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1. Integral equations

We begin by seeing how PDEs arise from physics, which will motivate the
notion of a ‘weak solution’. Suppose charge is distributed in an insulated ball
Q1 C R? according to the known function f : Q — R. An engineer would find
the electric potential ¢ : 2 — R by solving the Poisson equation

Ap=—f onQ
=0 on 0f)

To a physicist, the classical laws are summarised as ‘the Lagrangian of the
system must be minimised’, i.e. ¢ minimises

J() = / L0, 2)dz

over all twice-differentiable 1) such that ¥» = 0 on 0f), where

L(w) = 5Vl - f6

is the Lagrangian given by kinetic energy minus potential energy (and is not
the subject of these notes). A necessary and sufficient condition for ¢ to be
a minimiser is J(¢ + ey) > J(¢) for all € # 0 and a fixed (but arbitrary)
v € C*°(Q) vanishing on the boundary. Thus,

1 1
[ 31968 + 5199 + 0.9y~ fo—efr = [ J1Vo - o

2
S [Irkse [vo-vi-e [ =0

Dividing by |e| # 0,

sign(e) <§/|V’V\2+/V¢'V7—f7) >0

Taking € — 0, we deduce for all v € C*°(2) vanishing on the boundary,

/Qw-vfy:/va

Rearranging,



Integrating by parts,

/Q ~Agy = /Q iy (1.1)

It follows that, necessarily, —A¢ = f almost everywhere. Though we have
not discussed sufficiency, it is not surprising that such a condition comes
out of an integral equation. The moral of the story is that the fundamental
equations in physics arise as integral equations, not PDEs. This suggests that
thinking about PDE’s in our current ‘classical’ sense might just be wrong.

2. Distributions

The physical problem in the previous section translates to condition involving
integration against an arbitrary function « in (1.1). The pointwise require-
ment, —A¢ = f a.e., arises as a result. The space of choices of « is referred
to as test functions for the problem. In this case we considered v € C'*°, and
often by density (e.g. in L?), this is equivalent taking any other C* space,
k > 0, as our test functions. However, in the general setting to be developed,
allowing = to range over a larger class of functions is a stronger requirement.
A typical choice of test functions is defined as follows:

Notation 2.1. Throughout, € is an open bounded subset in R?, unless stated
otherwise.

Definition 2.2. The space of test functions D(£2) is C2°(§2) with the follow-
ing topology: v, = 0 in D iff

(i) 3K C Q compact with supp(y,) C K for all n.
(ii) For any o € N¢ (9°7,) — 0 uniformly on K, where 0% := 97 ... 95"

Remark 2.3. When one speaks of a ‘test function’” without context, they
generally refer to an element of D(f2).

Definition 2.4. The space of distributions D'(€2) is the dual of D(Q2). For
p > 1, there is an embedding L” — D'(2) given by f — ¢ where ¢¢(v) =
[ f~, which makes sense by Holder’s inequality. Elements of D'(Q) are dis-
tributions.

Definition 2.5. If ¢ € D'(2) and ¢ = ¢ in D’ for some f € LP, p > 1, then
we say ¢ is represented by a function and often do not distinguish between

f and ¢.



Thus if we write the equation
—A¢p=finD (2.1)

for functions ¢ and f in some LP space, we mean,

/Q—Am:/gfv

for all v € D(§2). However, D’(€2) contains many distributions which are not
given by integration against an LP function.

Example 2.6. Consider 6 € D'(Q2) given by d(7) = 7(0). Indeed, ¢ is con-
tinuous (if v, — 0 in D, then 7,(0) — 0) and linear. However, one can
easily show that there is no p > 1 and f € L? such that §(y) = [ f~ for all
v € D(Q).

Notation 2.7. If X is a vector space with dual X', the action of X’ on X
is written

(f;z)x x = f(z)

for f € X’ and 2/ € X. We often omit the subscript when the context is
clear.

Remark 2.8. When X is a Hilbert space and f € X’ is represented by
ur € X (Riesz Representation Theorem), we have (f,z)x x = (us,z)x,
whence this notation is derived.

As it stands, (2.1) doesn’t make sense for every ¢ in D', as ¢ may not even
be represented by a function. Our next task is to define the derivative of an
element in D’. The way we do this follows a common blueprint in this field:
for f € C*(Q) and v € D(Q), we have

[ @unde == [ o

by integration by parts. The LHS makes sense for f € C*(€2), but the RHS
makes sense in a much larger space e.g. f € LP, p > 1. We can go even
further and write the previous display as

(To,5,7) = —(Ty,017)

Thus we define,
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Definition 2.9. If 7" € D'(Q2) then the distributional or weak derivative
o0;T € D'(Q) is defined by

<aiT7 ’Y> = _<T7 (9w>

for 1 <1 <d.
Remark 2.10.
e Equation (2.1) now has a meaning for all ¢ and f in D'(2).

e The previous discussion shows distributions derivatives align with our
usual notion of derivatives of functions i.e. 9;Ty = Tp,; when f € C*(Q).

2.1. Sobolev spaces

Although the general setting of distributions comes up time and time again,
a key tool in PDE theory is having the right spaces at hand. Sometimes, we
do want to treat distributions which are represented by functions specially.
The following spaces are of particular interest in that regard.

Definition 2.11. Let p > 1 and m € N. Suppose f € LP(Q2) and all
(Oaf)|aj<m are distributions represented by L? functions, where |a| := |a;| +
-+ 4+ |ag| < m. Then we say f belongs to the Sobolev space W™P(2), which
is a Banach space equipped with the norm

flwmo = > 110aflle

0<|ar|<m
We will typically use the following special case of Sobolev spaces:
Definition 2.12. The Sobolev Hilbert spaces are

H™(Q) := W™2(Q)

Example 2.13. The most common domain we deal with is Q = (0,1)<.
Solving over this domain is called a periodic boundary condition because
solutions extend to periodic functions on RY.



For ¢ € L*(€2), we can Fourier expand:

qgk = / p(x)e ™R dy ke Z°
Q
o172 = D lénl?
kezd
Moreover,

—

3z¢k — /gl(aiqb)e—%rikwdx

= / o(2mikie 2R dy (definition of weak derivative)
0
Thus, if 0;¢ € Lg,
10:0]72 = 47 > k7wl (2.2)
kezd

Moreover, (2.2) holds if 9;¢ is not assumed to be in L?, i.e. RHS finite implies
LHS finite, and the justification of this is left to the reader. We also have
that 0;¢ € L? implies ¢ € L?. Thus, generalising to higher orders, we can
now state an equivalent characterisation of H™((2).

Notation 2.14. Unless otherwise stated, Q = (0,1)4, i.e. we treat the case
of periodic boundary conditions.

Definition 2.15. (Periodic characterisation of H*) For s € R,

H*(Q) = {¢ €L’ ) k|| i > < oo}

kezd

In particular, this definition agrees with the previous definition when s is an
integer. The inner product is given by,

(@ V) e = > [k|* Gt

kezd

Theorem 2.16. Let 0 < s < t. Then
(i) H' Cc H?



(i) the inclusion map i : H* — H* is continuous

(iii) the inclusion map is compact

Proof. For (i) and (ii), note || - ||gs < || ||g¢. For (iii), let (¢,) be a sequence
in H with ||¢,||ge < 1. We are required to show (¢,) has a H5-convergent
subsequence. By Banach-Alaoglu Theorem, there is a subsequence converging
weakly to some ¢ € H'. Without loss of generality, we may assume ¢,, — ¢
weakly in H*. This implies the convergence of the Fourier coefficients: for any
k, ¢nr — ¢ as n — 00. Then for N € N fixed,

160 = Bll = > 1K1 |6ns — &l
kezd
= B Gns — P+ D k[ Gnk — xl
|k|<N k| >N
s - - 1 s|7 -
< N? Z |G — on|” + Z m\k\2 |Gn e — Okl
[k|<N |k|>N
. -~ - 1
< N? Z |Gne — Onl* + m“ﬁbn — 0%
<N

For N sufficiently large, the second term is arbitrarily small independently
of n, since ||¢, ||t < 1. For N fixed, the first term tends to zero as n — oc.
The conclusion follows. O

Theorem 2.17. (Sobolev Interpolation) Let a < b and s = (1 —60)a+6b
for 6 € (0,1). Then,
e < 11015 16l

1]

Proof. For k € Z4,
2517 |2 2017 12\ o7 2)°
=102 = (1k213)  (161502)
Applying Holder’s inequality with p™' =1 — 0 and ¢~! = 6,

1-6 0
» (z |k|2a|ak|2) (z |k|2b|ak|2)

keZd keZd
2(1—-60
= ||gl 17" |16l %,

9|




We state without proof the following results:

Theorem 2.18. (Sobolev L? embedding) Let 1 > 1 — 2 with p < oo.
p

Then there is a constant C' depending only on €2, s, p such that for all p € H?,
|9]| e < C||4]

Hs
In particular, H® C LP.

Theorem 2.19. (Sobolev C* embedding) Let k > 0 and s > k + g then
there is a constant C' depending only on €2, s, k such that for all ¢ € H®,

[6llcr < Cl4]
where [|@cr := 37, |0%¢ |- In particular, H* C C*.

HS

Remark 2.20. This holds for more general domains, but in this case we
haven’t defined H*(Q2) for s not an integer.

Example 2.21.
(i) Suppose d = 2. Then by interpolation,

1/2 1/2
Nl [ < [Jul[152 |l |12

Thus by embedding,

1/2 1/2
lJul[pa < Ol [} ||ul |14 (2.3)

(ii) Suppose d = 3. Then by embedding,

[lullze < Cllul]

and
|l < CMull /2
< 'l ull: (interpolation)
and

[lullLs < C"||ull /s

1/4 3/4
< C"[Jul 5 |ul |3 (2.4)
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Although these look like random inequalities now, we will use these
estimates a lot when considering the Navier Stokes equations. The dif-
ficulty of the study of Navier Stokes in d = 3 compared to d = 2 can be
summarised by the weight of the H' exponent in (2.4) being more than
n (2.3). One can show that in d = 3, the only dimensionally consistent
choice of exponents (with dimensionless constant) is that in (2.4), so
there is no hope of improving it.

Our method for finding simple estimates in Example 2.21 was

(i) get || - [lr < O] - |

HS
(i) get [| - |las < I+ [lzall - |l e

But (i) doesn’t work for p = oo. It turns out, if we ‘skip the middleman’; we
can get (ii):

Theorem 2.22. (Agmon) Let u € L? and 0 < a < d/2 < b such that
(1—-0)a+ 6b=d/2. Then,

[lull o < Cllul |57 Jul 5

Proof. Let u be the Fourier transform of u. By the Fourier inversion theorem,

lufl < C / (k)| dk
Rd

<o qamdk+c [ jak)|dk
|k|<R |k|>R

(L k) [ (14 k22

= C/ wk)|——=—+C w(k)|—mF—

wen TR T O ) TR

< Cllullge / (1+ |P) dk + ClJull o / (1+ kP
|k|<R \

k>R

where the last inequality comes from Cauchy-Schwarz. The remaining inte-
grals are spherically symmetric, and one can easily show they are finite and
that R can be chosen so that the two terms are equal. This yields the desired
result. O

Definition 2.23. The r-dimensional vector field Sobolev space is defined by
(H)" = {f € (LX(Q)" « [|fllm; < oo}
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for s € R>(, where

HS

1Ay =D Il
=1

Remark 2.24. This is the standard definition of a product of finitely many
normed spaces. There are many ways to choose an equivalent norm to the
above since all norms in R" are equivalent. Usually we drop the r in notation
since any result for H* will obviously generalise to (H®)".

Example 2.25. If u € H?® then Vu := (Oyu,...,0u) € (H®*)%
Theorem 2.26. (Poincare) Let u € H*(). Then,

|lu =l < Cl[Vul|L
where @ = [Q|7! [, u(x)dz and C' = 47* is an absolute constant.

Proof. We may without loss of generality assume u = 0 by subtracting a
constant from w. In particular, @y = 0.

0ullze = |0u, [

kezd

=) [2mik;t

kezd

=47 ) [kl

kezd

IVl = a7 kP )

kezd

> 47 ) | (U = 0)

kezd

Example 2.27. The Navier Stokes Equations in R? are

Oup, — VAU ~+ (u-V)ug + kp = fr, k=1,...,d
Vou=0
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where the velocity field v and scalar pressure p are unknown with periodic
boundary conditions, f is the known forcing term, and v is the known vi-
socsity constant. Note (u - V)ug = V - (uug), so integrating the equation we
have:

/ Oyug — VAU + V - (uuy,) + Oppdr = / frdx
Q Q

d__ =
. %Uk = fk:

d —
o=
dt /
where the many terms vanish in the second equality by the periodic boundary
condition (first applying the divergence theorem to the second and third
terms). Assuming the forces have average zero, @ is constant, and by choosing
the write coordinates we may assume it is zero, thus ||u||z2 < C||Vul|L:.

We often want to use the esimate ‘||u||p2 < C||Vul|z2’, specifically with-
out the u term appearing in Poincare’s inequality. Thus we define spaces of
average zero functions which will be key spaces in the future.

Remark 2.28. Defining the correct spaces in PDE theory is key. We started
with spaces of continuous functions in earlier study which are tricky to work
with, and in these notes we have discussed Sobolev spaces which are nicer
to work with, and we will continue defining refinements of these spaces until
we can solve the Navier Stokes equation over that space.

Definition 2.29. For a normed space X C L', define X = {u € X : 7 = 0}
with the same norm as X.

Remark 2.30. Shortly, we will only consider the dot-spaces, since we always
make this assumption in our treatment of the Navier Stokes equations.

Example 2.31. Poincare’s inequality says the norms || - |z and ||V - |12
are equivalent on H!. The latter is called the Dirichlet norm.

2.2. Fourier Series in D'(Q2)

Definition 2.32. For u € D'(Q) and k € Z4, the Fourier coefficient is

—27rik:-x>

ﬁk = <M, € D'.D
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Remark 2.33. We don’t say anything about convergence of ), . fie~ 2rike

Proposition 2.34. For p € D' and ¢ € D,
S = Iklr)
kezd

where * denotes complex conjugation.
Proof. ¢ =3 .cqa ggke””k‘x, SO.
(1, ¢)prp = Z (i, ake_mk'x)DgD = Z ()" (u continuous)
kGZd keZd

O

Definition 2.35. H~'(Q) := (H"')’, the normed space dual.

Remark 2.36. In general, one can define the negative Sobolev spaces in this
way, but we only need H 1.

Proposition 2.37. For y € H™!, there exists a unique i/ € D’ such that
(t: )1 = W, S)pp Vo ED

Proof. The statement is more complicated than the proof Since D c HY,
we have H=' € D', so i € D’ so under this inclusion 4/ = p is a choice. It is
unique because D is dense in H*. O

Proposition 2.38. Let u € H~!. Then

(i) Vo € H',
< H1H1 Zﬂk

k0

(ii)) We have
el = 1k| 217w
k#0
In particular, the RHS is finite. Conversely, every sequence (by)rz0 € R

with D7 o [k 7?[bk|* < oo corresponds to a p € H~' with fiy = by, for
all ki £ 0
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Proof. (i) follows from Proposition 2.37, Proposition 2.34, and density of
D in H'. For (ii), we follow a similar idea to the proof that (¢?) = (7 for

p~! + ¢! = 1. First observe
el = sap (i, @)1 .m
[l g1 =1
o S 0

< (Z |k|—2|ﬁk|2> -1 (Cauchy-Schwarz)

k0

and conversely, define

ON = Z|k| (1ix)*er € H

k<N
where e, () = e 2% Then
lowllin = D [K~*Ia)
|k|<N

and

) = S 12 = 1wl

k|<N
By definition,
(s o) < [l 111110
onlla < llpll—
Taking N — oo, we ded.uce D pkizo |k 21k [? < oo. Thus ¢ := 37, [k (7k)*

defines an element of H'. Applying p, we obtain ||ul|g-1 < 35, 0 [k 7?[f]?
as required. The last part of (ii) is straightforward. O

3. Time independent Stokes problem
We recall the Navier Stokes equations (NSE) in R¢:

Ou—vAu+ (u-Viu+Vp=f
V-u=0
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where u is the velocity field, v is the viscosity, p is the scalar pressure, and
f is the forcing term. The unknowns are u and p.

Suppose we are in a domain with length scale L, velocity scale U, pressure
scale P, and time scale T'= L/U. Then

Ou—vAu+ (u-V)u+Vp=f

Looking at the scales of these terms:

U U U P
B - L F
v ‘e YT1
Dividing by U?/L,
v P FL
1

A T R
The Reynolds number Re = UL /v describes the behaviour of the flow. When
Re >> 1, the —vAu term can be neglected. We study the case Re << 1

where the dimensionless terms can be neglected. In this case, we have the
Stokes problem:

—vAu+Vp=f
V-u=0

3.1. The Right Spaces

Define the function spaces on 2,

T :={¢: ¢ is a polynomial of trigonometric functions}
Vi={peT?: V- -¢=0}

H:={pe (L) V. ¢=0}

Vi={pe(H):V. ¢=0}

where the product spaces are obtained via Definition 2.23, and define the
norms

o1l = [[0]] .2
I¢llv = IVl
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Remark 3.1.
(i) || - |lv is an equivalent norm to || - ||g1 by Poincare’s inequality.
(ii) V is dense in V and H.

(iii) We will often use the following pattern to prove results about H and
V': Prove the result for V, which is dense. Then extend the result to the
whole space. Since V is a very nice spacec (e.g. C* functions), this will
be very handy.

(iv) We have V — H — H' — V'  thus solving a PDE in V is a weaker
requirement than solving it over H.

Definition 3.2.
e We say u € V' is a weak solution to the Stokes problem if
—vAu+Vp=f iV
for some pressure p € L2 and fev.
e We say u € H' is a strong solution to the Stokes problem if
—vAu+Vp=f inH
for some pressure p € H' and feH.

H is a closed subspace of (L2)% and V is a closed subspace of (H')?, thus they
are Hilbert spaces. In the case of V, the H' inner product is not inherited
since we use a different (but equivalent norm). Thus,

Definition 3.3. The inner product on V'is ((¢,v)) := [, V¢- Vi for ¢, ¢ €
V.

Notation 3.4. For f,g € L?, (f,9) := (f, g) 12, i.e. we use round brackets to
refer to L?.

Our plan to solve the Stokes problem is as follows. We currently have un-
knowns u and p in the same equation. We will decouple the problem into
two equations, one for u and one for p, then solve them separately. Our next
theorem is what will allow us to do exactly that.

Theorem 3.5. (Helmholtz Decomposition for H~') Let v € (H')%
Then there exists a unique w € (H~1)? with V-w = 0 and p € L2 such that

v=w+Vp (3.1)



16

Proof. We know elements of H~! are uniquely determined by their Fourier
coefficients (Proposition 2.34), so we’ll determine what the coefficients of w
and p must be, then show the series converge.

U = Wy + 1kpk, k#0 (3.2)
Taking the Euclidean dot product in R¢,
Uy, - ik = Wy, - ik — |k|*Dk (3.3)
Since V - w = 0, we have
ik - wp =0, Vk #0 (3.4)
Combining (3.3) and (3.4),

Ok - ik = —|k|* D

Uik
Putting this back into (3.2), we obtain

’L/&k :i}\k —ZkW

Thus p and w are uniquely determined, provided we show they exist in the
correct spaces. Recall

veEH'! «+— Z k| 2|0k > < o0

kA0
pEL? < > |pl> <00, po=0
kA0
Indeed,
vy, - ik [0, |2 ik |?
2T | S22 R
k0 k0
< 0
| @y |?

and w e H! «— Z,#O TE < 0, wWo = 0 is similarly shown. [



17

Remark 3.6.
(i) w L Vpin H' so the decomposition is orthogonal.
(i) (H Y = (H;Y @ (H Y where (H; 1) = {v : Vv = 0} and

g X g
(H; ") ={Vp:peL?}

(iii) The projection P, : (H1)? — (H;1)4is called the Helmholtz projection.
We now state the corresponding Helmholtz decomposition theorems for other
spaces. The proofs are very similar to the H~! case because in each case,
Fourier coefficients determine the distribution. One then does a similar com-
putation to show the distributions obtained lie in the correct spaces, which
we omit.

Theorem 3.7. (Helmholtz for L?) Let v € (L?)% Then there exists a
unique w € H and p € H' such that

v=w+Vp
with (w, Vp)m = 0.

Notation 3.8. We now omit the dot on in notation, so all function spaces
are average zero unless otherwise stated, e.g. D = D and L? = L2, Only
average zero functions will be of use to us, but in most cases the results we
give have non-average zero analogues (e.g. subtract the average).

Theorem 3.9. (Helmholtz for D’) Let u € (D')%. Then there exists a
unique w € (D)%, p € D' such that

pw=w+Vp
with V-w = 0.

Theorem 3.10. (Helmholtz for D) Let ¢ € (D)% Then there exists a
unique w € (D)%, p € D such that

¢p=w+Vp

Proof. We deduce this from L? Helmholtz. Since ¢ € L?, we have ¢ = w+Vp
with w € V and p € H'. It suffices to show w,p € D. Since w € H' and
¢ € H', we have Vp € H'. Taking a derivative,

8j<;5 = 8jw + 8va
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Let 9;¢ = w' + Vp' be the L*-Helmholtz decomposition of 9;¢. Then
(Ojw —w")+V(9;p—p)=0
Therefore, by uniqueness of L? Helmholtz, for some ¢ € H',

djw —w' = Vq
0=Aq
0= ’k|2a\k7 k€ Zd

Thus ¢ = 0, so w’ = d;w and p’ = 9;p. In particular, w € H%. We now repeat
the argument to get Vp € H?, and inductively this continues. O]

Theorem 3.11. (de Rham) For [ € (D)4 and ¢ € (D), let I; and ¢
denote the projections onto the ith component in the image. Define (I, ¢), :=

2?21 (l;, ¢i) pr,p- Then,
(I,p)g=0 Vo eV <= [=Vp for some p e D’

Proof.
“«<” if | = Vp then

(Vp,¢)a=—p,V-9)pp (integration by parts)
=0 (9 eV)

“ =7 Each [; € D has a Fourier expansion, thus we obtain a Fourier-like

expansion of [,
] = Z lk€727rik-x
k0

where each Tk € C?% Let ¢ € V, then V - ¢ = 0 so taking Fourier coefficients,

ik oy =0 (VE £ 0)
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We also have
d

0=> {;,0))pp

J=1

d

j=1 k#0
=S "o (3.5)
k#£0

Now we choose ¢ in a clever way. Let ¢ € C? and consider ¢ = ce 2™5% for
a fixed K # 0. Then

peEY = V.ce kT =
<~ K-c=0 (Fourier coefficients)
and for such ¢, by (3.5),
0= ZK - C
Thus ZAK 1 K+ (in RY) so ZAK is parallel to K, i.e. ZAK = pur K for all K # 0.
But for any p € D/,
Vpi = iKpx, K #0

so | = Vp where pp = puy for all k. Lastly one checks there indeed exists

Our next result is an application of this theorem. We show that every u €
V' extends to an element of D’. Note that V' ¢ D and D ¢ V, so it is
more accurate to say p|pny extends to an element on D’. We note also that
DNV ={¢peD:V-¢p=0}=:D,.

Corollary 3.12. Let u € V'. Then there exists ' € (D')¢ such that

(', &) (D, pya = (1, Dyvrv (3.6)
for all ¢ € D,. Moreover p’ is unique up to a gradient Vp, for some p € D’.

Proof. By Helmholtz for D, we have the orthogonal decomposition (D)% =

D, & D,, where D, := {Vp:p € D}. We can define zo on D, by (3.6) and
W (dy +d,) = po(d,). Since pg € (D,)’, we have ' € (D)<

If (¢/,¢) =0 for all p € D, DV, then by de Rham, ' = Vp. ]
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3.2. Existence and Uniqueness

Theorem 3.13. The following problem has a unique solution (u, p):

—vAu+Vp=f in H*!
feH Y v>0 fixed
uw€V,pe L? unknown

Moreover, ||ully = %HPO‘fHH_l < %HfHH—l

Proof. Let f € H™', then f = f, + Vq with f, € H! and ¢ € L? by
Helmholtz. So,
—vAu+ Vp = f,+Vq

Note that V - Au = A(V - u) = 0, thus by uniqueness of Helmholtz decom-
position,

—vAu = f,
p=q
Taking Fourier coefficients,

—v|k[*Tx = oy

N -1 -

Up = Wfak

which uniquely determines v and
ull§ = > k[

L~ Vol

T2 Z | k|2

k0

1
= ol

1
lully < =[[f]l—
14

the last inequality coming from the fact an orthogonal projection can only
decrease norm. O
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Remark 3.14. When f € H~! we showed the Stokes equation holds in
H~1. If we assumed f € L?, the equality of Fourier series again implies the
equation holds in L?. Moreover, repeating the method of estimating ||ul|v,
we obtain |[u||g2 = 2||f,||r2. More generally, ||ul|gs = 2| fs||ms—2. We see
that the solution is more regular than the input data and this phenomenon
is known as elliptic reqularity.

Example 3.15. We won’t always be able to find the Fourier coefficients of
the solution to a PDE (hence deduce uniqueness). Here is another way to
deduce uniqueness. Suppose u;, p;, ¢ = 1,2 are solutions. Then u = u; —uy €
V and p = p; — ps € L? solve

—vAu+Vp=20

in H~!. By Helmholtz decomposition, Vp = 0 and Au = 0. We need u = 0.
Let ¢ € V, then

O = <Au, ¢>H—1,H1
= <VU, V¢>H717H1

by definition of the derivative. But Vu € L?, so

o:/ﬂw-w

Since V is dense in V', we can take a sequence ¢,, — ¢ in V', thus V¢, — Vo

in L?. Therefore
0= / |Vw|?
Q

3.3. Spectral Theory for the Solution Operator

and the conclusion follows.

Suppose we have the Stokes problem

—Au+Vp=f inH
feH fixed
u€V,p€ L? unknown
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which has the stronger assumption that f € H and v = 1. Then by Helmholtz
decomposition, p = 0 (as f = f,). Thus the problem is equivalent to

—Au=f inH
feH fixed

u €V unknown
Theorem 3.13 shows the solution map

S:H— H?
f—u

is well defined and in light of Remark 3.14, an isometry (||u||zz = ||f||z2)-
In this section, we prove several properties of the operator S.

Proposition 3.16. S: H — H? is onto.
Proof. Let v € H2, then seek h € H such that
—Av=nh
But Av € H so there is nothing to do. m

We can also view S asamap S: H — H.

Proposition 3.17. S : H — H is self adjoint.

Proof. Let f,g € L?.

(5(f),9) = (v, 9) (S(f) = u)
= (u, =Vv) (v=15(9))
= (Vu, Vv) (IBP)
= (—Au,v) (IBP)
= (f,5(9))

[l

Proposition 3.18. S : H — H is positive definite
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Proof.

with equality iff Vu =0 i.e. u = 0. O]

Corollary 3.19. There is an orthonormal basis (¢r) C H of eigenfunctions
of S: H— H,

S(or) = prdr

with g > ps > -+ >0and px — 0 as k — oo.

Proof. Spectral Theorem for Compact Self-Adjoint operators on a Hilbert
space. 0

Remark 3.20.

e Although S : H — H? is an isometry, S : H — H is not, so indeed the
eigenvalues are not all norm 1. Going forwards, we consider S : H — H
unless stated otherwise.

e We have S¢y, = ¢y, and we know S maps into HZ, thus ¢, € H2. In

other words, the eigenfunctions are more regular than general elements
of H.

Lemma 3.21. Let u € H?, v € V. Then
(—Au,v) = (Vu, Vv)

Proof. This is integration by parts, which we have used already, but we give
a justification here. Suppose v € V, then

<_Au7 (b) = <_AU’7 ¢>D’,D
= (Vu,Vo)p,p (definition)
= (Vu, Vo)

The last equality is because Vu is represented by a function. For any v € V,
we can take v, € V with v, — v in V, then taking limits we are done.

]
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Definition 3.22. Define the Stokes operator A := S~!: H, — H and its
domain D(A) = H2.
Remark 3.23. This looks complicated, but recall A = —A.

Proposition 3.24. The Stokes operator A can be extended to a map on all
of V, A: V = V' and B
[Aully: = [[ullv

Proof. By Lemma 3.21, for all u € D(A), v € V,

(Au, v) = ((u,v))

Au is an element of V' and represented by an L? function (because u € H2),
so the L*-action is the V'-action, i.e. (Au,v) = (Au,v)y . Talking about
L2-action of Au only makes sense for u € H> = D(A), but the RHS makes
sense for all w € V. Thus we define

A: V=V
(Au)(v) = ((u,v))

Then Alpay = A and by Cauchy-Schwarz on V, [|Aully: < [u|ly. But
[|(Auw)(u)[lv = [lull?, so in fact ||Aully = [Jul]v.

]

Notation 3.25. We drop the overline in A in notation and consider A itself
as a map from V to V.

The eigenfunctions of A are (¢y), the eigenfunctions of S. The corresponding
eigenvalues are \, := u,;l, satisfying A\; < Ay < --- — oo. A well known
result that we won’t use or prove quantifies this rate:

Theorem 3.26. (Weyl asymptotics) \; ~ k?/¢

Definition 3.27. For a > 0, A% is defined on the eigenfunction basis (¢y),
by
A%r, = Ny b

We define the domains or spectral Sobolev spaces,

DAY :={ueD :V-u=0, |lulsa <o}



25

where
2

(o]
Jul B =D A, éx) .o
k=1

Remark 3.28. Let o > 0. Then D(A%*) C H so for u € D(A%), ||u||ae =
Sore AR (u, k) |* = ||A%ul|z2, as usual making the canonical identification
between a distribution in H and the L? function representing it. Moreover
D(A®) is a Hilbert space with inner product (f, g) ae = Y pey A2*(f, ¢1) (g, r)*

Example 3.29. We show D(A') = H2, thus consistent with our previous
definition, i.e.

weH; <= uweH, > N|u,¢)f <oo
1
“=” If u € H?, then u € H and

1Aullf = 1Y (w, o)Al 72 = Y Al (u, n) P < o0
1 1

“<” This is a delicate situation. || - ||z is defined in terms of the Fourier
coefficients, but we have an eigenfunction expansion, and going between the
two could be messy. It’s better to use what we know: u € H. Let uy := (u, ¢y),
then

D Akl = 11D Murul |2
K K
=1 ) Alurdy)l| 2 (3.7)
K

< 00

We cannot simply take the A out because we don’t know >, ug¢y, € H2 yet.
The idea is to show —Au = ), A(ug¢y) directly. We know the RHS is in
L? by the above display, so we're done (after, ||Aul||z2 = ||u||g2 by writing
both down in terms of Fourier coefficients and the LHS is finite). Consider



26

the action on a test function v € D.

> A(urdr). Voo = Y _(A(urr). 7)o
k - Zk:(Aukgbk, v)  (Aupgy, represented by L?)
_ i(umk, Ay) (A self adjoint)
_ <kz U, —AY) (reversing steps)
:

Thus Y, A(urér) = —Au in D', therefore —Au is represented by an L*-
function, i.e. —Au € L2

The reader is encouraged to think about why the above method doesn’t
generalise easily to non-integer powers of A. However, the generalisation is
true.

Definition 3.30. On a space X, the (possibly infinite) norms || - ||, || - ||" :
X — [0, 00] are said to be equivalent if there exist constants ¢, ¢’ such that
for all u € X,

cllul] < [lull” < |Jull

Remark 3.31. This implies any convergent sequence in || - || is convergent
in || - || and vice versa, thus the topologies are the same.
Proposition 3.32. Let o > 0, then the norms || - ||4= and || - ||g2 are
equivalent on H. In particular,

D(A%) = H>*

Proof. Statements of this kind are difficult to prove on general domains. On
the torus the eigenfunctions of A are simply the exponentials, e, = e~27*=
for k € Z% all along. The eigenvalues are \, = |k|?, thus this result is trivial
by putting these into the definitions of the norms (Do it!). O

4. Steady State NSE

The steady state NSE is given by the equation in H~1:
—vAu+ (u-V)u+Vp=f (4.1)
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for f € H™', v > 0 given, u € V, p € L? to be determined, and d = 3. We
don’t know yet whether this equation makes sense, since (u - V)u may not
be in H~!. We now justify this in R?.

Notation 4.1. For a distribution w, write |u| := ||u||z2 and ||u|| :== ||u||v ==
|IVu||zz whenever it makes sense.

Proposition 4.2. Let v,u € (H')3. Then
(i) (u-V)v e LS/
(i) [/~ V)vllos < Clul?|luV2]v]
(i) [I(u- V)ollg-2 < C'Jul2[ful]"/?]|v]
for some absolute constants C, C".
Proof. The appearance of 6/5 seems mysterious so we first see where that

comes in. The juice of this proposition lies in (iii), since it tells us (u-V)v €
H~" and also a bound on the norm. Let w € H*, then

(- V)0,0) o] = ‘ / <u-v>v.w'
< [1w-9ellul

By Sobolev embedding theorem, we know H' < L5 in d = 3 (we will use
this fact again and again), thus ||w||e < C|lw||g and so we apply Holder
with p = 1/6 to get
[((w- Vv, w)g-1,m] < Cll(u- V)| gs/s||wl|m
[(u-V)vlg— < Cll(u- V)oll s
We now understand why bounding this quantity is desirable. It remains to

show (ii).

Fori=1,2,3, [(u-V)v]; = u-Vu; so pointwise |(u-Vv)| < |ul|Vv| by Cauchy
Schwarz in R®. Thus,

/|(u-V)v|6/5dx§/|u|6/5|Vv|6/5dx

<l 32 v0) 35 (Holder, p = 5/2)
(- V)l o < ullzs | Vo2



28

By Sobolev embedding theorem, H'/? < L? in d = 3 so ||lu||zs < C||ul|z1/2.

Moreover by the Sobolev interpolation inequality ||u||gi2 < |u|/?||ul|*/2.
Altogether,

- V)ollos < Clu2[ful] /20|
and we're done. =

Remark 4.3. Although we have spelled out the details in the proof of the
last proposition, usage of Sobolev embedding and interpolation will be bread
and butter going forwards.

To solve (4.1) we employ the same decoupling strategy. Since each term is in
H=', we can apply the Helmholtz projection to get

vAu+ Py(u-V)u=f,
VP = f g
and so p is easily found and the challenge lies in finding u. Thus we seek to

solve the equation
vAu+ B(u,u) = f in V'’ (4.2)

where A = —A is the Stokes operator and B : V x V — V' by B(u,v) :=
P,[(u-V)v], f € V' is arbitrary, and u € V' to be determined. The B term
is the non-linearity in the equation.

Proposition 4.4. For u,v,w €V,

) 1/2),,1(1/2

1B (w, v)[lv: < Clul>[ul[[v]]
(i)
<B(U, U)a w)V’,V = —<B(U, U)), U>V’,V
In particular, (B(u,v),v)yy =0
(iil) (B(u,v),w)yry = [(u-V)v-w
(iv) 1B(w,0)]| g2 < Cllulll|o]] o2

Proof. (i) is a restatement of Proposition 4.2 (iii) after applying a projection.
For (ii), first consider u, v, w € V. We first show that B(u, v) is given by what
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we expect (i.e. the P, doesn’t cause issues). Indeed,

/(u-V)v-w (u-V)v,w)

=
((u-V)v, P,w) (V-w=0)
= (Py(u-V)v,w)

(B(u, v), w)

Since B(u,v) is represented by a L? function (u,v € V), we conclude

(B(u,v), w)yy = /(U~V)v W

Now,

/(u -V)v-w= / Z u; (0jv;)w;

1<i4,j<d
1<i,j<d
1<i4,j<d

:—/(u-V)w-v

and so we have the result for u,v,w € V.

Extending this to u, v, w € V requires some standard labour. We note that if
Up, Up, W, €V converge to u,v,w in V respectively, then by Proposition 4.2

(iii),
lim/(un-V)Un~wn:/(u-V)U-w
and (B(un, vy), wy)vrv — (B(u,v), w)yy by (i). Thus we have (iii),

(B(u,v), w)yy = /(u -V)v-w

Moreover for the same reason,

lirxln/(un-V)wn~vn:/(u-V)w~v



30

Thus
<B<u7 U)7 w>V’,V = —<B(U, w); U)V’,V

Lastly for (iv),
I/(u - V)v - w| < lull e[| Vol| s [w]

so done after applying Sobolev L3 embedding. m

Remark 4.5. (ii) is useful because it allows us to bound (B(u,v), w) without
controlling the derivatives of v. (iv) tells us when B(u,v) is in L?, and the
condition v € H?? is slightly stronger than what you might guess (e.g.
velV).

4.1. Existence of weak solutions

To solve (4.2) we do ‘formal manipulations’ (e.g. swapping derivatives and
limits) to arrive at a solution, then afterwards justify what we found actually
solves the original equation. Recall (¢y) is an eigenbasis of A and let u =

> hey WPk, f = D202 frdr, then (4.2) is
vA (Z ak¢k> + B (Z ak¢k, Z ak¢k> = Z fk¢k
1 1 1 1

Swapping sums,

o0

Z VALap Oy + Z g B(g, o) = Z frdn
k,m 1

1

By linear independence of the (¢y),

U@y, + Z @am (B(P1, Om), Pn)viv = fn, foralln (4.3)

I,m=1

This is an infinite system of quadratic equations for the (a,). Solving this
head-on would be difficult so we use a technique called Galerkin approzima-
tion. We solve the finite system

N
V)\nan + Z alam<B(¢la ¢m)¢n>V’,V = fna for n S N (44)

I,m=1
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or, at least show solutions exist, and further show that they converge to the
solutions of (4.3) as N — oo. The following lemma will tell us solutions to
the finite system exist, and our next task will be to set the scene so this
lemma can be applied.

Lemma 4.6. Let Dy be a closed ball in RY and ¢ : D — R continuous
and for all v € 0Dp,

(9(v),v)ry <0
Then there exists a v* € Dy such that g(v*) = 0.

Proof. By scaling, we can assume R = 1. Suppose g # 0 and consider F'(v) =

%. By Brouwer fixed point theorem, F' has a fixed point, i.e. F(w) = w
R
for some w. Thus ||w||gy = 1 but
1
0< <F(U)>,U)>RN = —<g<w)>w>RN <0
19 (w)|lr
a contadiction. ]

We use a technique called ‘a-priori estimates’, we assume a solution of (4.4)
exists and show it must have certain properties. In particular, bound the
norm. Let uy = Y.V a,¢, be a solution of (4.4), where a,, = a,(N). Then
uy satisfies

UAUN+PNB(UN,UN) = PNf (45)

where Py denotes the L2-projection onto (¢y)Y, noting that A commutes
with Py. Considering the action on uy,

v((un,un)) + (B(un,un), Pyun)v,yv = (f, Pnun)v: v
v((un,un)) + (Bun, un), un) = (f, un)

By Proposition 4.4, the second term vanishes. Thus,

1
Jun| < ;||f||v' =: Ry

Thus the solutions to of all the Galerkin systems (i.e. for any N) are contained
in a ball in V. This already tells us uy has a weakly convergent subsequence
provided solutions exist, and this will be important later. We now show
solutions indeed exist. Applying (vA)™! to (4.5),

un + (VA)ileBCLLN,uN) — (VA)ilef =0
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and define

H, = span(¢1,...,¢n)

g HN — HN

g(v) = (VA Pyf — (vA)" PxB(v,v) —v
We seek v* with g(v*) = 0.
Claim ((g(w),w)) < 0 when ||w|| = 2R;.

Proof.
, 1 1
<Ag(w)’ w>V/7V = —”UJ” + ;(B(wa w): w) +;<PNf7 ’lU>
~—_— ——
=0
5 1
= —llwl”+ —{Pvf,w)
1
< —4Rj + lFllve (2R1)
= 2R <0
We recall (Av,v)v v = ((g(w),w)) and the claim is proven. O

Thus by Lemma 4.6 (noting all norms in finite dimensions are equivalent),
there exists v* with g(v*) = 0 and moreover the solution uy satisfies ||uy|| <
2R;. We summarise the results of this section so far with the following the-
orem:

Theorem 4.7. The Galerkin approximation system (4.5) has a solution uy
for every N with |luy|| < 2R; and there is a subsequence uy, such that

uy, — u in V weakly
uy, — u in H strongly

for some u € V.

Proof. The first assertion is what we already showed. The subsequence is
obtained by Banach-Alaoglu and the compact embedding V' — H. O

Theorem 4.8. The 3D steady state NSE (4.2) has a solution in V' given by
u € V, the limit in Theorem 4.7.
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Proof. Without loss of generality, relabel the sequence uy so that uy — u
weakly in V' and strongly in H. It suffices to show for every k,

v(Au, dp)vr v + (B(u,u), dr)vev = (f, de)viv (4.6)
We have
v(Aun, o)y v + (PnB(un,un), op)viv = (Pnf, dr)vry
v((un, ¢x)) + (Blun,un), Pnor) = (f, Pn¢r)

so taking N large enough (N > k),
v((un, ¢x)) + (Blun, un), dr) = (f, ¢x)

Since uy — u weakly in V', we have ((uy,¢r)) — ((u, ¢x)). To establish
(4.6), it remains to show (B(uy,un), pr) — (B(u,u), ¢r). Dealing with this
non-linearity is our main obstruction.

Claim [(uy - V)uygr = [(u-V)ugy as N — oo

‘/(UN'VUN —u - Vu)py

< ‘ [t = Vunen| + ‘ [ V) - wn

< Juw =l Vsl dell s + lull 22 ¥ (un — w)]lbell e

< (Cllux — ull sl | + Clhull g ellun — ul) ez

(s =l uy — a2l + ]l =l Jull) Cllell oo
Jun = "2 (s =l sl + /) Cll el s

-~

TV
—0 bounded by Theorem 4.7

<
<

]

Remark 4.9. This section reflects a common proof pattern. Come up with
approximate solutions which one would expect converge to the real solution,
then show they indeed do. The difficult in the latter lies in dealing with the
non-linear terms.

4.2. Existence of strong solutions

The steady state NSE in L? is given by
—vAu+ (u-Vu+Vp=f inL?
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for f € L? known, u € D(A) = H? to be determined, and d = 3. Using
Helmholtz in L? we can carry out the usual decoupling and obtain,

vAu+ B(u,u) = f in H (4.7)

for f € H.

Remark 4.10. For (4.7) to make sense, one expects each term to be in H,
and indeed this is true as follows. Since u € D(A), we have Au € H. The
non-linear term B(u, u) is more subtle. We recall that H? C C by the Sobolev
embedding theorem with d = 3, so in particular v € L*. Moreover,

/ (- V)uf? < / 2 [Vuf? < Jlul2, | Vull2: < oo

and so B(u,u) € H.
Equation (4.7) is equivalent to
v(Au, ¢p) + (B(u, w), ¢x) = (f, dx)

for all k. From Theorem 4.8, we have a u € V such that

v(Au, dp)vr v + (B(u,u), ¢r)vev = (f, de)viv

and in light of Remark 4.10, if u € D(A), then Au, B(u,u) € H so the V'
action is, by definition, given by the L? inner product and we're done. Thus
there is only one thing to do:

Proposition 4.11. The uy are uniformly bounded in D(A). Consequently,
u € D(A), where u is the limit from Theorem 4.8.

Proof. We carry out the Galerkin method again, using the uy € Hy =
span(¢y )Y obtained in Theorem 4.7 satisfying

l/AuN + PNB<UN,UN) == PNf (48)

We recall Theorem 4.8 which states ||uy|| < 2R; where the constant Ry
depends only on f and v. Since uy € Hy C D(A), we can take the inner
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product of (4.8) with Auy,
lvAun|® + (PyB(un, uy), Auyn) = (Py f, Auy)
|V"4UN|2 + (B(UN7UN)>PNAUN) = (f7PNAUN)
lvAun|® + (B(un, un), Aux) = (f, Auy)
VQ‘AU,NP < |f||AUN’ + ‘/(UN : V)UN . AUN
< [fllAun| + [[un|| o[ Vun || zs | Aun|
< [fl|Auy| + Cllun || Vuy ||| Vuy|"?| Auy|
Dividing by |Auy|,
V| Auy| < |f| + Cllun 2| Vuy ||

Note that [|Vo]|? = 320 kP IVoe? = S 0> = [[v]l g2 and recall
that the H2-norm is equivalent to the A-norm (Proposition 3.32), thus

VA Aun| < [f| 4 C'llun |2 Aun|'?
< [f]+ C'(2R)*?| Auy |
We see this inequality can only hold true if Auy is bounded independently

of N, since the quadratic v?2? — C'(2R;)*?x — | f| is eventually positive. In
particular,

1
|Auy|/? < 52 (C,@Rl)S/Z + \/02<QR1)3 + 4V2|f|2>

The last assertion in the statement follows from Banach-Alaoglu and com-
paring Fourier coefficients of the limits. O]

Remark 4.12. This ‘quadratic trick’ is good to notice, but it wont suffice
later and we’ll upgrade it to a much more flexible technique called ‘Young’s
inequality’.

4.3. Uniqueness of weak solutions

Theorem 4.13. The solution to the steady state NSE (4.2) is unique for f €

V' fixed provided 1/)\}/ > > 2CR,, where C'is the constant from Proposition
4.2 (ii).



36
Proof. Suppose u and v solve (4.2) and w = u — v. Then
vAw + B(u,w) + B(w,u) — B(w,w) =0 in V'
Acting on w,

v(vAw, w)y v + 0+ (B(w,u),w)y vy —0=0
vl|wl* = —(B(w, u), w)

vlwl® < Clwl "2 lwl"ull]|w]

where the last inequality comes from Proposition 4.4. By Proposition 3.32,
forall Yy € V,

ll? =D 1, )P A
1

> A\ [y
Thus,
vlwl* < 7 llulllwl?
Al
C(2Ry)
< SO )
Al
Hence w =0 or 1/)\1/2 < C(2Ry). O

4.4. Weak solutions are strong solutions
Let u € V' be a solution to (4.2), i.e.
vAu+ B(u,u)=f  in V'
Remark 4.14. The assumption v € V' could be seen as modest since we

exhibited a solution which isin V', and in the previous section gave a condition
for this solution to be unique.

In this section we will show, under the assumption f € H, we have

vAu+ B(u,u) = f in H
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i.e. weak solutions are strong solutions. We recall from Section 4.2 that this
follows if u € D(A). Thus, our approach is to show that any weak solution
lies in D(A). We do this in two steps, first showing u € D(A%*), then using
that to show u € D(A).

Remark 4.15. The assumption f € H is clearly necessary.

Let u be an arbitrary weak solution and define uy = S0, (u, ¢1) ¢y (not the
Galerkin approxmation!).

Lemma 4.16. The norms |[uy || p(4s/4) are uniformly bounded. In particular,

u € D(A%Y).

Proof. Note that given the first assertion, the second follows easily by ap-
plying Banach-Alaoglu and comparing Fourier coefficients of the limit and w.
For the first assertion, observe uy satisfies

vAuy + PyB(u,u) = Py f
Since the uy are smooth, we can take the action with A2,
(vAuy, Al/QUN) + (B(u, u), Al/QUN)1 = (/. Al/QUN)

noting the projections are self adjoint, commute with powers of A, and
Pyuy = uy. Since AY* (or any power of A) is self adjoint, we have

V(A uy, A¥uy) < —(Blu,u), Auy) + |f|A2un] (4.9)
Observe
(Bl ), AV2uy) | = ‘ [ 420
< ull o | Vuul[| APy | s (Holder)
< ClulP||[ AV uy | s

By Sobolev embedding ||-||zs < C'||-||1/2, and by Proposition 3.32, the A4
norm and ||-|| 12 norm are equal. Thus ||-||zz < C'||]| 41/4

|(B(u, u), A"?uy)| < C"[[ull*|A* tux|

= C[ulllunllpeasrsy

!Technically, B(u,u) is not necessarily in L? (yet!), so having it in an L? inner product
doesn’t make perfect sense. However, we're effectively working in RN here, so there are no
issues.
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Into (4.9),

v| A un P < C"lulllun | peasrs) + [ £ A un]
Recall |[AY2uy| = ||luy|| < 2Ry, thus

vlunlpoassy < C"llullllunllpassy + [ f1(2R:1)

We now have a uniform estimate on [|uy||p(4s/4) by the quadratic trick; the
polynomial vz? — C"||ul|z — | f|(2R;) is positive for z sufficiently large, thus
|un || pas/ay < K for some constant K = K(C”, |f[, Ry, v). O

Proposition 4.17. The norms ||uy|| p(a) are uniformly bounded. In partic-
ular, u € D(A) and u solves (4.7) in H.

Proof. We again note that the second claim follows from the first using a
standard application of Banach-Alaoglu and the discussion at the beginning
of the section. We have

<VAU,AUN>V’,V + (B(u, u), AUN>V/,V = (f, AUN)V',V
v|Aun|? + (B(u,u), Auy)vrv = (f, Auy)

_<B(u’u)7AuN> + |f||AuN|

[ull s | Vul | Aun| + [ f]| Aun]
< Ollul[l[Vull g2 [Aun| + | [ Auy]|
< CQ2Ry)||ull ga/2|Aun| + | f]| Aun]|
< C(2R1)K|Auy| + [ f[|Aun|

v|Auy| < 20K R; + |f|

v|Auy|? <
<

Thus ||uy||p(ay is uniformly bounded. O

5. Time dependent Stokes problem
We consider (as always, in d = 3),
& yAu+Vp=f
V-u=0
u(z,0) =up(x) € H
f € H known, independent of ¢

(5.1)



39

We think of u(t) being a spatial distribution (or function of x) for every ¢, i.e.
u(t) € D'(Q2) acts on spatial test functions ¢(z) € D(2) for every ¢. Because
of this, we write Ccll—? or 1 to denote differentiation with respect to time, rather
than a partial derivative.

Remark 5.1.

e We will define exactly what we mean by ‘differentiation with respect
to time’ shortly. We will not use a limit definition as this allows for
monstrosities such as the Cantor function. What we would like is that
the Fundamental Theorem of Calculus holds, but we are yet to see how
to integrate u (which takes values in a Banach space).

e Setting the scene in this way makes every value of ¢t important, we
haven’t loosened anything to ‘almost everywhere’. Specifically, the ini-
tial condition u(x,0) = wup(x) is enforced despite being on a measure
zero set.

5.1. Bochner integration

Notation 5.2. In this section (F, &, 1) denotes a measure space.

Definition 5.3. Let X be a Banach space with its Borel o-algebra and
f+ E — X measurable.

e If f is a simple function, i.e. f(x) =7 a;lg, (), where (a;) € X and
E; € &€, then define its Bochner integral

/E () =S au(E;)

o We say f is (Bochner) integrable if there exist simple functions (f)
such that

[E 1F(@) — ful@) xdp(e) =0 as k — oo

where this integral is taken in the classical sense, and in this case define
its Bochner integral

[ #@yinte) = Jim [ fe)into)
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Proposition 5.4. Let X be a separable Banach space and f : £ — X
measurable. Then,

f integrable <= /Hf(a:)HXd,u < 00
B

Motivated by this result we define,
Definition 5.5. Let 1 < p < oo then

p(E,X) = {18 X [l <

L¥(E,X):={f: E— X :ess sup,cpf(x) < oo}

Proposition 5.6. Let f : E — X measurable then for all 7" € X', (T, f(z))x’ x
is measurable and if f is integrable then

(T, [ i)y = [ (T p@)ed

Remark 5.7. This result tells us Bochner integration is similar to R? dif-
ferentiation in the following sense. In R?, elements of the dual (RY)’ can be
viewed as coordinate projections in some coordinate system (c.f. dual basis),
so this result phrased in R? would look like: for f : E — R%,

( /E f(a:)da:)i: /E f(a); do

i.e. taking the component of an integral is like integrating that component.

We now specialise to the case when E = (0,7) C R is a time interval with
the usual Lesbegue sets and measure, and so our integrals are over time. This
will be the only case relevant to us.

Theorem 5.8. If X is reflexive, then the dual of LP((0,7), X) is L((0,T), X*)
where 1/p+1/¢ =1 and p € [1,00).

Remark 5.9. Typically, we take X = H, V, or V', which are all Hilbert
spaces hence reflexive. An important consequence of this theorem is that
the LP((0,T), X) spaces are dual spaces, so Banach-Alaoglu can be applied.
Moreover, if p # 1,00 then LP((0,7), X) is reflexive so the weak and weak™
topologies are the same, and hence we use these terms interchangeably.
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Proposition 5.10. For p < ¢, L9((0,7),X) C LP((0,T), X).

Definition 5.11. Let X be a Banach space and v € L'((0,1), X). We say
u is differentiable (in the absolutely continuous sense) if there exists g €

L'((0,1), X) such that

u(t) = ug +/0 g(s)ds (5.2)

for some uy € X and almost all ¢t € (0,1) and we write @ := % := g for the
derivative of u.

Remark 5.12.

e The definition generalises over to any open interval (a, b) in the obvious
way. It also generalises to closed intervals without change since (5.2)
need only holds almost everywhere.

e Recall from real analysis that a function f : R — R is absolutely
continuous if and only if the Fundamental Theorem of Calculus holds
almost everywhere, whence this definition is inspired. It is natural for us
to demand this property since our results so far have always relied from
extracting information from integrals (e.g. distributions are typically
integration against a function).

e The condition is enforced for almost all ¢, not all ¢, because L'((0, 1), X)
are ‘equal’ if they are equal almost everywhere.

Lemma 5.13. Let X Banach and u,g € L'((0,1),X). The following are
equivalent:

(i) u is differentiable with @ = g.
(ii) V¢ € D(0,1) (test functions on (0,1)),

/ u(t)o(t)dt = — / g0 ()t

(iii) Forall "€ X', the weak derivative of the scalar function t — (T, u(t))x' x €
D'(0,1) (distributions on (0,1)) is

d

T(Tou®)xx = (T g(t)xr x
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i.e. for all ¢ € D(0,1)
/0 (T, g(£))(t)dt = — / (T, u(t)) ' (£)dt

Remark 5.14.

e (ii) is like saying ¢ is the weak derivative of u with respect to the
t variable, except this doesn’t make sense since distributions are R
valued, whereas t — wu(t) is X-valued.

e (iii) is further similarity to R? in the sense of Remark 5.7, saying that
the derivative of a component is the component of the total derivative.

5.2. Existence of weak solutions

After applying the usual Helmholtz decoupling to (5.1), we are required to
solve the equation

u(0) (5.3)

{u—i—yAu:f in V'
with f € V' independent of t and uy € H known, u(t) € V for all t > 0. Our
first idea is to guess a solution using formal (but sensible) manipulations.
Write u(t) = > "7, ar(t)¢r where (¢y) are the usual eigenfunctions of A and
the a;, are real valued functions to be determined. Then, formally commuting
derivatives with sums, (5.3) becomes

S at)dn+ vy ahdr = frd
1 1 1

Thus,
coag(t) = e M ay(0) + Vf—;k(l —e M vk

where a;(0) is known via ug. We now ask whether the partial sums uy =
Zgzl ar(t)¢y converge. Although we have the a; explicitly, we showcase a
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new technique. Multiplying (5.4) by ax(t) we have

1d s
——a
2dt *

V)\kaz < |fk:|2
2 k= o\,
| fel?

I//\k;

d
Eai + vpai <

We now apply an inequality /idea called Gronwall’s inequality. We know that
classical equations of the form

(5.5)

y:R—-R
v +cy=d (5.6)

with ¢, d € R have general solution y = AeP* 4 C for some constants A, B, C.
The hope is that if we instead have inequality

y+tey<d

then y must satisfy y < AeP?+ C for some constants A, B, C. In our context,
this gives an exponential bound on |ax| and d is indeed a constant, but in
the version we prove d need not be constant in time.

Lemma 5.15. (Gronwall) Suppose y is absolutely continuous and solves
the classical equation

{y'<t> +ey(t) < d(t)
3/(0) = Yo
Then

t
y<e Ly + / e~ =9 d(s)ds
0

In particular if d is constant,
—ct d —ct
y<e yo—i—z(l—e )
Proof. This is easy, we do it the same way we would solve (5.6).
GCty/ +ecty S ectd

%(ecty) S ectd(t)

t
y<e “yy+ / e~ =9 d(s)ds
0
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where for the last inequality we applied F.T.C, using absolute continuity of
Y- ]

Applying Gronwall to (5.5),

2
w0 < a0 + i1 — e 7
- L |fil?
< vt 2 -1 )
<e ar(0)” + A M (5.8)
Summing over k,
; ; TG
ap(t)? < e7vMt ar(0)* + b

Recall V! = D(A™'/?) and the A"/ norm is the V/ norm, so we have

1
VQ)\l

N
Yo an(t) < e M ugl + | fIl
k

Thus the series v := Y ax(t)dr converges in H for every ¢ and moreover its
H-norm is uniformly bounded in ¢ by a constant. We can be more specific
than this.

Definition 5.16. Let T > 0 and X a Banach space. The space of continuous
functions from [0, 7] to X, denoted C([0, 7], X) is a Banach space with norm

I/ = sup [If(#)]x
t€[0,T]

Proposition 5.17. The sequence uy := .1 ax(t)¢y, converges in C([0, T, H).

Proof. Let 0 <t < T arbitrary. Summing (5.8),

n

S PR 1 | fil?
t 2 < VAt 2
Sl < Sl + g 3 UL

- 1 | fel?
< D laO)F +o55-> 5 -
k=n k=n

The RHS is independent of ¢ and converges to zero as n Am — oo since both
series converge. O
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We are throwing a lot of information away going from (5.7) to (5.8) by
replacing Ay with A;. Indeed, we can do better. Multiplying (5.7) by Ay and
bounding the exponentials by 1,

2
2 2, Skl
Ak|ak| ~ Ak|ak(0)| + VQAk

Thus,
1
@I < lluoll* + = [1£117-

so v(t) € V provided uy € V, which we did not assume. If we didn’t assume
uy € V, it wouldn’t really make sense to try show v(t) € V for all ¢ since
v(0) = ugp. Surprisingly, we can show the next best thing:

Proposition 5.18. The constructed weak solution v = >, ax(t)¢i is in V'
for all t > 0, assuming only ug € H.

Proof. We repeat our previous steps but don’t discard the exponential. From
(5.7) we have

| fil?

VQAk

2
lo(®)]* < ;(Ake—”k%lak(ow + %

Ml ar ()2 < Ape™ g, (0) ] + (5.9)

The real function s — se "* is bounded for all ¢ > 0, say by the constant
M,;. Therefore
£ 115

2
i.e. v(t) € V for all t > 0. O

[o(D)]] < Mifuo| +

Repeating the approach in Proposition 5.17, one shows

Proposition 5.19. The sequence uy = Y.y ax(t)dy converges to v in
C([to,T],V) for any 0 < ty < T'. Moreover, ||v(t)|| < K(|uol, o, ||f||v+) for all
t> 1.

Notation 5.20. Ci,.((0,7"),V) is the space of locally bounded continuous
functions on (0,7),

Cloc((0,T7), V) :={f : for all K C (0,T) compact, f|x is continuous}
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and the topology is defined by: ¢, — 0 in Cloc((0,7"), V) if for all compact
K, ¢, — 0 uniformly on K.

Remark 5.21. We wont use this space much, but Proposition 5.19 can be
summarised as uy — v in Clo((0,7), V) (as well as the bound on ||v]|).

We understand now that the behaviour can be bad at zero. What about
integration? From (5.9),

T T |fk;|2
/\k/ ak(t)zdt S / )\ke_VAktCLk(O)Q + T
0 0 VAN
—v\T |fk|
< ;(1 — e "M a,(0) + V2)\k

When we integrate, the problem disappears. We can now sum over k to get,

T
1 T
[ Pt < o + 1
0 v v

Thus uy is bounded in L*((0,T), V). Again, by being more careful, we show:

Proposition 5.22. The sequence uy := Y1 ax(t)d converges to v in
L*((0,T),V) for any T > 0.

Proof.
it = o) / ka
T = | fel?
)2 4
<D aore I "
k=n k=n
The RHS converges to zero as n A m — oo since both series converge. O

Corollary 5.23. Auy converges to Av in L*((0,7),V").

Proof.

T
| Aux — Av|Pagor v = / | Auy — Av|[2.ds
0

T
< (1Al / lun — vll%ds

—0
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]

We are yet to show v solves the Stokes problem in V’. From (5.4), we know
the uy solve the finite dimensional problem:

uy +vAuy = Py f
Integrating,

un(t) — un(0) + V/Ot Aupn(s)ds = Py ft (5.10)

We consider each term separately as N — oo. Since uy — v in C([0, 7], H),
we have uy(t) — v(t) and un(t) — wuo in H, and therefore in V'. Also
Pyf — fin V'. The next lemma deals with the remaining term:

Lemma 5.24. fot Aun(s) — fot Av(s)ds in V" as N — oo for all t € [0,T].

Proof.

”/0 Aun(s) — Av(s)ds|y < /0 |Aun(s) — Av(s)||y-ds

t 1/2
<TV? (/ | Auy — Av||%/,ds)
0
—0 (Corollary 5.23)

[]

Thus the limit of (5.10) in V" as N — oo is
t
v(t) —up + 1// Av(s)ds = ft inV’
0

v(t) = ug + /t —vAvu(s) + fds
0
v=—vAv(s)+f iV’

by definition of v and v(0) = wg as desired. Note that we used the fact
—vAv+f € L'((0,T),V"), which is true since Av € L*((0,T),V) and f € V’
is independent of time.

We summarise this section:
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Theorem 5.25. (Stokes weak existence) The time dependent Stokes
problem (5.3) has a weak solution v € L((0,T), V)NC([0, T], H)NCioe((0,T), V)
for all T' > 0.

5.3. Uniqueness of weak solutions

Lemma 5.26. (Lions-Magenes) If u € L?((0,7),V) and @ € L*((0,7), V")
then

(i, uyyry = =—|u(t)[?

Moreover, |u(t)|? is absolutely continuous on (0,7) and,

WMP—W@P=2/QW%MMWWM

for all ¢,s € (0,7).

Suppose u1, ug € L*((0,T), V) solve (5.3) with different initial conditions and
w := u; — Us. Then
w4 vAw=0 inV’

with w(0) = u;(0) — u2(0) and w € L*((0,T),V).

<w, w>V/’V + yl|w“2 =0

d
§E|w(t)|2 + vw|* =0 (Lions-Magenes)
By Poincare, ||w(t)|| > A1|w(t)], so
1d 9 )
S— <
L oA <0
lw(t)]? < e M w(0)|? (Gronwall)

We summarise with the following theorem

Theorem 5.27. (Stokes weak well-posedness) If ui,us € L2((0,7),V)
are weak solutions to the time dependent Stokes equation (5.3), then

[ua(t) = ua(t)] < ™" ur (0) — up(0)]

It follows that u; and us converge to the same equilibrium as t — oo. More-
over, well-posedness holds in the C([0, 7], H) norm. In particular, the solu-
tions are uniquely determined by their initial conditions.
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We can also establish well-posedness for the L*([0,7], V) norm,
Proposition 5.28. Let uy,uy € L?((0,7), V) weak solutions to (5.3). Then,

1
w1 — sl L2¢0,m),v) < Elul(o) — u2(0)]

Proof. We have

1d
SO + vl =0
Integrating,
1 2 2 ’ 2
§Wwﬂ\—MMM)+VOHwH%=0

1
v [ lwlds < Slw(0))

6. The Navier Stokes equation
6.1. Existence of weak solutions
The 3D NSE is given by

U—vAu+ (u-V)u+Vp=f
V-u=0
u(0) = ug

for some known ug € H and f € V' independent of time. Applying the usual
Helmholtz decoupling, we seek to solve,

{u+ vAu+ B(u,u) = f inV’ (6.1)

U(O) =uy € H

where we have asserted the equation should hold in V’ as this section is
devoted to weak solutions. We combine all of the methods used to solve the
previous equations. Write u = 327° ag(t)dp, uny = S0 ax(t)¢r € Hy as usual.
Following the formal manipulations at the beginning of Section 5.2, we have

G+ vAkar + Y aan(B(dr, ¢m), 0x) = (f, dr)viv

I,m>1
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Unlike the previous case, we cannot solve this explicitly so we use Galerkin.
The Galerkin system is given by:

{CLk + V)\kak + Zl,mSN alam(B<¢l> ¢m)> ¢k) = <f7 ¢k> (62)

ax(0) = (uo, ¢r.)
for K < N.

Lemma 6.1. (Picard-Lindelof) Let f(t,s) : [0, 1] xR? — R¢ be continuous
in ¢ and locally Lipschitz in s, and t5 € (0,1). Then the classical ODE

{2 = f(t,2)
Z(to) = 20

has a unique C! solution in the interval [ty — €, to + €] for some € > 0.
Example 6.2. Not necessarily global, e.g. 2 = 2z? blows up in finite time.

Rewriting the Galerkin system, we have

uy = —vAuy — PyB(un,uyn) + Pn f (6.3)
= F(UN)

This equation is in the finite dimensional space Hy, so Picard-Lindelof may
be used. F'is trivially continuous in time as it is constant. Moreover A+ Py f
is Lipschitz in space because it is affine. It remains to show Py B(-,") is too.

1PN (B(z,2) = By, y)Il < [B(u,u =)l + | Bu - v, )|
< C(lull [l + (ol o] /2) Ju — vl

by Proposition 4.4, noting all norms are equivalent in finite dimensions. It
follows that PyB(-,-) is locally Lipschitz. Applying Picard-Lindelof to F' :
[—1,T] x R® — R3, where T is arbitrarily large, we see (6.3) has unique short
time solutions with initial condition specified at any ¢y € [0, 00).

Proposition 6.3. There is a unique global solution to the Galerkin system
(6.3) for each N.

Proof. Fix N and let y be the unique solution of (6.3) around ¢t = 0 and
suppose the largest interval of existence of u is [0, 7). Note the interval must
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be half-open otherwise it is closed and we can extend it by Picard-Lindelof.
Then limy,.||ly(t)[[cc = oo otherwise we can extend it to the limit. Since
norms in N-dimensions are equivalent, we have lim,_,, |y(t)| = co. We show
this is impossible.

Let (6.3) act on y, then

(1, y) +v(Ay,y) + (PnB(y,y),y) = (Pnf.y)

= 0< / 6.4
5 g9l VIV 0 < (1 fllvlly] (6.4)
We wish to use Gronwall, but we have both |y| and ||y|| in the mix and the
ly|| terms have different powers. To proceed, we do a magic trick that we will
use time and time again. Recall the trivial inequality a®+ b* > 2ab. We want
both ||y||? terms to have related coefficients?, thus we apply this inequality

to.a = V¥lyll and b= L fllv to get

1d, , 9 1 9 1 9
-2 < L4 =
Il + vyl < 71+ Sl

ld, , 1 1

o _ )\ 2 < . 2/
S+ oAl < I
Thus by Gronwall,

£ 115
21/2/\1

In particular, |y| is bounded, a contradiction. ]

[y < e fuol* + (6.5)

We conclude from uniqueness of Lindelof-Picard, there is a unique solution
to (6.3) for ¢t € [0, 00] which we call uy that lives in Hy, thus determining co-
efficients (ax )4, such that uy = Zf[ a N (t)¢r. However, Ziv ap N+1(t) P
also solves (6.3) so we deduce there is a single choice of coefficients (ag)$°
such that uy = S ax(t) oy

From (6.5) we also learn, for any ¢ > 0 arbitrary,

A1
21/2)\1

lun|leqom,m < Ko (6.6)

Jun () < Juol* +

20r for a physicist, the same dimensions
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for some constant Ky = Ko(ug, f, v, A). By Banach-Alaoglu, there is a sub-
sequence uy, converging weakly to some v € L>([0,T], H)®. The NSE has a
non-linear term unlike the Stokes equation, and weak convergence does not
play nice with non-linearities.

Example 6.4. y, = sinnz — 0 weakly in C([0,1]) but y2 = 1 — 1 cos2nz —
% weakly, not 0.

We aim to get strong convergence (perhaps along a further subequence) in
some norm. To do this, we will apply a compactness theorem in which we
require bounds on more norms. We just estimated the |uy(t)| norms, and
next we try ||uy(t)||. Recall that in the Proposition 6.3 we quickly discarded
estimates involving ||y|| for |y|. This is our first lead. Again, letting (6.4) act
on uy,

(un,un) + v(Auy, un) + (B(un,un), un) = (f,un)vr v

1d
th\uNIQ +fun|*+0 < || fllvefun]
JJull
< ”fHV 1/2
HfHV’ || ||2
- 2\
d o _ I
= < v
Zluw]” + vl < N

Integrating from 0 to T,

[un (1) = Jux(0 |2+y/ fuv()2ds < v

oD v [ v s < ol + e
0 N V>\1

=K

Thus ||un|z2(0,1),v) < K, for all N, noting K; is independent of N. By
Banach-Alaoglu, we have further convergent subsequence converging v in
L*((0,T),V) weak+. We summarise our two results so far, and will see a
useful theorem applies.

3Banach Alaoglu can only be applied to a dual space, so we cannot apply it to
c([0,1],H).
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Lemma 6.5. Let uy be the unique global solutions to (6.3) described in
Proposition 6.3. Then there is a subsequence uy, and v € L*>((0,7), H) N
L*((0,T),V) such that
uy, v L*((0,T), H) weakx 67)
uy, =+ v L*((0,7),V) weaks '

Our candidate solution to (6.1) is v, but one will have a hard time show-
ing it indeed solves the equation using only the weak™ convergence we have
established. We will now try to prove strong convergence in a suitable space.

Theorem 6.6. (Aubin-Lions Compactness) Suppose we have a sequence
of Banach space embeddings:

compact cont.
\

Xl‘ /X()( >X,1

For 1 < p,q < o0, let
W= {u S Lp<(0,T),X1) U e Lq((07T)7X*1)}

a subspace of LP((0,7), X1). Then,
(i) if p < oo then W is compactly embedded in LP((0,7), X).
(ii)) If p =00 and ¢ > 1 then W is compactly embedded in C([0,77], X).

Corollary 6.7. We have uy — v in L*((0,T), H) strongly along a subse-
quence

cont.

Proof. We apply Aubin-Lions. Recall V PN O™ We know that un
is bounded in L?*((0,T),V). The second condition, uy € L4((0,T),V"), is
trivial for all g, because the Picard-Lindelof solutions uy are in C*([0,T], V")
for any T' > 0 (Proposition 6.3)* and C([0,7],V’) C L4((0,T),V’) for any q.
The conclusion follows.

]

To take limits in (6.3), we need to know uyx converges to © and in what sense.

4In fact they are in C1([0,T], C*°) since all norms in finite dimensions are equivalent.
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Proposition 6.8. The norms |ux|| 430 1), are uniformly bounded in N
and in particular we have uy — © weakly in L*3((0,T),V").

Proof. From (6.3), we have

lunllv: < v||Aun|lv: + || Pv Bun, un) v + || f]lv

We show each term is bounded. Observe (or recall from Proposition 3.24),
HAUNHV’ = SupwEV,HwH:l((u?w)) = ||U“, S0

T T — 9
/ | Aun2, = / lunl? < T
0 0

where we recall EQ is the constant bounding [|ux||z2(0,r),v). Lastly, for the
non-linearity we use our usual estimate

| Px Blun, un)|lvr < Cllun|*?|un]"?||ux|

< OKy|Jun |

Thus,
r 4/3 4/3 1.-2/3 g 2
/0 | PyBluy, un)| 1 < CV31 / ]

is uniformly bounded in N. The last statement is Banach Alaoglu. O]

Remark 6.9. The only obstruction to getting uy bounded in L*((0,7), V")
is having Py B(uy,uy) bounded in L?((0,T),V’). To obtain this, we would
need a uniform bound on

T
C*K, / Jun?
0

i.e. uy bounded in L3, which we do not have. In 2D, one follows our methods
and gets uy bounded in L*, thus in L3.

We summarise what we have:

Lemma 6.10. Let uy be the unique global solutions to (6.3) described in
Proposition 6.3. Then there is a subsequence uy, and v € L>((0,T), H) N
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L*((0,T),V) with © € L*3((0,T), V") such that

uy, v L*((0,T), H) weakx
uy, » v L*((0,7),V) weaks
uy, =0 LY3((0,T), V') weaks

uy, = v L*((0,7), H) strongly

(6.8)

Theorem 6.11. The limit v from Lemma 6.10 solves the 3D NSE (6.1)
weakly (i.e.in V7).

Proof. Without loss of generality, assume the subsequence in Lemma 6.10 is
the whole sequence. Equation (6.3) states

un + vAuy + PyB(uy,uy) = Py f

We analyse each term, applying Lemma 6.10. We know uy — © in LY/3((0,T), V")
weakly. Also Auy — Avin L*((0,T), V') weakly since uy — v in L((0,7),V)
weakly. Further, Py f — fin L?((0,T),V"). It remains to deal with the non-
linearity. Assuming this for now, we have

04+ vAv+ B(v,v) = f in L¥3((0,T),V")
and so by standard measure theory, we have, for almost all ¢ € (0,7,

0(t) + vAu(t) + B(v,v)(t) = f in V'

as desired. We now turn to the non-linearity. It is straightforward to check
B(uy,uy) is bounded in L*3((0,T),V").

Claim PyB(uy,uy) — B(v,v) in L*((0,T), V') weakly.
We need, for all w € V,

lim
N—oo

T
/ (PnB(uy,uy) — B(v,v), w)yr yds| =0
0
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Suffices to show for w = ¢y.

T
’ / (PvB(uy,un) — B(v,v), ¢p)vr vds

0
T

< [ KBy = v,w). 6] + (Blo. uy = ), 00) (N > k)

0

T

< C/O lun — v lun — 0|72 lunll| ]| + o]l lux — o] lun — o2 || gk

T
§20|!¢k|!/0 Juw = w2 (fux | + [0l

T 1/4 T 3/4
<2l ([ s =) ([ ol + 101 (Holder)

T 3/4
1/2
< 200l — ol %010 ( [ s+ HvH)2>

where to get the second inequality we switched uy — v with ¢g. It remains
to show the above display tends to zero. Indeed, ||uy — v||z2(0,1),1) — 0 by
Lemma 6.10 and the other term is bounded since ||un || z2¢0,r),v) is.

[]

Remark 6.12.

e We showed that (6.1) holds for almost all ¢. In our approach, this is
the best we can do because we defined v to be a limit of L? functions,
which are only defined almost everywhere. In the next section, we show
v has a continuous representative, so we can talk about properties of v
holding everywhere. However, we do not show that v has a continuous
representative, so we cannot say the (6.1) holds for all t.

e Weak solutions are not unique in general.

6.2. Regularity of weak solutions

Notation 6.13. In this section, v is any weak solution of (6.1), not neces-
sarily the solution constructed in Theorem 6.11.

Proposition 6.14. Suppose v € L?((0,T), V). Then there is a representative
of vin C([0,T],V").
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Proof.
o) = ()l =l [ Avtardu+ [ By 6= )51
<o [ vt WMﬁ/vawmww—wmw

¢u—ﬂ/ o) [2du+ s — ﬂ“ /wwmw“) + 1=l

as s — t.
O

Remark 6.15. From the above proof we see that since we're on a bounded
interval (0,7, the last inequality implies Holder continuity with exponent
%. From now on, we use v to refer to the continuous representative, not the
LP-equivalence class. We skipped showing that B(v,v) € L*3((0,T), V"), but
this is easy to check.

We now show an even stronger form of continuity.

Notation 6.16. Define Hye. to be H equipped with its weak topology.
Thus v is Hyeax-continuous if ¢ — to then (v(t), h) — (v(tg), h) for all h € H.

Proposition 6.17. Suppose v € L*((0,7),V) N L>((0,T), H). Then v €
C([07T]7Hweak>‘

Proof.

Claim 3K > 0 such that |v(t)| < K for all t € [0, 7.

By assumption we have a constant K and E C [0,7] with v(t) < K and
|E| = 0 for all t ¢ E. Suppose t, € E and take t,, € E° such that t,, — .
By the previous proposition, v(t,) — v(ty) in V'. But also, |v(t,)| < K
implies v(t,) converges weakly in H (possibly along a subsequence, which
we relabel). Thus v(ty) € H and by the standard weak convergence result,
[v(to)| < liminf |v(t,)] < K as desired.

For all w € V,
(v(t), w) = (u(t), w)vy = (v(to), w)vry = (v(to), w).
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as t — tg, since v € C([0,T],V’). It remains to extend this to all w € H.
Indeed, let w, € V such that w,, — w in H. Then,

|(0(t) = v(to), w)| < |(v(t) = v(to), w — wn)| + |(v(t) = v(to), wn)|
< 2K fw — wn| + |(v(t) = v(to), wn)|

limsup |(v(t) — v(to), w)| < 2K|w — wy| + 0

t—to

— 0

as n — o0o. OJ

Remark 6.18. This proposition didn’t directly use the fact v was a solution
of the 3D NSE, only that v € C([0,7],V’). The weak solution we found in
the previous subsection satisfies the hypotheses of this proposition.

6.3. The Energy Inequality

Notation 6.19. In this section, v is the weak solution of (6.1) obtained in
Theorem 6.11.

We have
b+ vAv+ Blv,v) = f  in L¥3((0,T),V")

Then, acting on v,
T T
/<uwwy+me+mﬁ:/’wwwww
0 0

1 2 T 2 g 1 2
SOF v [ oPde = [ (700t
0 P \0

~
final energy input energy

This is a nice result for the physicists. Unfortunately, it is wrong. We are
not allowed to act on v since we only know v € L2((0,7),V), where as
LY3((0,T),V") = (L*(0,T),V))*. In 2D, our previous methods would give
v e L*(0,T),V), so this would work. Instead, we have:

Definition 6.20. A solution v to (6.1) is a Leray-Hopf solution if v €
L2((0,T), V) 0 L((0, 7], H)
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1 ! ! 1
§|v(t)|2 + V/ |v(s)]]2ds < / (f,vyds + 5]0(t0)|2, Vit >t
to

to
for ty = 0 and almost all ¢y € (0,7"). In words, energy can only be dissipated
over time.

Theorem 6.21. (Energy Inequality) The Galerkin solution v is Leray-
Hopf.

Proof. The argument given above works for the Galerkin system wuy solving

6.3) since the uy are even smooth with smooth derivatives, so certainly in
L*. Thus,

1 t t 1
Sl ®F +v [ Jus(o)lPds = [ (£ ux)ds + Sfux(to)?
to to

Assume uy converges to v in L*((0,7T), H) (else take a subsequence). Then
there is a set E C [0, 7] of full measure such that uy(t) — v(t) in H for all
t € E. Moreover, 0 € E since uy(t) — up = v(0). Therefore,

(i) |un(t)| = |v(t)| for allt € E
(i) f)(f.un)dt = [} (f,v)dt
(iii) uy — v in L?((0,T),V) weakly, so

t t
lim nf / uw (s)|2ds > / lim iy () ds (Fatou)
to to
t
Z/HU(S)HQdS (Weak convergence)
to

Hence for t,ty € F,

1 t ¢ 1
SOF v [e)Pds < [ (f.0)ds + Slutta)
to to
Lastly, we upgrade to ‘Vt’. Suppose t ¢ F and take t, € E with ¢, — t.
We know v is Hyeax-continuous, so v(t,) — v(t) weakly in H thus |v(#)|* <
liminf, |v(¢,)|*. The integrals are continuous in ¢ with ¢, fixed, thus

SO+ [ @) ds < [ (7 0)ds + St

to
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Remark 6.22.

e The inequality says final energy is less than input energy. Thus there
is some unknown dissipation in the system.

e We used the fact our solutions came from Galerkin. It is unknown
whether there is a weak solution u to (6.1) with w € L*((0,7), H) N
L2((0,T),V) with @ € L*3((0,T), V") (i.e. the regularity of the Galerkin
solution shown in Lemma 6.10) which is not a Leray-Hopf solution.
Without regularity assumptions, one can show there are solutions with
the inequality the other way around, i.e. energy is increasing over time.

6.4. Existence of strong solutions

We seek to solve
U+ vAu+ B(u,u) = f in H

u(0) (6.9)

with f € H and uy € V known. From the sections on weak solutions, we
know the Galerkin system

{U'N—i-l/AuN—i—PNB(uN,uN) =Pyf (6.10)

UN(O) == PNUO

has a unique solution for each N. We recall from (6.6) that we have a uniform
bound sup y supg<;<r [un(t)] < Ko. The hope is that now, with the assump-
tion f,uy € H, we can find a uniform bound on ||uy(t)|. Unfortunately, this
is too much to ask®, and instead what we can obtain is a uniform bound on
a short time interval:

Proposition 6.23. (Young’s inequality) If a,b > 0 and 1/p+ 1/q = 1

al | b?
then ab < p+q

Lemma 6.24. The norms |[uy||c(o,r+),v) are uniformly bounded on a short
time interval i.e. there is a T* € (0, 7] and constant K’ such that

sup sup [jun| < K’
N 0<t<T*

5If you manage to do it, email me before you email anyone else.
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Proof. Previously we wanted to bound |uy| so we let the equation (6.10) act
on uy. To bound the V-norm, we act on Auy.

1d

2dt”uN||2+y|AuN|2 (B(un,un), Auy) = (f, Auy) (6.11)

and we recall

|(B(un, un), Au)| < [lun[[[Vuy|[ps| Aux]
< [lun | Clun | ? Aun 2| Auw|
< Cllun|*’?| Aun[*?
ct v
< allun|l® + 7 [Auxl® (Young p = 4)

where the fudging constants have been inserted so that the units match.
Or alternatively, so that we have a ‘vAuy’ term. We also apply Young’s
inequality in a clever way to the other term,

211> v
|f’ —F—’AUNP
v 8

|(f; Aun)| < [f]]Aun| <

which prevents the |Auy|? terms cancelling in a moment. Thus (6.11) be-
comes

1d 2|f]2 v 1 3v
2dt||UN||2 V|Auy]? < =+ §|AUN|2 + 4V?,/2||UN||6 —|AUN|2
1d 2|f|2 1

2dt“uNH2 —|A NP < 4V3/2||UN||6 (6.12)

d—tHUNH2 < Cy(flun|® + C2)?

for some constants C7, Cy > 0 depending on | f| and v but not N. Everything
in the proof so far has been similar to what we have done before, and now
we do something tricky. Let zy = ||uy]|® + Cs. Then,

2y < Clzf’v

It remains to show zy is bounded independently of N on some short time
interval. Since zy is continuous, we can find T > 0 such that

ZN<t) S QZN(O), vVt € [O,TN]
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We define Ty to be the supremum time with this property. If Ty is finite, we
must have equality by continuity. Moreover,

Zn(t) <8CH|zn(0)]?,  t€[0,Ty]
< 8C(Jluo|* + Co)?

ZN(t) S 801(”71{)“2 + 02)3t + ZN<O)
22 (0) < 80 ([lug||* 4+ Co)* Ty + 2n5(0)
zn(0)

T >
M= 8C(JJuol? + Cy)®

Thus, regardless of whether it is finite or not, we have Ty > T where

T* = ¢,
- 8C (J|uol? + C2)?

Hence, on [0, T*], we have |Juy(t)|| < 2||uol|* + Cy =: K.
[l

Lemma 6.25. The norms |[uy||z2(0,r+),0(4)) are uniformly bounded. Conse-
quently, Auy — Av in L*((0,T*), D(A)) weakly along a subsequence.

Proof. Some information was discarded during the proof of the previous
lemma. Returning to (6.12) and integrating,

T*
14
(T = o)+ [ Juy s < e
T*
v [ Aunf < ol + e
0

for some constant ¢ depending on on K| | f|, and v. We know that Auy — Av
in L2((0,7*),V’) weakly along a subsequence from Theorem 6.11, hence
by Banach-Alaoglu Auy — Av in L*((0,7*), D(A)) along a further sub-
sequence. ]

Corollary 6.26. We have uy — v strongly in L*((0,7*),V) along a subse-
quence, where v is the same limit from Lemma 6.10. Moreover, uy — v in

L2((0,T*), D(A)) weakly
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Proof. We note that everything from the section on weak solutions still holds,
cpct. cont.

in particular Lemma 6.10. We have D(A) —— V —— H. The sequence uy is
bounded in L?((0,T*), D(A)) by the previous lemma and uy € L((0,T*), H)
for any ¢ for the same reason as in Corollary 6.7. Thus, by Aubin-Lions, uy
has a L*((0,7%), V) convergent subsequence and the conclusion follows. The
‘Moreover’ is Banach Alaoglu on the previous lemma. O

Solving the NSE (6.9) in H is to say that o(t) + vAv(t) + B(v,v)(t) = f in
H for almost all ¢ € [0,7*]. This is equivalent to

O+ vAv + B(v,v) = f in L*((0,T*), H)

since equal in LP is equivalent to being equal almost everywhere. The previous
Corollary 6.26 gives v and Av in L*((0,T*), H), but we do not yet know about
v and B(v,v). We recall in the case of weak solutions, we only had B(v,v) in
L*3 which is weaker than in L?. In this case we will obtain what we want,
and a little more.

Lemma 6.27. We have PyB(uy,uy) uniformly bounded in L*((0,7*), H)
and B(v,v) € L*((0,T*), H). Moreover, Py B(uy,uy) — B(v,v) in L*((0,T*), H)
weakly along a subsequence.

Proof. Since we are in finite dimensions, we know PyB(uy,uy) € H.

|PnB(uy,uy)| < sup (B(uy,uy),w)
weH
|w|=1

= sup /(uN~V)uN~w
Q

lw|=1

Note that unlike in the weak case, we put the L? norm on w and not the L°
norm.

< |lun|lzs || Vun|lzs

< Cllun | sl

< Cllun || [Jun | un|"?

< C(K')2| Auy| 2

where the last inequality is Lemma 6.24. Thus PyB(uy,uy) is uniformly
bounded in L*((0,7*), H). Recall from Theorem 6.11 that PyB(uy,uy) —
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B(v,v) in L*((0,7*),V’) along a subsequence. Hence, after applying a stan-
dard Banach-Alaoglu argument we have Py B(uy, uy) — B(v,v) in L*((0,T*), H)
weakly along a subsequence. O]

Corollary 6.28. We have uy uniformly bounded in L*((0,7*), H). Conse-
quently, uy — © in L?((0,T*), H) weakly along a subsequence.

Proof. We know
lun| < v[Aun| + [Py B(un, un)| + | f|

Each term on the RHS is bounded in L?((0,7*), H), hence so is uy. The
usual Banach-Alaoglu argument gives uy — © in L*((0,7*), H) along a sub-
sequence, noting uy — ¥ in L*3((0,7*), V") along a subsequence from The-
orem 6.11. O

Corollary 6.29. The limit of the Galerkin system v satisfies (6.9) for ¢ €
[0, 7*], where T* > 0 is a constant depending only on |lugl|, |f|?, and v.
Moreover, v € L*((0,T7*), D(A)) N C((0,T*),V) and © € L*((0,T*), H).

Proof. Let w € L*((0,T*), H) arbitrary act on the Galerkin equation (6.10).
The previous lemmas give weak convergence of each term as N — oo, and
we see (6.9) holds. O

6.5. Regularity of strong solutions
Let v be any solution to (6.9) in L*((0,T), D(A)), i.e.
U+ vAv + B(v,v) = f in L((0,7), D(A))
Acting on v € L*((0,T), D(A)),
T T
/0 (0,v) + v(Av,v) + (B(v,v),v)dt = /0 (f,v)dt

/T1d| 2 4 llo? + 0dt /T(f )t
——lv v|jv = , U

1 2 r 2 r 2
So(T) +1//0 lo(®)]] dt+/0 (f,v)dt + Juo|
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gives the Energy equality. Note this is the same proof given at the beginning
of Section 6.3 (which is now correct).

We now prove another regularity result.
Proposition 6.30. The map ¢t — ||v(t)|| is continuous and moreover v €
C([0,TT, Vivear)-
Proof. Letting (6.9) act on Av € L?((0,T*), H),
(0, Av) + v|Av|]* + (B(v,v), Av) = (f, Av)
1d

5 dt||v||2 + v|Av|* + (B(v,v), Av) = (f, Av) (Lions-Magenes)

Integrating for s, t arbitrary,
o) = el = =20 [ [4uf +2 [ (Blow), o)+ [ (7.0
t t t
and so the first claim is proven provided (B(v,v), Av) € L' (as the others
are).

|(B(v,v), Av)| < [|v][[o]|*/*] Av] /2| Av|
= |[v]|/?|Av[*/?
< (K/)S/Z‘AUB/ZI
Hence (B(v,v), Av) € L*¥3(0,T) C L*(0,T).

For the second claim, the proof is identical to Proposition 6.17 with the
Sobolev spaces shifted up by one.

]

:C

6.6. Uniqueness of strong solutions

Let u, v be two solutions to (6.9) on the interval (0, T") satisfying the regularity
conclusions in Corollary 6.29 and w = u — v. Then,

W+ vAw + B(u,w) + B(w,u) — B(w,w) =0 in L*((0,T), H)
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Acting on w € L*((0,T), H),

(w,w) + v(Aw,w) + (B(w,u), w) =0
1d

Sl 4+ vl + (Bw, u),w) = 0

1d

Sl + vl < (B(w,w), w)

< Jw] || [ull ]
< Jw] w2 ul]

We are faced with the same situation that we have seen many times before,
where we wish to remove ||w| from the picture so that Gronwall can be
applied. To do this, we apply Young’s inequality on the RHS with a fudging
constant v%* so that the coefficients of ||wl||? on each side are comparable (or
so that ‘dimensions match’):

. 3 1,
vl P2 w2 flul) < Jllwll® 4+ 5 7wl flu]f)

and so we have

1d 2 1 2 4
<
Sl < —JwPlul

w(t)? < €€ lollull'dr |y (0)2 (Gronwall)

for some constant C' depending on v. We conclude that if w(0) = 0 (i.e.
u(0) = v(0)) then w = 0 and even if we don’t assume this we have the
stability estimate:

Theorem 6.31. (Strong NSE well posedness) Let u, v be two solutions
to (6.9) on (0,7") except possibly with different initial conditions. Then for
all t € (0,7),

v(t) —u(t)] < cv(0) —u(0)]
for some constant ¢ depending on v and T (or alternatively, a function grow-
ing like eCfollull'dr)
initial condition.

. In particular, solutions are uniquely determined by their

Remark 6.32. In 2D, one shows weak solutions are unique and strong so-
lutions exist globally. For 3D, this yields the Millenium Prize.



67
6.7. Weak solutions are strong solutions

In the previous section, we showed that assuming f € H, the weak solution
found in Section 6.1 is actually a strong solution. In this section, we show
any weak solution with the same level of regularity is also a strong solution.

Theorem 6.33. Let u € C([0, 7], Hyeax)NL*((0,T),V) and u € L*3((0,T), V")
with ©(0) = ug € V be a solution to (6.1) satisfying the energy inequality for
all ¢:

t
0

S0P+ [ us)lFs < [ (u()ds +

Suppose that a (unique) solution v to (6.9) exists on [0,7] with v(0) = wuo.
Then u(t) = v(t) for all ¢t € [0,T].

Proof. Let w(t) = u(t) — v(t) € V' then
W+ vAw + B(v,w) + B(w,v) — B(w,w) =0

holds in L*3((0,T), V') — the weakest space each term belongs to. Following
the idea of the proof of Theorem 6.31, we would want to act on w now. Unfor-
tunately, we can’t as we don’t know w € L*((0,T),V) = (L*3((0,T), V'))*.
We use ‘Serrin’s trick’®

u+ vAu+ B(u,u) = f in L¥3((0,T),V")
(i, v}y v +v((u,v)) + (Bu, u), v)vv = (f,v) (6.13)

since v € L>((0,T),V) C L*((0,T),V) and this holds in L'(0,T) since each
term is integrable. Also,

O+ vAv + B(v,v) = f in L*((0,T), H)
but u € L*((0,T),V) C L*((0,T), H) so we can take the action:
(0, u) + v((v, 1)) + (Bv,v),u) = (f,u) (6.14)
Summing (6.13) and (6.14),

(,v) + (0, u) + 2v((v,u)) + (B(u,u),v) + (B(v,v),u) = (f,u+ v)

6More accurately due to a graduate student of Serrin
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in L*3((0,T),V"). Note 4 (u,v) = (i, v) + (0, u) by Lions-Magenes” and
(B(u,u),v) + (B(v,v),u) = (B(u,u),v) = (B(v,u),v

= (B(
(

IS

, U

w,u),v)
= (B(w,w),v)
Hence
%(u, v) 4+ 2v((v,u)) — (B(w,v),w) = (f,u+v) (6.15)
Now,

wl? = Juf? + [of? — 2(u, )
t t
gz/kﬁu+vm8—w la(s)[1? + o(s)|2ds — 2(u, v) + 2Juol?
0

by the energy inequality on u and v. Substituting (6.15),

:4y/((v,u))—2/(3( —2v/|!u ()17 +[lo(s)]1?
=2/wwumwwn¢ﬂmw

5= [w* + vlwl* = (B(w,v),w) <0

Then,

which is what we would have if we let the original equation (6.33) act on w!
Now we estimate as usual,

1d
ol vl < ol ol o 22
Bvfwl* | flol*w]?
-4 4

d 1 1
Sl + vl < 2ol

d 1

Z ol < Slvlffwl

and we conclude by Gronwall that |w| = 0. O]

"This requires an extension of Lions-Magenes to LP,L? with 1/p+ 1/q = 1 as well as
the polarisation identity
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