixed ¥ (after some uniform integrability arguments and getting
rid of QZ]\V and getting the posterior means, and some other technicalities we skip over). Then,
from the uniformity in v, one does the usual weak convergence argument in function space
by decomposing into finite dimensional projections of both the conveging sequence and the
limit and use the limit theorem for the finite dimensional projections and control the rest
by a tightness estimate which tells us all these measures are sort of flatly concentrated in
finite dimensional spaces (this is a standard argument for proving CLT theorems in infinite
dimensions). For tightness, one needs to control the supremum of infinitely many 1, but
we have already controlled the MGF by essentially a Gaussian, so for each v these are sub-
Gaussian variables and taking the supremum is like a Gaussian process. This is why we pay
almost no price for going from finite to infinite dimensions in a suitably regular space like H¥.
The unit balls in these spaces have nice covering numbers so one can control the suprema of
sub-Gaussian process (e.g. Dudley’s metric entropy method).

(v) To finish off with convegence of the posterior mean, one uses some technical uniform integra-
bility and convergence of moments arguments, which we omit.

Remark 3.10. Idea (iii) is perhaps not so difficult to come up with, but the real hard work in
infintie dimensions is to kill the remainder terms in . Each [ is a sum of N terms evaluated
at functions which are small, but in the CLT because the functions indexing it are very small, we
almost end up in the Poissonian regieme of the CLT and so it is a bit expensive and we cannot
automatically assume we have subgaussian tails.

Remark 3.11. The bottleneck is (11301190)—1 which may not exist, or it may exist but you don’t
know anything about its mapping properties which is equally bad. If one proves the information
equation has a solution but nothing is known about its regularity, one cannot proceed with this
proof because we cannot control the remainder terms or the second term in when perturbing
in the least favourable direction. For data assimilation problems we have proved it is basically the
Laplacian so we know exactly what the mapping properties are. If one wants to write a proof, it is
probably necessary to dig deep into concentration of product measure phenomena.

We will prove the theorem for the posterior mean because it is easier to see the idea. The map
0 — wug is non-linear, so we cannot just use the continuous mapping theorem and we have to deal
with the non-linearity of the forward map. We know how to linearise this map,

VN (ug, —ug,) = (Dug,)(VN(On — o) + VN||On — 6o][72) (3.17)
=T, (VN (0 — bo) + 0p(1)) (3.18)

where we have used that ||y — 0o]|2 is like 5;\;2, so that \/JV(S;VQ — 0 because we proved
already that S is better than N—1/4 (but worse than N -1/ 2). We see here that proving fast rates
first is necessary to prove BVM. For example if we had only logarithmic rates then the remainder
term would be large. Lastly, one shows using basic parabolic smoothing arguments to show that I,
maps H " into C or in fact into any Sobolev space; one obtains estimates uniform in time away from



zero because away from zero the solution gains one smoothness from the initial condition so one
can bootstrap by splitting R, into infinitely many intervals. Thus the continuous mapping theorem
applies and we conclude

VN (ug:, — ug,) —raist Tg, (X) (3.19)

where X ~ Np,.

Remark 3.12. The same proof works for the Wasserstein distance because Iy, is a bounded
and linear hence Lipschitz map and the composition of Lipschitz maps is Lipschitz, and the Wasser-
stein distance is the supremum over Lipschitz maps. However, work is needed to control the op(1)
term, to do this one shows all the posterior moments are bounded and this is more techinical and
relies on the non-linearity of the PDE is well behaved in the sense that the norms of ug cannot grow
faster than polynomially in the norm of 8, which is checked explicitly for NSE/reaction-diffusion.

Remark 3.13. This result can be used in statistics. If one has computed u,, and draw 1/ VN
Gaussian fluctuations around it, then this is a confidence band for ug,. If one has a certain hypothesis
and the estimator u,- doesn’t lie in this confidence band, then we can reject it. The error probability
is known exactly because we know the quantiles of the limit distribution; although one does not need
to compute these because the posterior does this automatically by a bootstrap argument, one can
use the posterior quantiles and they will stabilise at the right limit. This is why people use Bayesian
methods in applied mathematics because they give you error bars, and we have proven that these
confidence regions are not just valid, but actually quite small (the parametric rate) even though the
model is non-parametric.

O

3.4 Cramer-Rao lower bounds

We next show that the Bayesian posterior mean estimator is optimal in an information theoretic
sense. Recall the classical Gauss-Markov theorem: We have

E(f — 6)? = Variance + Bias? (3.20)

For consistent estimators, the bias tends to zero, so among consistent estimators one wants to
minimise the variance. Gauss-Markov states the least squares estimator minimises variance among
all linear estimators. In parametric statistics, this is generalised by the Cramer-Rao lower bound,
and in infinite dimensions we can prove something similar at least asymptotically. Any estimation
algorithm (e.g. from machine learning or anywhere) must write down an estimator which is a
measurable function of the data observed. It will have a risk, and if its not silly it will also be
consistent. The next result says that it cannot have asymptotically lower variance than our posterior
mean Uy :

Theorem 3.14. Let 8y € H” be the ground truth. Then,

2
lim inf inf sup E (\/N Us; — U C) > E||U|? 3.21
ot e B (VG = ] iz @21

where U is from



We explain this big equation in words, inside out. The expectation is the risk for the estimator 0
when the data is generated by the perturbed ground truth u, SN and then we take the supremum

over all such permutations to get the worst case risk near 6, for . We then take the infimum over all
estimators @, i.e. minimise the worst case risk (‘minimax’). This is at least the norm of our limiting
field U from , and this lower bound is attained by our posterior mean estimator On because U
is precisely the limit of v/ N (ug — ug- ) and one can hence show convergence of the second moments.

Remark 3.15. Initially it seemed like a silly idea to try predict the system forward by first es-
timating the initial condition and then solving forwards (Why would I care about what happened
yesterday if I care about what happens tomorrow?), but it turns out that this method is sharp.
In summary, when you do data assimilation, you might aswell solve backwards and then forwards.
Although, this very much depends on the parabolic nature of the PDE, it might not be true for
other non-parabolic dissipative systems or time evolutions without smoothing. But equations of the
type we have considered are relevant in data assimilations.

Remark 3.16. We haven’t mentioned computation much. Recall that computing the posterior mean
is too hard, and instead one computes markov chains which approximate the posterior mean, but
we haven’t discussed how well they do that. Nickl+Wang (2024 JEMS) shows that under conditions
slightly weaker than invertibility of the Fisher information then posteriors in these models can be
computed by polynomial time algorithms, both in dimension and the number of samples. Hence one
can obtain the same convergence rate and lower bound of Uy, for such algorithms, e.g. UL sk
from Langevin. This isn’t that surprising given what we’ve seen so far. The posteriors which
seemed complicated at first are actually Gaussian, so essentially we’re just working with Gaussians
and everything is easy (though it actually turns out to be easier to prove this by not immediately
going to the Gaussian limit rather by doing a log concave approximation of the posterior by a
measure which satisfies a log-Sobolev inequality).
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