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1. Integral equations

We begin by seeing how PDEs arise from physics, which will motivate the
notion of a ‘weak solution’. Suppose charge is distributed in an insulated ball
Ω ⊂ R3 according to the known function f : Ω → R. An engineer would find
the electric potential ϕ : Ω → R by solving the Poisson equation{

∆ϕ = −f on Ω

ϕ = 0 on ∂Ω

To a physicist, the classical laws are summarised as ‘the Lagrangian of the
system must be minimised’, i.e. ϕ minimises

J(ψ) =

∫
Ω

L(ψ, x)dx

over all twice-differentiable ψ such that ψ = 0 on ∂Ω, where

L(x) = 1

2
|∇ϕ|2 − fϕ

is the Lagrangian given by kinetic energy minus potential energy (and is not
the subject of these notes). A necessary and sufficient condition for ϕ to be
a minimiser is J(ϕ + ϵγ) ≥ J(ϕ) for all ϵ ̸= 0 and a fixed (but arbitrary)
γ ∈ C∞(Ω) vanishing on the boundary. Thus,∫

Ω

1

2
|∇ϕ|2 + ϵ

2
|∇γ|2 + ϵ∇ϕ · ∇γ − fϕ− ϵfγ ≥

∫
Ω

1

2
|∇ϕ|2 − fϕ

Rearranging,
ϵ2

2

∫
|∇γ|2 + ϵ

∫
∇ϕ · ∇γ − ϵ

∫
fγ ≥ 0

Dividing by |ϵ| ≠ 0,

sign(ϵ)

(
ϵ

2

∫
|∇γ|2 +

∫
∇ϕ · ∇γ − fγ

)
≥ 0

Taking ϵ→ 0, we deduce for all γ ∈ C∞(Ω) vanishing on the boundary,∫
Ω

∇ϕ · ∇γ =

∫
Ω

fγ
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Integrating by parts, ∫
Ω

−∆ϕγ =

∫
Ω

fγ (1.1)

It follows that, necessarily, −∆ϕ = f almost everywhere. Though we have
not discussed sufficiency, it is not surprising that such a condition comes
out of an integral equation. The moral of the story is that the fundamental
equations in physics arise as integral equations, not PDEs. This suggests that
thinking about PDE’s in our current ‘classical’ sense might just be wrong.

2. Distributions

The physical problem in the previous section translates to condition involving
integration against an arbitrary function γ in (1.1). The pointwise require-
ment, −∆ϕ = f a.e., arises as a result. The space of choices of γ is referred
to as test functions for the problem. In this case we considered γ ∈ C∞, and
often by density (e.g. in L2), this is equivalent taking any other Ck space,
k ≥ 0, as our test functions. However, in the general setting to be developed,
allowing γ to range over a larger class of functions is a stronger requirement.
A typical choice of test functions is defined as follows:

Notation 2.1. Throughout, Ω is an open bounded subset in Rd, unless stated
otherwise.

Definition 2.2. The space of test functions D(Ω) is C∞
c (Ω) with the follow-

ing topology: γn → 0 in D iff

(i) ∃K ⊂ Ω compact with supp(γn) ⊂ K for all n.

(ii) For any α ∈ Nd, (∂αγn) → 0 uniformly on K, where ∂α := ∂α1
1 . . . ∂αd

d .

Remark 2.3. When one speaks of a ‘test function’ without context, they
generally refer to an element of D(Ω).

Definition 2.4. The space of distributions D′(Ω) is the dual of D(Ω). For
p ≥ 1, there is an embedding Lp ↪→ D′(Ω) given by f → ϕf where ϕf (γ) =∫
fγ, which makes sense by Holder’s inequality. Elements of D′(Ω) are dis-

tributions.

Definition 2.5. If ϕ ∈ D′(Ω) and ϕ = ϕf in D′ for some f ∈ Lp, p ≥ 1, then
we say ϕ is represented by a function and often do not distinguish between
f and ϕ.
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Thus if we write the equation

−∆ϕ = f in D′ (2.1)

for functions ϕ and f in some Lp space, we mean,∫
Ω

−∆ϕγ =

∫
Ω

fγ

for all γ ∈ D(Ω). However, D′(Ω) contains many distributions which are not
given by integration against an Lp function.

Example 2.6. Consider δ ∈ D′(Ω) given by δ(γ) = γ(0). Indeed, δ is con-
tinuous (if γn → 0 in D, then γn(0) → 0) and linear. However, one can
easily show that there is no p ≥ 1 and f ∈ Lp such that δ(γ) =

∫
fγ for all

γ ∈ D(Ω).

Notation 2.7. If X is a vector space with dual X ′, the action of X ′ on X
is written

⟨f, x⟩X′,X := f(x)

for f ∈ X ′ and x′ ∈ X. We often omit the subscript when the context is
clear.

Remark 2.8. When X is a Hilbert space and f ∈ X ′ is represented by
uf ∈ X (Riesz Representation Theorem), we have ⟨f, x⟩X′,X = ⟨uf , x⟩X ,
whence this notation is derived.

As it stands, (2.1) doesn’t make sense for every ϕ in D′, as ϕ may not even
be represented by a function. Our next task is to define the derivative of an
element in D′. The way we do this follows a common blueprint in this field:
for f ∈ C1(Ω) and γ ∈ D(Ω), we have∫

Ω

(∂1f)γdx = −
∫
Ω

f(∂1γ)dx

by integration by parts. The LHS makes sense for f ∈ C2(Ω), but the RHS
makes sense in a much larger space e.g. f ∈ Lp, p ≥ 1. We can go even
further and write the previous display as

⟨T∂1f , γ⟩ = −⟨Tf , ∂1γ⟩

Thus we define,
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Definition 2.9. If T ∈ D′(Ω) then the distributional or weak derivative
∂iT ∈ D′(Ω) is defined by

⟨∂iT, γ⟩ := −⟨T, ∂iγ⟩

for 1 ≤ i ≤ d.

Remark 2.10.

� Equation (2.1) now has a meaning for all ϕ and f in D′(Ω).

� The previous discussion shows distributions derivatives align with our
usual notion of derivatives of functions i.e. ∂iTf = T∂if when f ∈ C1(Ω).

2.1. Sobolev spaces

Although the general setting of distributions comes up time and time again,
a key tool in PDE theory is having the right spaces at hand. Sometimes, we
do want to treat distributions which are represented by functions specially.
The following spaces are of particular interest in that regard.

Definition 2.11. Let p ≥ 1 and m ∈ N. Suppose f ∈ Lp(Ω) and all
(∂αf)|α|≤m are distributions represented by Lp functions, where |α| := |α1|+
· · ·+ |αd| ≤ m. Then we say f belongs to the Sobolev space Wm,p(Ω), which
is a Banach space equipped with the norm

∥f∥Wm,p =
∑

0≤|α|≤m

∥∂αf∥Lp

We will typically use the following special case of Sobolev spaces:

Definition 2.12. The Sobolev Hilbert spaces are

Hm(Ω) := Wm,2(Ω)

Example 2.13. The most common domain we deal with is Ω = (0, 1)d.
Solving over this domain is called a periodic boundary condition because
solutions extend to periodic functions on Rd.
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For ϕ ∈ L2(Ω), we can Fourier expand:

ϕ̂k :=

∫
Ω

ϕ(x)e−2πik·xdx, k ∈ Zd

∥ϕ∥2L2 =
∑
k∈Zd

|ϕ̂k|2

Moreover,

∂̂iϕk =

∫
Ω

(∂iϕ)e
−2πik·xdx

=

∫
Ω

ϕ(2πikie
−2πik·x)dx (definition of weak derivative)

= 2πikiϕ̂k

Thus, if ∂iϕ ∈ L2,

||∂iϕ||2L2 = 4π2
∑
k∈Zd

k2i |ϕ̂k|2 (2.2)

Moreover, (2.2) holds if ∂iϕ is not assumed to be in L2, i.e. RHS finite implies
LHS finite, and the justification of this is left to the reader. We also have
that ∂iϕ ∈ L2 implies ϕ ∈ L2. Thus, generalising to higher orders, we can
now state an equivalent characterisation of Hm(Ω).

Notation 2.14. Unless otherwise stated, Ω = (0, 1)d, i.e. we treat the case
of periodic boundary conditions.

Definition 2.15. (Periodic characterisation of Hs) For s ∈ R≥0,

Hs(Ω) :=

{
ϕ ∈ L2 :

∑
k∈Zd

|k|2s|ϕ̂k|2 <∞

}

In particular, this definition agrees with the previous definition when s is an
integer. The inner product is given by,

⟨ϕ, ψ⟩Hs =
∑
k∈Zd

|k|2sϕ̂kψ̂k

Theorem 2.16. Let 0 < s < t. Then

(i) H t ⊂ Hs



7

(ii) the inclusion map i : H t → Hs is continuous

(iii) the inclusion map is compact

Proof. For (i) and (ii), note || · ||Hs ≤ || · ||Ht . For (iii), let (ϕn) be a sequence
in H t with ||ϕn||Ht ≤ 1. We are required to show (ϕn) has a H

s-convergent
subsequence. By Banach-Alaoglu Theorem, there is a subsequence converging
weakly to some ϕ ∈ H t. Without loss of generality, we may assume ϕn → ϕ
weakly in H t. This implies the convergence of the Fourier coefficients: for any
k, ϕ̂n,k → ϕ̂k as n→ ∞. Then for N ∈ N fixed,

||ϕn − ϕ||2Hs =
∑
k∈Zd

|k|2s|ϕ̂n,k − ϕ̂k|2

=
∑
|k|≤N

|k|2s|ϕ̂n,k − ϕ̂k|2 +
∑
|k|>N

|k|2s|ϕ̂n,k − ϕ̂k|2

≤ N2s
∑
|k|≤N

|ϕ̂n,k − ϕ̂k|2 +
∑
|k|>N

1

N2(t−s)
|k|2s|ϕ̂n,k − ϕ̂k|2

≤ N2s
∑
|k|≤N

|ϕ̂n,k − ϕ̂k|2 +
1

N2(t−s)
||ϕn − ϕ||2Ht

For N sufficiently large, the second term is arbitrarily small independently
of n, since ||ϕn||Ht ≤ 1. For N fixed, the first term tends to zero as n → ∞.
The conclusion follows.

Theorem 2.17. (Sobolev Interpolation) Let a < b and s = (1− θ)a+ θb
for θ ∈ (0, 1). Then,

||ϕ||Hs ≤ ||ϕ||1−θ
Ha ||ϕ||θHb

Proof. For k ∈ Zd,

|k|2s|ϕ̂k|2 =
(
|k|2a|ϕ̂k|2

)1−θ (
|k|2b|ϕ̂k|2

)θ
Applying Holder’s inequality with p−1 = 1− θ and q−1 = θ,

||ϕ||2Hs ≤

(∑
k∈Zd

|k|2a|ϕ̂k|2
)1−θ(∑

k∈Zd

|k|2b|ϕ̂k|2
)θ

= ||ϕ||2(1−θ)
Ha ||ϕ||2θHb



8

We state without proof the following results:

Theorem 2.18. (Sobolev Lp embedding) Let 1
p
≥ 1

2
− s

d
with p < ∞.

Then there is a constant C depending only on Ω, s, p such that for all ϕ ∈ Hs,

||ϕ||Lp ≤ C||ϕ||Hs

In particular, Hs ⊂ Lp.

Theorem 2.19. (Sobolev Ck embedding) Let k ≥ 0 and s > k + d
2
then

there is a constant C depending only on Ω, s, k such that for all ϕ ∈ Hs,

∥ϕ∥Ck ≤ C∥ϕ∥Hs

where ∥ϕ∥Ck :=
∑

|α|≤k∥∂αϕ∥∞. In particular, Hs ⊂ Ck.

Remark 2.20. This holds for more general domains, but in this case we
haven’t defined Hs(Ω) for s not an integer.

Example 2.21.

(i) Suppose d = 2. Then by interpolation,

||u||H1/2 ≤ ||u||1/2L2 ||u||1/2H1

Thus by embedding,

||u||L4 ≤ C||u||1/2L2 ||u||1/2H1 (2.3)

(ii) Suppose d = 3. Then by embedding,

||u||L6 ≤ C||u||H1

and

||u||L3 ≤ C ′||u||H1/2

≤ C ′||u||1/2L2 ||u||1/2H1 (interpolation)

and

||u||L4 ≤ C ′′||u||H3/4

≤ C ′′||u||1/4L2 ||u||3/4H1 (2.4)
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Although these look like random inequalities now, we will use these
estimates a lot when considering the Navier Stokes equations. The dif-
ficulty of the study of Navier Stokes in d = 3 compared to d = 2 can be
summarised by the weight of the H1 exponent in (2.4) being more than
in (2.3). One can show that in d = 3, the only dimensionally consistent
choice of exponents (with dimensionless constant) is that in (2.4), so
there is no hope of improving it.

Our method for finding simple estimates in Example 2.21 was

(i) get || · ||Lp ≤ C|| · ||Hs

(ii) get || · ||Hs ≤ || · ||Ha|| · ||Hb

But (i) doesn’t work for p = ∞. It turns out, if we ‘skip the middleman’, we
can get (ii):

Theorem 2.22. (Agmon) Let u ∈ L2 and 0 < a < d/2 < b such that
(1− θ)a+ θb = d/2. Then,

||u||L∞ ≤ C||u||1−θ
Ha ||u||θHb

Proof. Let û be the Fourier transform of u. By the Fourier inversion theorem,

∥u∥L∞ ≤ C

∫
Rd

|û(k)|dk

≤ C

∫
|k|≤R

|û(k)|dk + C

∫
|k|>R

|û(k)|dk

= C

∫
|k|≤R

|û(k)|(1 + |k|2)a/2

(1 + |k|2)a/2
+ C

∫
|k|≥R

|û(k)|(1 + |k|2)b/2

(1 + |k|2)b/2

≤ C∥u∥Ha

∫
|k|≤R

(1 + |k|2)−adk + C∥u∥Hb

∫
|k|≥R

(1 + |k|2)−b

where the last inequality comes from Cauchy-Schwarz. The remaining inte-
grals are spherically symmetric, and one can easily show they are finite and
that R can be chosen so that the two terms are equal. This yields the desired
result.

Definition 2.23. The r-dimensional vector field Sobolev space is defined by

(Hs)r := {f ∈ (L2(Ω))r : ||f ||Hs
r
<∞}



10

for s ∈ R≥0, where

||f ||(Hs)r :=
r∑

i=1

||fi||Hs

Remark 2.24. This is the standard definition of a product of finitely many
normed spaces. There are many ways to choose an equivalent norm to the
above since all norms in Rr are equivalent. Usually we drop the r in notation
since any result for Hs will obviously generalise to (Hs)r.

Example 2.25. If u ∈ Hs then ∇u := (∂1u, . . . , ∂du) ∈ (Hs)d.

Theorem 2.26. (Poincare) Let u ∈ H1(Ω). Then,

||u− u||L2 ≤ C||∇u||L2

where u = |Ω|−1
∫
Ω
u(x)dx and C = 4π2 is an absolute constant.

Proof. We may without loss of generality assume u = 0 by subtracting a
constant from u. In particular, û0 = 0.

||∂ju||L2 =
∑
k∈Zd

|∂̂juk|
2

=
∑
k∈Zd

|2πikjûk|2

= 4π2
∑
k∈Zd

|kj|2|ûk|2

∴ ||∇u||L2 = 4π2
∑
k∈Zd

|k|2|ûk|2

≥ 4π2
∑
k∈Zd

|ûk|2 (û0 = 0)

Example 2.27. The Navier Stokes Equations in Rd are{
∂tuk − ν∆u+ (u · ∇)uk + ∂kp = fk, k = 1, . . . , d

∇ · u = 0
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where the velocity field u and scalar pressure p are unknown with periodic
boundary conditions, f is the known forcing term, and ν is the known vi-
socsity constant. Note (u · ∇)uk = ∇ · (uuk), so integrating the equation we
have: ∫

Ω

∂tuk − ν∆u+∇ · (uuk) + ∂kpdx =

∫
Ω

fkdx

∴
d

dt
uk = fk

∴
d

dt
u = f

where the many terms vanish in the second equality by the periodic boundary
condition (first applying the divergence theorem to the second and third
terms). Assuming the forces have average zero, u is constant, and by choosing
the write coordinates we may assume it is zero, thus ||u||L2 ≤ C||∇u||L2 .

We often want to use the esimate ‘||u||L2 ≤ C||∇u||L2 ’, specifically with-
out the u term appearing in Poincare’s inequality. Thus we define spaces of
average zero functions which will be key spaces in the future.

Remark 2.28. Defining the correct spaces in PDE theory is key. We started
with spaces of continuous functions in earlier study which are tricky to work
with, and in these notes we have discussed Sobolev spaces which are nicer
to work with, and we will continue defining refinements of these spaces until
we can solve the Navier Stokes equation over that space.

Definition 2.29. For a normed space X ⊂ L1, define Ẋ = {u ∈ X : u = 0}
with the same norm as X.

Remark 2.30. Shortly, we will only consider the dot-spaces, since we always
make this assumption in our treatment of the Navier Stokes equations.

Example 2.31. Poincare’s inequality says the norms || · ||H1 and ||∇ · ||L2

are equivalent on Ḣ1. The latter is called the Dirichlet norm.

2.2. Fourier Series in D′(Ω)

Definition 2.32. For µ ∈ D′(Ω) and k ∈ Zd, the Fourier coefficient is

µ̂k := ⟨µ, e−2πik·x⟩D′,D



12

Remark 2.33. We don’t say anything about convergence of
∑

k∈Zd µ̂ke
−2πik·x

Proposition 2.34. For µ ∈ D′ and ϕ ∈ D,

⟨µ, ϕ⟩D′,D =
∑
k∈Zd

µ̂k(ϕ̂k)
∗

where ∗ denotes complex conjugation.

Proof. ϕ =
∑

k∈Zd ϕ̂ke
−2πik·x, so.

⟨µ, ϕ⟩D′,D =
∑
k∈Zd

⟨µ, ϕ̂ke
−2πik·x⟩D′,D =

∑
k∈Zd

µ̂k(ϕ̂k)
∗ (µ continuous)

Definition 2.35. H−1(Ω) := (Ḣ1)′, the normed space dual.

Remark 2.36. In general, one can define the negative Sobolev spaces in this
way, but we only need H−1.

Proposition 2.37. For µ ∈ H−1, there exists a unique µ′ ∈ Ḋ′ such that

⟨µ, ϕ⟩H−1,Ḣ1 = ⟨µ′, ϕ⟩D′,D ∀ϕ ∈ Ḋ

Proof. The statement is more complicated than the proof. Since Ḋ ⊂ Ḣ1,
we have H−1 ⊂ Ḋ′, so µ ∈ Ḋ′ so under this inclusion µ′ = µ is a choice. It is
unique because Ḋ is dense in Ḣ1.

Proposition 2.38. Let µ ∈ H−1. Then

(i) ∀ϕ ∈ Ḣ1,

⟨µ, ϕ⟩H−1,Ḣ1 =
∑
k ̸=0

µ̂k(ϕ̂k)
∗

(ii) We have

||µ||2H−1 =
∑
k ̸=0

|k|−2|µ̂k|2

In particular, the RHS is finite. Conversely, every sequence (bk)k ̸=0 ∈ R
with

∑
k ̸=0 |k|−2|bk|2 < ∞ corresponds to a µ ∈ H−1 with µ̂k = bk for

all k ̸= 0.
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Proof. (i) follows from Proposition 2.37, Proposition 2.34, and density of
D in H1. For (ii), we follow a similar idea to the proof that (ℓp)′ = ℓq for
p−1 + q−1 = 1. First observe

||µ||H−1 = sup
||ϕ||H1=1

⟨µ, ϕ⟩H−1,H1

= sup
||ϕ||H1=1

∑
k ̸=0

µ̂k(ϕ̂k)
∗ (i)

≤

√√√√(∑
k ̸=0

|k|−2|µ̂k|2
)

· 1 (Cauchy-Schwarz)

and conversely, define

ϕN =
∑
|k|≤N

|k|−2(µ̂k)
∗ek ∈ H1

where ek(x) = e−2πik·x. Then

||ϕN ||2H1 =
∑
|k|≤N

|k|−2|µ̂k|2

and

⟨µ, ϕN⟩ =
∑
|k|≤N

|k|−2|µ̂k|2 = ||ϕN ||2H1

By definition,

|⟨µ, ϕN⟩| ≤ ||µ||H−1||ϕN ||H1

∴ ||ϕN ||H1 ≤ ||µ||H−1

TakingN → ∞, we deduce
∑

|k|̸=0 |k|−2|µ̂k|2 <∞. Thus ϕ :=
∑

k ̸=0 |k|−2(µ̂k)
∗

defines an element of Ḣ1. Applying µ, we obtain ||µ||H−1 ≤
∑

k ̸=0 |k|−2|µ̂k|2
as required. The last part of (ii) is straightforward.

3. Time independent Stokes problem

We recall the Navier Stokes equations (NSE) in Rd:{
∂tu− ν∆u+ (u · ∇)u+∇p = f

∇ · u = 0
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where u is the velocity field, ν is the viscosity, p is the scalar pressure, and
f is the forcing term. The unknowns are u and p.

Suppose we are in a domain with length scale L, velocity scale U , pressure
scale P , and time scale T = L/U . Then

∂tu− ν∆u+ (u · ∇)u+∇p = f

Looking at the scales of these terms:

U

L/U
ν
U

L2
U
U

L

P

L
F

Dividing by U2/L,

1
ν

UL
1

P

U2

FL

U2

The Reynolds number Re = UL/ν describes the behaviour of the flow. When
Re >> 1, the −ν∆u term can be neglected. We study the case Re << 1
where the dimensionless terms can be neglected. In this case, we have the
Stokes problem: {

−ν∆u+∇p = f

∇ · u = 0

3.1. The Right Spaces

Define the function spaces on Ω,

T := {ϕ : ϕ is a polynomial of trigonometric functions}
V := {ϕ ∈ Ṫ d : ∇ · ϕ = 0}
H := {ϕ ∈ (L̇2)d : ∇ · ϕ = 0}
V := {ϕ ∈ (Ḣ1)d : ∇ · ϕ = 0}

where the product spaces are obtained via Definition 2.23, and define the
norms

||ϕ||H = ||ϕ||L2

||ϕ||V = ||∇ϕ||L2
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Remark 3.1.

(i) || · ||V is an equivalent norm to || · ||H1 by Poincare’s inequality.

(ii) V is dense in V and H.

(iii) We will often use the following pattern to prove results about H and
V : Prove the result for V , which is dense. Then extend the result to the
whole space. Since V is a very nice spacec (e.g. C∞ functions), this will
be very handy.

(iv) We have V ↪→ H ↪→ H ′ ↪→ V ′, thus solving a PDE in V is a weaker
requirement than solving it over H.

Definition 3.2.

� We say u ∈ V ′ is a weak solution to the Stokes problem if

−ν∆u+∇p = f in V ′

for some pressure p ∈ L̇2 and f ∈ V ′.

� We say u ∈ H ′ is a strong solution to the Stokes problem if

−ν∆u+∇p = f in H

for some pressure p ∈ Ḣ1 and f ∈ H.

H is a closed subspace of (L̇2)d and V is a closed subspace of (Ḣ1)d, thus they
are Hilbert spaces. In the case of V , the H1 inner product is not inherited
since we use a different (but equivalent norm). Thus,

Definition 3.3. The inner product on V is ((ϕ, ψ)) :=
∫
Ω
∇ϕ ·∇ψ for ϕ, ψ ∈

V .

Notation 3.4. For f, g ∈ L2, (f, g) := ⟨f, g⟩L2 , i.e. we use round brackets to
refer to L2.

Our plan to solve the Stokes problem is as follows. We currently have un-
knowns u and p in the same equation. We will decouple the problem into
two equations, one for u and one for p, then solve them separately. Our next
theorem is what will allow us to do exactly that.

Theorem 3.5. (Helmholtz Decomposition for H−1) Let v ∈ (H−1)d.
Then there exists a unique w ∈ (H−1)d with ∇ ·w = 0 and p ∈ L̇2 such that

v = w +∇p (3.1)
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Proof. We know elements of H−1 are uniquely determined by their Fourier
coefficients (Proposition 2.34), so we’ll determine what the coefficients of w
and p must be, then show the series converge.

v̂k = ŵk + ikp̂k, k ̸= 0 (3.2)

Taking the Euclidean dot product in Rd,

v̂k · ik = ŵk · ik − |k|2p̂k (3.3)

Since ∇ · w = 0, we have

ik · ŵk = 0, ∀k ̸= 0 (3.4)

Combining (3.3) and (3.4),

v̂k · ik = −|k|2p̂k

∴ p̂k = − v̂k · ik
|k|2

Putting this back into (3.2), we obtain

ŵk = v̂k − ik
v̂k · ik
|k|2

Thus p and w are uniquely determined, provided we show they exist in the
correct spaces. Recall

v ∈ H−1 ⇐⇒
∑
k ̸=0

|k|−2|v̂k|2 <∞

p ∈ L̇2 ⇐⇒
∑
k ̸=0

|p̂k|2 <∞, p̂0 = 0

Indeed,

∑
k ̸=0

∣∣∣∣ v̂k · ik|k|2

∣∣∣∣2 ≤∑
k ̸=0

|v̂k|2|ik|2

|k|4

<∞

and w ∈ H−1 ⇐⇒
∑

k ̸=0
|ŵk|2
|k|2 <∞, ŵ0 = 0 is similarly shown.
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Remark 3.6.

(i) w ⊥ ∇p in H1 so the decomposition is orthogonal.

(ii) (H−1)d = (H−1
σ )d ⊕ (H−1

g )d where (H−1
σ )d = {v : ∇ · v = 0} and

(H−1
g )d = {∇p : p ∈ L̇2}.

(iii) The projection Pσ : (H−1)d → (H−1
σ )d is called the Helmholtz projection.

We now state the corresponding Helmholtz decomposition theorems for other
spaces. The proofs are very similar to the H−1 case because in each case,
Fourier coefficients determine the distribution. One then does a similar com-
putation to show the distributions obtained lie in the correct spaces, which
we omit.

Theorem 3.7. (Helmholtz for L2) Let v ∈ (L2)d. Then there exists a
unique w ∈ H and p ∈ H1 such that

v = w +∇p

with (w,∇p)H1 = 0.

Notation 3.8. We now omit the dot on in notation, so all function spaces
are average zero unless otherwise stated, e.g. D = Ḋ and L2 = L̇2. Only
average zero functions will be of use to us, but in most cases the results we
give have non-average zero analogues (e.g. subtract the average).

Theorem 3.9. (Helmholtz for D′) Let µ ∈ (D′)d. Then there exists a
unique w ∈ (D′)d, p ∈ D′ such that

µ = w +∇p

with ∇ · w = 0.

Theorem 3.10. (Helmholtz for D) Let ϕ ∈ (D)d. Then there exists a
unique w ∈ (D)d, p ∈ D such that

ϕ = w +∇p

Proof. We deduce this from L2 Helmholtz. Since ϕ ∈ L2, we have ϕ = w+∇p
with w ∈ V and p ∈ H1. It suffices to show w, p ∈ D. Since w ∈ H1 and
ϕ ∈ H1, we have ∇p ∈ H1. Taking a derivative,

∂jϕ = ∂jw + ∂j∇p
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Let ∂jϕ = w′ +∇p′ be the L2-Helmholtz decomposition of ∂jϕ. Then

(∂jw − w′) +∇(∂jp− p′) = 0

Therefore, by uniqueness of L2 Helmholtz, for some q ∈ H1,

∂jw − w′ = ∇q
∴ 0 = ∆q

∴ 0 = |k|2q̂k, k ∈ Zd

Thus q = 0, so w′ = ∂jw and p′ = ∂jp. In particular, w ∈ H2. We now repeat
the argument to get ∇p ∈ H2, and inductively this continues.

Theorem 3.11. (de Rham) For l ∈ (D′)d and ϕ ∈ (D)d, let li and ϕi

denote the projections onto the ith component in the image. Define ⟨l, ϕ⟩d :=∑d
i=1⟨li, ϕi⟩D′,D. Then,

⟨l, ϕ⟩d = 0 ∀ϕ ∈ V ⇐⇒ l = ∇p for some p ∈ Ḋ′

Proof.
“ ⇐” if l = ∇p then

⟨∇p, ϕ⟩d = −⟨p,∇ · ϕ⟩D′,D (integration by parts)

= 0 (ϕ ∈ V)

“ ⇒” Each li ∈ D has a Fourier expansion, thus we obtain a Fourier-like
expansion of l,

l =
∑
k ̸=0

l̂ke
−2πik·x

where each l̂k ∈ Cd. Let ϕ ∈ V , then ∇ · ϕ = 0 so taking Fourier coefficients,

ik · ϕ̂k = 0 (∀k ̸= 0)

∴ k · ϕ̂k = 0
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We also have

0 =
d∑

j=1

⟨lj, ϕj⟩D′,D

=
d∑

j=1

∑
k ̸=0

l̂jk(ϕ̂jk)
∗

=
∑
k ̸=0

l̂k · ϕ̂k (3.5)

Now we choose ϕ in a clever way. Let c ∈ Cd and consider ϕ = ce−2πiK·x for
a fixed K ̸= 0. Then

ϕ ∈ V ⇐⇒ ∇ · ce−2πiK·x = 0

⇐⇒ K · c = 0 (Fourier coefficients)

and for such ϕ, by (3.5),

0 = l̂K · c
Thus l̂K ⊥ K⊥ (in Rd) so l̂K is parallel to K, i.e. l̂K = µKK for all K ̸= 0.
But for any p ∈ D′,

∇̂pK = iKp̂K , K ̸= 0

so l = ∇p where p̂k = µk for all k. Lastly one checks there indeed exists
p ∈ D′ with p̂k = µk.

Our next result is an application of this theorem. We show that every µ ∈
V ′ extends to an element of D′. Note that V ̸⊂ D and D ̸⊂ V , so it is
more accurate to say µ|D∩V extends to an element on D′. We note also that
D ∩ V = {ϕ ∈ D : ∇ · ϕ = 0} =: Dσ.

Corollary 3.12. Let µ ∈ V ′. Then there exists µ′ ∈ (D′)d such that

⟨µ′, ϕ⟩(D′)d,(D)d = ⟨µ, ϕ⟩V ′,V (3.6)

for all ϕ ∈ Dσ. Moreover µ′ is unique up to a gradient ∇p, for some p ∈ D′.

Proof. By Helmholtz for D, we have the orthogonal decomposition (D)d =
Dσ ⊕Dg, where Dg := {∇p : p ∈ D}. We can define µ0 on Dσ by (3.6) and
µ′(dσ + dg) = µ0(dσ). Since µ0 ∈ (Dσ)

′, we have µ′ ∈ (D′)d.

If ⟨µ′, ϕ⟩ = 0 for all ϕ ∈ Dσ ⊃ V , then by de Rham, µ′ = ∇p.
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3.2. Existence and Uniqueness

Theorem 3.13. The following problem has a unique solution (u, p):
−ν∆u+∇p = f in H−1

f ∈ H−1, ν > 0 fixed

u ∈ V, p ∈ L2 unknown

Moreover, ||u||V = 1
ν
||Pσf ||H−1 ≤ 1

ν
||f ||H−1

Proof. Let f ∈ H−1, then f = fσ + ∇q with fσ ∈ H−1 and q ∈ L2 by
Helmholtz. So,

−ν∆u+∇p = fσ +∇q

Note that ∇ ·∆u = ∆(∇ · u) = 0, thus by uniqueness of Helmholtz decom-
position, {

−ν∆u = fσ

p = q

Taking Fourier coefficients,

−ν|k|2ûk = f̂σk

∴ ûk =
−1

ν|k|2
f̂σk

which uniquely determines u and

||u||2V =
∑

|k|2|ûk|2

=
1

ν2

∑
k ̸=0

|f̂σk|2

|k|2

=
1

ν2
||fσ||2H−1

∴ ||u||V ≤ 1

ν
||f ||H−1

the last inequality coming from the fact an orthogonal projection can only
decrease norm.
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Remark 3.14. When f ∈ H−1 we showed the Stokes equation holds in
H−1. If we assumed f ∈ L2, the equality of Fourier series again implies the
equation holds in L2. Moreover, repeating the method of estimating ||u||V ,
we obtain ||u||H2 = 1

ν
||fσ||L2 . More generally, ||u||Hs = 1

ν
||fσ||Hs−2 . We see

that the solution is more regular than the input data and this phenomenon
is known as elliptic regularity.

Example 3.15. We won’t always be able to find the Fourier coefficients of
the solution to a PDE (hence deduce uniqueness). Here is another way to
deduce uniqueness. Suppose ui, pi, i = 1, 2 are solutions. Then u = u1−u2 ∈
V and p = p1 − p2 ∈ L2 solve

−ν∆u+∇p = 0

in H−1. By Helmholtz decomposition, ∇p = 0 and ∆u = 0. We need u = 0.
Let ϕ ∈ V , then

0 = ⟨∆u, ϕ⟩H−1,H1

= ⟨∇u,∇ϕ⟩H−1,H1

by definition of the derivative. But ∇u ∈ L2, so

0 =

∫
Ω

∇u · ∇ϕ

Since V is dense in V , we can take a sequence ϕn → ϕ in V , thus ∇ϕn → ∇ϕ
in L2. Therefore

0 =

∫
Ω

|∇w|2

and the conclusion follows.

3.3. Spectral Theory for the Solution Operator

Suppose we have the Stokes problem
−∆u+∇p = f in H

f ∈ H fixed

u ∈ V, p ∈ L2 unknown
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which has the stronger assumption that f ∈ H and ν = 1. Then by Helmholtz
decomposition, p = 0 (as f = fσ). Thus the problem is equivalent to

−∆u = f in H

f ∈ H fixed

u ∈ V unknown

Theorem 3.13 shows the solution map

S : H → H2
σ

f → u

is well defined and in light of Remark 3.14, an isometry (||u||H2 = ||f ||L2).
In this section, we prove several properties of the operator S.

Proposition 3.16. S : H → H2
σ is onto.

Proof. Let v ∈ H2
σ, then seek h ∈ H such that

−∆v = h

But ∆v ∈ H so there is nothing to do.

We can also view S as a map S : H → H.

Proposition 3.17. S : H → H is self adjoint.

Proof. Let f, g ∈ L2.

(S(f), g) = (u, g) (S(f) = u)

= (u,−∇v) (v = S(g))

= (∇u,∇v) (IBP)

= (−∆u, v) (IBP)

= (f, S(g))

Proposition 3.18. S : H → H is positive definite
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Proof.

(S(f), f) = (u,−∆u)

= (∇u,∇u)
≥ 0

with equality iff ∇u = 0 i.e. u = 0.

Corollary 3.19. There is an orthonormal basis (ϕk) ⊂ H of eigenfunctions
of S : H → H,

S(ϕk) = µkϕk

with µ1 ≥ µ2 ≥ · · · > 0 and µk → 0 as k → ∞.

Proof. Spectral Theorem for Compact Self-Adjoint operators on a Hilbert
space.

Remark 3.20.

� Although S : H → H2
σ is an isometry, S : H → H is not, so indeed the

eigenvalues are not all norm 1. Going forwards, we consider S : H → H
unless stated otherwise.

� We have Sϕk = µkϕk and we know S maps into H2
σ, thus ϕk ∈ H2

σ. In
other words, the eigenfunctions are more regular than general elements
of H.

Lemma 3.21. Let u ∈ H2, v ∈ V . Then

(−∆u, v) = (∇u,∇v)

Proof. This is integration by parts, which we have used already, but we give
a justification here. Suppose v ∈ V , then

(−∆u, ϕ) = ⟨−∆u, ϕ⟩D′,D

= ⟨∇u,∇ϕ⟩D′,D (definition)

= (∇u,∇ϕ)

The last equality is because ∇u is represented by a function. For any v ∈ V ,
we can take vn ∈ V with vn → v in V , then taking limits we are done.
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Definition 3.22. Define the Stokes operator A := S−1 : Hσ → H and its
domain D(A) = H2

σ.

Remark 3.23. This looks complicated, but recall A = −∆.

Proposition 3.24. The Stokes operator A can be extended to a map on all
of V , A : V → V ′ and

||Au||V ′ = ||u||V

Proof. By Lemma 3.21, for all u ∈ D(A), v ∈ V ,

(Au, v) = ((u, v))

Au is an element of V ′ and represented by an L2 function (because u ∈ H2
σ),

so the L2-action is the V ′-action, i.e. (Au, v) = ⟨Au, v⟩V ′,V . Talking about
L2-action of Au only makes sense for u ∈ H2

σ = D(A), but the RHS makes
sense for all u ∈ V . Thus we define

A : V → V ′

(Au)(v) = ((u, v))

Then A|D(A) = A and by Cauchy-Schwarz on V , ||Au||V ′ ≤ ||u||V . But
||(Au)(u)||V = ||u||2, so in fact ||Au||V ′ = ||u||V .

Notation 3.25. We drop the overline in A in notation and consider A itself
as a map from V to V ′.

The eigenfunctions of A are (ϕk), the eigenfunctions of S. The corresponding
eigenvalues are λk := µ−1

k , satisfying λ1 ≤ λ2 ≤ · · · → ∞. A well known
result that we won’t use or prove quantifies this rate:

Theorem 3.26. (Weyl asymptotics) λk ∼ k2/d

Definition 3.27. For α > 0, Aα is defined on the eigenfunction basis (ϕk),
by

Aαϕk := λαkϕk

We define the domains or spectral Sobolev spaces,

D(Aα) := {u ∈ D′ : ∇ · u = 0, ||u||Aα <∞}
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where

||u||2Aα :=
∞∑
k=1

λ2αk |⟨u, ϕk⟩D′,D|2

Remark 3.28. Let α ≥ 0. Then D(Aα) ⊂ H so for u ∈ D(Aα), ||u||Aα =∑∞
k=1 λ

2α
k |(u, ϕk)|2 = ||Aαu||L2 , as usual making the canonical identification

between a distribution in H and the L2 function representing it. Moreover
D(Aα) is a Hilbert space with inner product ⟨f, g⟩Aα =

∑∞
k=1 λ

2α
k (f, ϕk)(g, ϕk)

∗

Example 3.29. We show D(A1) = H2
σ, thus consistent with our previous

definition, i.e.

u ∈ H2
σ ⇐⇒ u ∈ H,

∞∑
1

λ2k|(u, ϕk)|2 <∞

“⇒” If u ∈ H2
σ, then u ∈ H and

||Au||2H = ||
∞∑
1

(u, ϕk)λkϕk||2L2 =
∞∑
1

λ2k|(u, ϕk)|2 <∞

“⇐” This is a delicate situation. || · ||H2 is defined in terms of the Fourier
coefficients, but we have an eigenfunction expansion, and going between the
two could be messy. It’s better to use what we know: u ∈ H. Let uk := (u, ϕk),
then ∑

k

λ2k|uk|2 = ||
∑
k

λkukϕk||L2

= ||
∑
k

A(ukϕk)||L2 (3.7)

<∞

We cannot simply take the A out because we don’t know
∑

k ukϕk ∈ H2
σ yet.

The idea is to show −∆u =
∑

k A(ukϕk) directly. We know the RHS is in
L2 by the above display, so we’re done (after, ||∆u||L2 = ||u||H2 by writing
both down in terms of Fourier coefficients and the LHS is finite). Consider
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the action on a test function γ ∈ D.

⟨
∑
k

A(ukϕk), γ⟩D′,D =
∑
k

⟨A(ukϕk), γ⟩D′,D

=
∑
k

(Aukϕk, γ) (Aukϕk represented by L2)

=
∑
k

(ukϕk, Aγ) (A self adjoint)

= ⟨
∑
k

ukϕk,−∆γ⟩D′,D (reversing steps)

Thus
∑

k A(ukϕk) = −∆u in D′, therefore −∆u is represented by an L2-
function, i.e. −∆u ∈ L2.

The reader is encouraged to think about why the above method doesn’t
generalise easily to non-integer powers of A. However, the generalisation is
true.

Definition 3.30. On a space X, the (possibly infinite) norms || · ||, || · ||′ :
X → [0,∞] are said to be equivalent if there exist constants c, c′ such that
for all u ∈ X,

c||u|| ≤ ||u||′ ≤ c′||u||

Remark 3.31. This implies any convergent sequence in || · || is convergent
in || · ||′ and vice versa, thus the topologies are the same.

Proposition 3.32. Let α > 0, then the norms || · ||Aα and || · ||H2α are
equivalent on H. In particular,

D(Aα) = H2α
σ

Proof. Statements of this kind are difficult to prove on general domains. On
the torus the eigenfunctions of A are simply the exponentials, ek = e−2πik·x

for k ∈ Zd all along. The eigenvalues are λk = |k|2, thus this result is trivial
by putting these into the definitions of the norms (Do it!).

4. Steady State NSE

The steady state NSE is given by the equation in H−1:

−ν∆u+ (u · ∇)u+∇p = f (4.1)
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for f ∈ H−1, ν > 0 given, u ∈ V , p ∈ L2 to be determined, and d = 3. We
don’t know yet whether this equation makes sense, since (u · ∇)u may not
be in H−1. We now justify this in R3.

Notation 4.1. For a distribution u, write |u| := ∥u∥L2 and ∥u∥ := ∥u∥V :=
∥∇u∥L2 whenever it makes sense.

Proposition 4.2. Let v, u ∈ (H1)3. Then

(i) (u · ∇)v ∈ L6/5

(ii) ∥(u · ∇)v∥L6/5 ≤ C|u|1/2∥u∥1/2∥v∥

(iii) ∥(u · ∇)v∥H−1 ≤ C ′|u|1/2∥u∥1/2∥v∥

for some absolute constants C,C ′.

Proof. The appearance of 6/5 seems mysterious so we first see where that
comes in. The juice of this proposition lies in (iii), since it tells us (u · ∇)v ∈
H−1 and also a bound on the norm. Let w ∈ H1, then

|⟨(u · ∇)v, w⟩H−1,H | =
∣∣∣∣∫ (u · ∇)v · w

∣∣∣∣
≤
∫

|(u · ∇)v||w|

By Sobolev embedding theorem, we know H1 ↪→ L6 in d = 3 (we will use
this fact again and again), thus ∥w∥L6 ≤ C∥w∥H1 and so we apply Holder
with p = 1/6 to get

|⟨(u · ∇)v, w⟩H−1,H | ≤ C∥(u · ∇)v∥L5/6∥w∥H1

∴ ∥(u · ∇)v∥H−1 ≤ C∥(u · ∇)v∥L5/6

We now understand why bounding this quantity is desirable. It remains to
show (ii).

For i = 1, 2, 3, [(u ·∇)v]i = u ·∇vi so pointwise |(u ·∇v)| ≤ |u||∇v| by Cauchy
Schwarz in R3. Thus,∫

|(u · ∇)v|6/5dx ≤
∫

|u|6/5|∇v|6/5dx

≤ ∥u∥3(2/5)L3 ∥∇v∥2(3/5)L2 (Holder, p = 5/2)

∴ ∥(u · ∇)v∥L6/5 ≤ ∥u∥L3∥∇v∥L2



28

By Sobolev embedding theorem, H1/2 ↪→ L3 in d = 3 so ∥u∥L3 ≤ C∥u∥H1/2 .
Moreover by the Sobolev interpolation inequality ∥u∥H1/2 ≤ |u|1/2||u||1/2.
Altogether,

∥(u · ∇)v∥L6/5 ≤ C|u|1/2∥u∥1/2∥v∥

and we’re done.

Remark 4.3. Although we have spelled out the details in the proof of the
last proposition, usage of Sobolev embedding and interpolation will be bread
and butter going forwards.

To solve (4.1) we employ the same decoupling strategy. Since each term is in
H−1, we can apply the Helmholtz projection to get

νAu+ Pσ(u · ∇)u = fσ

∇p = fg

and so p is easily found and the challenge lies in finding u. Thus we seek to
solve the equation

νAu+B(u, u) = f in V ′ (4.2)

where A = −∆ is the Stokes operator and B : V × V → V ′ by B(u, v) :=
Pσ[(u · ∇)v], f ∈ V ′ is arbitrary, and u ∈ V ′ to be determined. The B term
is the non-linearity in the equation.

Proposition 4.4. For u, v, w ∈ V ,

(i)
||B(u, v)||V ′ ≤ C|u|1/2||u||1/2||v||

(ii)
⟨B(u, v), w⟩V ′,V = −⟨B(u,w), v⟩V ′,V

In particular, ⟨B(u, v), v⟩V ′,V = 0

(iii) ⟨B(u, v), w⟩V ′,V =
∫
(u · ∇)v · w

(iv) ∥B(u, v)∥L2 ≤ C̃∥u∥∥v∥H3/2

Proof. (i) is a restatement of Proposition 4.2 (iii) after applying a projection.
For (ii), first consider u, v, w ∈ V . We first show that B(u, v) is given by what
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we expect (i.e. the Pσ doesn’t cause issues). Indeed,∫
(u · ∇)v · w = ((u · ∇)v, w)

= ((u · ∇)v, Pσw) (∇ · w = 0)

= (Pσ(u · ∇)v, w)

= (B(u, v), w)

Since B(u, v) is represented by a L2 function (u, v ∈ V), we conclude

⟨B(u, v), w⟩V ′,V =

∫
(u · ∇)v · w

Now, ∫
(u · ∇)v · w =

∫ ∑
1≤i,j≤d

uj(∂jvi)wi

=

∫ ∑
1≤i,j≤d

(∂jujvi)wi (∇ · u = 0)

= −
∫ ∑

1≤i,j≤d

ujvi∂wi (IBP)

= −
∫
(u · ∇)w · v

and so we have the result for u, v, w ∈ V .

Extending this to u, v, w ∈ V requires some standard labour. We note that if
un, vn, wn ∈ V converge to u, v, w in V respectively, then by Proposition 4.2
(iii),

lim
n

∫
(un · ∇)vn · wn =

∫
(u · ∇)v · w

and ⟨B(un, vn), wn⟩V ′,V → ⟨B(u, v), w⟩V ′,V by (i). Thus we have (iii),

⟨B(u, v), w⟩V ′,V =

∫
(u · ∇)v · w

Moreover for the same reason,

lim
n

∫
(un · ∇)wn · vn =

∫
(u · ∇)w · v
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Thus
⟨B(u, v), w⟩V ′,V = −⟨B(u,w), v⟩V ′,V

Lastly for (iv),

|
∫

(u · ∇)v · w| ≤ ∥u∥L6∥∇v∥L3|w|

so done after applying Sobolev L3 embedding.

Remark 4.5. (ii) is useful because it allows us to bound ⟨B(u, v), w⟩ without
controlling the derivatives of v. (iv) tells us when B(u, v) is in L2, and the
condition v ∈ H3/2 is slightly stronger than what you might guess (e.g.
v ∈ V ).

4.1. Existence of weak solutions

To solve (4.2) we do ‘formal manipulations’ (e.g. swapping derivatives and
limits) to arrive at a solution, then afterwards justify what we found actually
solves the original equation. Recall (ϕk) is an eigenbasis of A and let u =∑∞

k=1 akϕk, f =
∑∞

k=1 fkϕk, then (4.2) is

vA

(
∞∑
1

akϕk

)
+B

(
∞∑
1

akϕk,
∞∑
1

akϕk

)
=

∞∑
1

fkϕk

Swapping sums,

∞∑
1

νλkakϕk +
∞∑
k,m

akamB(ϕk, ϕm) =
∞∑
1

fkϕk

By linear independence of the (ϕk),

νλnan +
∞∑

l,m=1

alam⟨B(ϕl, ϕm), ϕn⟩V ′,V = fn, for all n (4.3)

This is an infinite system of quadratic equations for the (an). Solving this
head-on would be difficult so we use a technique called Galerkin approxima-
tion. We solve the finite system

νλnan +
N∑

l,m=1

alam⟨B(ϕl, ϕm)ϕn⟩V ′,V = fn, for n ≤ N (4.4)
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or, at least show solutions exist, and further show that they converge to the
solutions of (4.3) as N → ∞. The following lemma will tell us solutions to
the finite system exist, and our next task will be to set the scene so this
lemma can be applied.

Lemma 4.6. Let DR be a closed ball in RN and g : DR → RN continuous
and for all v ∈ ∂DR,

⟨g(v), v⟩RN < 0

Then there exists a v∗ ∈ DR such that g(v∗) = 0.

Proof. By scaling, we can assume R = 1. Suppose g ̸= 0 and consider F (v) =
g(v)

∥g(v)∥RN
. By Brouwer fixed point theorem, F has a fixed point, i.e. F (w) = w

for some w. Thus ∥w∥RN = 1 but

0 < ⟨F (w), w⟩RN =
1

∥g(w)∥RN

⟨g(w), w⟩RN < 0

a contadiction.

We use a technique called ‘a-priori estimates’, we assume a solution of (4.4)
exists and show it must have certain properties. In particular, bound the
norm. Let uN =

∑N
1 anϕn be a solution of (4.4), where an = an(N). Then

uN satisfies
vAuN + PNB(uN , uN) = PNf (4.5)

where PN denotes the L2-projection onto (ϕk)
N
1 , noting that A commutes

with PN . Considering the action on uN ,

v((uN , uN)) + ⟨B(uN , uN), PNuN⟩V ′,V = ⟨f, PNuN⟩V ′,V

∴ ν((uN , uN)) + ⟨B(uN , uN), uN⟩ = ⟨f, uN⟩

By Proposition 4.4, the second term vanishes. Thus,

∥uN∥ ≤ 1

ν
∥f∥V ′ =: R1

Thus the solutions to of all the Galerkin systems (i.e. for anyN) are contained
in a ball in V . This already tells us uN has a weakly convergent subsequence
provided solutions exist, and this will be important later. We now show
solutions indeed exist. Applying (νA)−1 to (4.5),

uN + (νA)−1PNB(uN , uN)− (νA)−1PNf = 0
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and define

Hn := span(ϕ1, . . . , ϕn)

g : HN → HN

g(v) = (νA)−1PNf − (νA)−1PNB(v, v)− v

We seek v∗ with g(v∗) = 0.

Claim ((g(w), w)) < 0 when ∥w∥ = 2R1.

Proof.

⟨Ag(w), w⟩V ′,V = −∥w∥2 + 1

ν
⟨B(w,w), w⟩︸ ︷︷ ︸

=0

+
1

ν
⟨PNf, w⟩

= −∥w∥2 + 1

ν
⟨PNf, w⟩

≤ −4R2
1 +

1

ν
∥f∥V ′(2R1)

= −2R2
1 < 0

We recall ⟨Av, v⟩V ′,V = ((g(w), w)) and the claim is proven.

Thus by Lemma 4.6 (noting all norms in finite dimensions are equivalent),
there exists v∗ with g(v∗) = 0 and moreover the solution uN satisfies ∥uN∥ ≤
2R1. We summarise the results of this section so far with the following the-
orem:

Theorem 4.7. The Galerkin approximation system (4.5) has a solution uN
for every N with ∥uN∥ ≤ 2R1 and there is a subsequence uNk

such that

uNk
→ u in V weakly

uNk
→ u in H strongly

for some u ∈ V .

Proof. The first assertion is what we already showed. The subsequence is
obtained by Banach-Alaoglu and the compact embedding V ↪→ H.

Theorem 4.8. The 3D steady state NSE (4.2) has a solution in V ′ given by
u ∈ V , the limit in Theorem 4.7.
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Proof. Without loss of generality, relabel the sequence uN so that uN → u
weakly in V and strongly in H. It suffices to show for every k,

ν⟨Au, ϕk⟩V ′,V + ⟨B(u, u), ϕk⟩V ′,V = ⟨f, ϕk⟩V ′,V (4.6)

We have

ν⟨AuN , ϕk⟩V ′,V + ⟨PNB(uN , uN), ϕk⟩V ′,V = ⟨PNf, ϕk⟩V ′,V

∴ ν((uN , ϕk)) + ⟨B(uN , uN), PNϕk⟩ = ⟨f, PNϕk⟩

so taking N large enough (N > k),

ν((uN , ϕk)) + ⟨B(uN , uN), ϕk⟩ = ⟨f, ϕk⟩

Since uN → u weakly in V , we have ((uN , ϕk)) → ((u, ϕk)). To establish
(4.6), it remains to show ⟨B(uN , uN), ϕk⟩ → ⟨B(u, u), ϕk⟩. Dealing with this
non-linearity is our main obstruction.

Claim
∫
(uN · ∇)uNϕk →

∫
(u · ∇)uϕk as N → ∞∣∣∣∣∫ (uN · ∇uN − u · ∇u)ϕk

∣∣∣∣ ≤ ∣∣∣∣∫ (uN − u)∇uNϕk

∣∣∣∣+ ∣∣∣∣∫ (u · ∇)(uN − u)ϕk

∣∣∣∣
≤ ∥uN − u∥L3|∇uN |∥ϕk∥L6 + ∥u∥L3|∇(uN − u)|∥ϕk∥L6

≤ (C∥uN − u∥H1/2∥uN∥+ C∥u∥H1/2∥uN − u∥) ∥ϕk∥L6

≤
(
∥uN − u∥1/2|uN − u|1/2∥uN∥+ ∥u∥1/2|uN − u|1/2∥u∥

)
C∥ϕk∥L6

≤ |uN − u|1/2︸ ︷︷ ︸
→0

(∥uN − u∥1/2∥uN∥+ ∥u∥3/2)︸ ︷︷ ︸
bounded by Theorem 4.7

C∥ϕk∥L6

Remark 4.9. This section reflects a common proof pattern. Come up with
approximate solutions which one would expect converge to the real solution,
then show they indeed do. The difficult in the latter lies in dealing with the
non-linear terms.

4.2. Existence of strong solutions

The steady state NSE in L2 is given by

−ν∆u+ (u · ∇)u+∇p = f in L2
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for f ∈ L2 known, u ∈ D(A) = H2
σ to be determined, and d = 3. Using

Helmholtz in L2 we can carry out the usual decoupling and obtain,

νAu+B(u, u) = f in H (4.7)

for f ∈ H.

Remark 4.10. For (4.7) to make sense, one expects each term to be in H,
and indeed this is true as follows. Since u ∈ D(A), we have Au ∈ H. The
non-linear term B(u, u) is more subtle. We recall that H2 ⊂ C by the Sobolev
embedding theorem with d = 3, so in particular u ∈ L∞. Moreover,∫

|(u · ∇)u|2 ≤
∫

|u|2|∇u|2 ≤ ∥u∥2∞∥∇u∥2L2 <∞

and so B(u, u) ∈ H.

Equation (4.7) is equivalent to

ν(Au, ϕk) + (B(u, u), ϕk) = (f, ϕk)

for all k. From Theorem 4.8, we have a u ∈ V such that

ν⟨Au, ϕk⟩V ′,V + ⟨B(u, u), ϕk⟩V ′,V = ⟨f, ϕk⟩V ′,V

and in light of Remark 4.10, if u ∈ D(A), then Au,B(u, u) ∈ H so the V ′

action is, by definition, given by the L2 inner product and we’re done. Thus
there is only one thing to do:

Proposition 4.11. The uN are uniformly bounded in D(A). Consequently,
u ∈ D(A), where u is the limit from Theorem 4.8.

Proof. We carry out the Galerkin method again, using the uN ∈ HN :=
span(ϕk)

N
1 obtained in Theorem 4.7 satisfying

νAuN + PNB(uN , uN) = PNf (4.8)

We recall Theorem 4.8 which states ∥uN∥ ≤ 2R1 where the constant R1

depends only on f and ν. Since uN ∈ HN ⊂ D(A), we can take the inner
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product of (4.8) with AuN ,

|νAuN |2 + (PNB(uN , uN), AuN) = (PNf, AuN)

∴ |νAuN |2 + (B(uN , uN), PNAuN) = (f, PNAuN)

∴ |νAuN |2 + (B(uN , uN), AuN) = (f, AuN)

∴ ν2|AuN |2 ≤ |f ||AuN |+
∣∣∣∣∫ (uN · ∇)uN · AuN

∣∣∣∣
∴ ≤ |f ||AuN |+ ∥uN∥L6∥∇uN∥L3|AuN |
∴ ≤ |f ||AuN |+ C∥uN∥∥∇uN∥1/2|∇uN |1/2|AuN |

Dividing by |AuN |,

ν2|AuN | ≤ |f |+ C∥uN∥3/2∥∇uN∥1/2

Note that ∥∇v∥2 =
∑

k ̸=0 |k|2|∇̂vk|2 =
∑

k ̸=0 |k|4|v̂k|2 = ∥v∥H2 and recall

that the H2-norm is equivalent to the A-norm (Proposition 3.32), thus

ν2|AuN | ≤ |f |+ C ′∥uN∥3/2|AuN |1/2

≤ |f |+ C ′(2R1)
3/2|AuN |1/2

We see this inequality can only hold true if AuN is bounded independently
of N , since the quadratic ν2x2 − C ′(2R1)

3/2x− |f | is eventually positive. In
particular,

|AuN |1/2 ≤
1

2ν2

(
C ′(2R1)

3/2 +
√
C2(2R1)3 + 4ν2|f |2

)
The last assertion in the statement follows from Banach-Alaoglu and com-
paring Fourier coefficients of the limits.

Remark 4.12. This ‘quadratic trick’ is good to notice, but it wont suffice
later and we’ll upgrade it to a much more flexible technique called ‘Young’s
inequality’.

4.3. Uniqueness of weak solutions

Theorem 4.13. The solution to the steady state NSE (4.2) is unique for f ∈
V ′ fixed provided νλ

1/2
1 > 2CR1, where C is the constant from Proposition

4.2 (ii).
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Proof. Suppose u and v solve (4.2) and w = u− v. Then

νAw +B(u,w) +B(w, u)−B(w,w) = 0 in V ′

Acting on w,

ν⟨vAw,w⟩V ′,V + 0 + ⟨B(w, u), w⟩V ′,V − 0 = 0

∴ ν∥w∥2 = −⟨B(w, u), w⟩
∴ ν∥w∥2 ≤ C|w|1/2∥w∥1/2∥u∥∥w∥

where the last inequality comes from Proposition 4.4. By Proposition 3.32,
for all ψ ∈ V ,

∥ψ∥2 =
∞∑
1

|(ψ, ϕk)|2λk

≥ λ1|ψ|2

Thus,

ν∥w∥2 ≤ C

λ
1/2
1

∥u∥∥w∥2

≤ C(2R1)

λ
1/2
1

∥w∥2

Hence w = 0 or νλ
1/2
1 ≤ C(2R1).

4.4. Weak solutions are strong solutions

Let u ∈ V be a solution to (4.2), i.e.

νAu+B(u, u) = f in V ′

Remark 4.14. The assumption u ∈ V could be seen as modest since we
exhibited a solution which is in V , and in the previous section gave a condition
for this solution to be unique.

In this section we will show, under the assumption f ∈ H, we have

νAu+B(u, u) = f in H
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i.e. weak solutions are strong solutions. We recall from Section 4.2 that this
follows if u ∈ D(A). Thus, our approach is to show that any weak solution
lies in D(A). We do this in two steps, first showing u ∈ D(A3/4), then using
that to show u ∈ D(A).

Remark 4.15. The assumption f ∈ H is clearly necessary.

Let u be an arbitrary weak solution and define uN =
∑N

k=1(u, ϕk)ϕk (not the
Galerkin approxmation!).

Lemma 4.16. The norms ∥uN∥D(A3/4) are uniformly bounded. In particular,

u ∈ D(A3/4).

Proof. Note that given the first assertion, the second follows easily by ap-
plying Banach-Alaoglu and comparing Fourier coefficients of the limit and u.
For the first assertion, observe uN satisfies

νAuN + PNB(u, u) = PNf

Since the uN are smooth, we can take the action with A1/2,

(νAuN , A
1/2uN) + (B(u, u), A1/2uN)

1 = (f, A1/2uN)

noting the projections are self adjoint, commute with powers of A, and
PNuN = uN . Since A

1/4 (or any power of A) is self adjoint, we have

ν(A3/4uN , A
3/4uN) ≤ −(B(u, u), A1/2uN) + |f ||A1/2uN | (4.9)

Observe

|(B(u, u), A1/2uN)| =
∣∣∣∣∫ (u · ∇)u · A1/2uN

∣∣∣∣
≤ ∥u∥L6|∇u|∥A1/2uN∥L3 (Holder)

≤ C∥u∥2∥A1/2uN∥L3

By Sobolev embedding ∥·∥L3 ≤ C ′∥·∥H1/2 , and by Proposition 3.32, the A1/4

norm and ∥·∥H1/2 norm are equal. Thus ∥·∥L3 ≤ C ′∥·∥A1/4

∴ |(B(u, u), A1/2uN)| ≤ C ′′∥u∥2|A3/4uN |
= C ′′∥u∥∥uN∥D(A3/4)

1Technically, B(u, u) is not necessarily in L2 (yet!), so having it in an L2 inner product
doesn’t make perfect sense. However, we’re effectively working in RN here, so there are no
issues.
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Into (4.9),

ν|A3/4uN |2 ≤ C ′′∥u∥∥uN∥D(A3/4) + |f ||A1/2uN |

Recall |A1/2uN | = ∥uN∥ ≤ 2R1, thus

ν∥uN∥2D(A3/4) ≤ C ′′∥u∥∥uN∥D(A3/4) + |f |(2R1)

We now have a uniform estimate on ∥uN∥D(A3/4) by the quadratic trick; the
polynomial νx2 − C ′′∥u∥x− |f |(2R1) is positive for x sufficiently large, thus
∥uN∥D(A3/4) ≤ K for some constant K = K(C ′′, |f |, R1, ν).

Proposition 4.17. The norms ∥uN∥D(A) are uniformly bounded. In partic-
ular, u ∈ D(A) and u solves (4.7) in H.

Proof. We again note that the second claim follows from the first using a
standard application of Banach-Alaoglu and the discussion at the beginning
of the section. We have

⟨νAu,AuN⟩V ′,V + ⟨B(u, u), AuN⟩V ′,V = ⟨f, AuN⟩V ′,V

∴ ν|AuN |2 + ⟨B(u, u), AuN⟩V ′,V = (f, AuN)

∴ ν|AuN |2 ≤ −⟨B(u, u), AuN⟩+ |f ||AuN |
≤ ∥u∥L6∥∇u∥L3 |AuN |+ |f ||AuN |
≤ C∥u∥∥∇u∥H1/2|AuN |+ |f ||AuN |
≤ C(2R1)∥u∥H3/2|AuN |+ |f ||AuN |
≤ C(2R1)K|AuN |+ |f ||AuN |

∴ ν|AuN | ≤ 2CKR1 + |f |

Thus ∥uN∥D(A) is uniformly bounded.

5. Time dependent Stokes problem

We consider (as always, in d = 3),
du
dt

− ν∆u+∇p = f

∇ · u = 0

u(x, 0) = u0(x) ∈ H

f ∈ H known, independent of t

(5.1)
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We think of u(t) being a spatial distribution (or function of x) for every t, i.e.
u(t) ∈ D′(Ω) acts on spatial test functions ϕ(x) ∈ D(Ω) for every t. Because
of this, we write du

dt
or u̇ to denote differentiation with respect to time, rather

than a partial derivative.

Remark 5.1.

� We will define exactly what we mean by ‘differentiation with respect
to time’ shortly. We will not use a limit definition as this allows for
monstrosities such as the Cantor function. What we would like is that
the Fundamental Theorem of Calculus holds, but we are yet to see how
to integrate u (which takes values in a Banach space).

� Setting the scene in this way makes every value of t important, we
haven’t loosened anything to ‘almost everywhere’. Specifically, the ini-
tial condition u(x, 0) = u0(x) is enforced despite being on a measure
zero set.

5.1. Bochner integration

Notation 5.2. In this section (E, E , µ) denotes a measure space.

Definition 5.3. Let X be a Banach space with its Borel σ-algebra and
f : E → X measurable.

� If f is a simple function, i.e. f(x) =
∑n

1 aj1Ej
(x), where (aj) ∈ X and

Ej ∈ E , then define its Bochner integral∫
E

f(x)dµ(x) :=
n∑
1

ajµ(Ej)

� We say f is (Bochner) integrable if there exist simple functions (fk)
such that ∫

E

∥f(x)− fk(x)∥Xdµ(x) → 0 as k → ∞

where this integral is taken in the classical sense, and in this case define
its Bochner integral∫

E

f(x)dµ(x) = lim
k→∞

∫
fk(x)dµ(x)
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Proposition 5.4. Let X be a separable Banach space and f : E → X
measurable. Then,

f integrable ⇐⇒
∫
E

∥f(x)∥Xdµ <∞

Motivated by this result we define,

Definition 5.5. Let 1 ≤ p <∞ then

Lp(E,X) :=

{
f : E → X :

∫
E

∥f(x)∥pXdµ(x) <∞
}

.
L∞(E,X) := {f : E → X : ess supx∈Ef(x) <∞}

Proposition 5.6. Let f : E → X measurable then for all T ∈ X ′, ⟨T, f(x)⟩X′,X

is measurable and if f is integrable then

⟨T,
∫
E

f(x)dµ⟩X′,X =

∫
E

⟨T, f(x)⟩X′,Xdµ

Remark 5.7. This result tells us Bochner integration is similar to Rd dif-
ferentiation in the following sense. In Rd, elements of the dual (Rd)′ can be
viewed as coordinate projections in some coordinate system (c.f. dual basis),
so this result phrased in Rd would look like: for f : E → Rd,(∫

E

f(x)dx

)
i

=

∫
E

f(x)i dx

i.e. taking the component of an integral is like integrating that component.

We now specialise to the case when E = (0, T ) ⊂ R is a time interval with
the usual Lesbegue sets and measure, and so our integrals are over time. This
will be the only case relevant to us.

Theorem 5.8. IfX is reflexive, then the dual of Lp((0, T ), X) is Lq((0, T ), X∗)
where 1/p+ 1/q = 1 and p ∈ [1,∞).

Remark 5.9. Typically, we take X = H, V , or V ′, which are all Hilbert
spaces hence reflexive. An important consequence of this theorem is that
the Lp((0, T ), X) spaces are dual spaces, so Banach-Alaoglu can be applied.
Moreover, if p ̸= 1,∞ then Lp((0, T ), X) is reflexive so the weak and weak*
topologies are the same, and hence we use these terms interchangeably.
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Proposition 5.10. For p < q, Lq((0, T ), X) ⊂ Lp((0, T ), X).

Definition 5.11. Let X be a Banach space and u ∈ L1((0, 1), X). We say
u is differentiable (in the absolutely continuous sense) if there exists g ∈
L1((0, 1), X) such that

u(t) = u0 +

∫ t

0

g(s)ds (5.2)

for some u0 ∈ X and almost all t ∈ (0, 1) and we write u̇ := du
dt

:= g for the
derivative of u.

Remark 5.12.

� The definition generalises over to any open interval (a, b) in the obvious
way. It also generalises to closed intervals without change since (5.2)
need only holds almost everywhere.

� Recall from real analysis that a function f : R → R is absolutely
continuous if and only if the Fundamental Theorem of Calculus holds
almost everywhere, whence this definition is inspired. It is natural for us
to demand this property since our results so far have always relied from
extracting information from integrals (e.g. distributions are typically
integration against a function).

� The condition is enforced for almost all t, not all t, because L1((0, 1), X)
are ‘equal’ if they are equal almost everywhere.

Lemma 5.13. Let X Banach and u, g ∈ L1((0, 1), X). The following are
equivalent:

(i) u is differentiable with u̇ = g.

(ii) ∀ϕ ∈ D(0, 1) (test functions on (0, 1)),∫ 1

0

u(t)ϕ(t)dt = −
∫ 1

0

g(t)ϕ′(t)dt

(iii) For all T ∈ X ′, the weak derivative of the scalar function t→ ⟨T, u(t)⟩X′,X ∈
D′(0, 1) (distributions on (0, 1)) is

d

dt
⟨T, u(t)⟩X′,X = ⟨T, g(t)⟩X′,X



42

i.e. for all ϕ ∈ D(0, 1)∫ 1

0

⟨T, g(t)⟩ϕ(t)dt = −
∫ 1

0

⟨T, u(t)⟩ϕ′(t)dt

Remark 5.14.

� (ii) is like saying g is the weak derivative of u with respect to the
t variable, except this doesn’t make sense since distributions are Rd-
valued, whereas t→ u(t) is X-valued.

� (iii) is further similarity to Rd in the sense of Remark 5.7, saying that
the derivative of a component is the component of the total derivative.

5.2. Existence of weak solutions

After applying the usual Helmholtz decoupling to (5.1), we are required to
solve the equation {

u̇+ νAu = f in V ′

u(0) = u0
(5.3)

with f ∈ V ′ independent of t and u0 ∈ H known, u(t) ∈ V for all t > 0. Our
first idea is to guess a solution using formal (but sensible) manipulations.
Write u(t) =

∑∞
k=1 ak(t)ϕk where (ϕk) are the usual eigenfunctions of A and

the ak are real valued functions to be determined. Then, formally commuting
derivatives with sums, (5.3) becomes

∞∑
1

ȧk(t)ϕk + ν
∞∑
1

akλkϕk =
∞∑
1

fkϕk

Thus,
ȧk(t) + νλkak = fk ∀k (5.4)

∴ ak(t) = e−νλktak(0) +
fk
νλk

(1− e−νλkt) ∀k

where ak(0) is known via u0. We now ask whether the partial sums uN =∑N
k=1 ak(t)ϕk converge. Although we have the ak explicitly, we showcase a
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new technique. Multiplying (5.4) by ak(t) we have

1

2

d

dt
a2k +

νλk
2
a2k ≤

|fk|2

2νλk

∴
d

dt
a2k + νλka

2
k ≤

|fk|2

νλk
(5.5)

We now apply an inequality/idea called Gronwall’s inequality. We know that
classical equations of the form

y : R → R
y′ + cy = d (5.6)

with c, d ∈ R have general solution y = AeBt+C for some constants A,B,C.
The hope is that if we instead have inequality

y + cy ≤ d

then y must satisfy y ≤ AeBt+C for some constants A,B,C. In our context,
this gives an exponential bound on |ak| and d is indeed a constant, but in
the version we prove d need not be constant in time.

Lemma 5.15. (Gronwall) Suppose y is absolutely continuous and solves
the classical equation {

y′(t) + cy(t) ≤ d(t)

y(0) = y0

Then

y ≤ e−cty0 +

∫ t

0

e−c(t−s)d(s)ds

In particular if d is constant,

y ≤ e−cty0 +
d

c

(
1− e−ct

)
Proof. This is easy, we do it the same way we would solve (5.6).

ecty′ + ecty ≤ ectd

∴
d

dt

(
ecty
)
≤ ectd(t)

∴ y ≤ e−cty0 +

∫ t

0

e−c(t−s)d(s)ds
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where for the last inequality we applied F.T.C, using absolute continuity of
y.

Applying Gronwall to (5.5),

ak(t)
2 ≤ e−νλktak(0)

2 +
|fk|2

(νλk)2
(1− e−νλkt) (5.7)

≤ e−νλ1tak(0)
2 +

1

ν2λ1

|fk|2

λk
· 1 (5.8)

Summing over k,

N∑
k

ak(t)
2 ≤ e−νλ1t

N∑
k

ak(0)
2 +

1

ν2λ1

N∑
k

|fk|2

λk

Recall V ′ = D(A−1/2) and the A−1/2 norm is the V ′ norm, so we have

N∑
k

ak(t)
2 ≤ e−νλ1t|u0|2 +

1

ν2λ1
∥f∥2V ′

Thus the series v :=
∑
ak(t)ϕk converges in H for every t and moreover its

H-norm is uniformly bounded in t by a constant. We can be more specific
than this.

Definition 5.16. Let T > 0 and X a Banach space. The space of continuous
functions from [0, T ] to X, denoted C([0, T ], X) is a Banach space with norm

∥f∥ = sup
t∈[0,T ]

∥f(t)∥X

Proposition 5.17. The sequence uN :=
∑N

1 ak(t)ϕk converges in C([0, T ], H).

Proof. Let 0 ≤ t < T arbitrary. Summing (5.8),

m∑
k=n

|ak(t)|2 ≤ e−νλ1t

m∑
k=n

|ak(0)|2 +
1

ν2λ1

n∑
k=m

|fk|2

λk

≤
m∑

k=n

|ak(0)|2 +
1

ν2λ1

m∑
k=n

|fk|2

λk

The RHS is independent of t and converges to zero as n∧m→ ∞ since both
series converge.
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We are throwing a lot of information away going from (5.7) to (5.8) by
replacing λk with λ1. Indeed, we can do better. Multiplying (5.7) by λk and
bounding the exponentials by 1,

λk|ak|2 ≤ λk|ak(0)|2 +
|fk|2

ν2λk

Thus,

∥v(t)∥2 ≤ ∥u0∥2 +
1

ν2
∥f∥2V ′

so v(t) ∈ V provided u0 ∈ V , which we did not assume. If we didn’t assume
u0 ∈ V , it wouldn’t really make sense to try show v(t) ∈ V for all t since
v(0) = u0. Surprisingly, we can show the next best thing:

Proposition 5.18. The constructed weak solution v =
∑

k ak(t)ϕk is in V
for all t > 0, assuming only u0 ∈ H.

Proof. We repeat our previous steps but don’t discard the exponential. From
(5.7) we have

λk|ak(t)|2 ≤ λke
−νλkt|ak(0)|2 +

|fk|2

ν2λk
(5.9)

∴ ∥v(t)∥2 ≤
∑
k

(λke
−νλkt)|ak(0)|2 +

∥f∥2V ′

ν2

The real function s → se−νts is bounded for all t > 0, say by the constant
Mt. Therefore

∥v(t)∥ ≤Mt|u0|+
∥f∥2V ′

ν2

i.e. v(t) ∈ V for all t > 0.

Repeating the approach in Proposition 5.17, one shows

Proposition 5.19. The sequence uN :=
∑N

1 ak(t)ϕk converges to v in
C([t0, T ], V ) for any 0 < t0 < T . Moreover, ∥v(t)∥ ≤ K(|u0|, t0, ∥f∥V ′) for all
t > t0.

Notation 5.20. Cloc((0, T ), V ) is the space of locally bounded continuous
functions on (0, T ),

Cloc((0, T ), V ) := {f : for all K ⊂ (0, T ) compact, f |K is continuous}
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and the topology is defined by: ϕn → 0 in Cloc((0, T ), V ) if for all compact
K, ϕn → 0 uniformly on K.

Remark 5.21. We wont use this space much, but Proposition 5.19 can be
summarised as uN → v in Cloc((0, T ), V ) (as well as the bound on ∥v∥).

We understand now that the behaviour can be bad at zero. What about
integration? From (5.9),

λk

∫ T

0

ak(t)
2dt ≤

∫ T

0

λke
−νλktak(0)

2 +
|fk|2

ν2λk
T

≤ 1

ν
(1− e−νλkT )ak(0)

2 +
|fk|2

ν2λk
T

When we integrate, the problem disappears. We can now sum over k to get,∫ T

0

∥uN∥2dt ≤
1

ν
|u0|2 +

T

ν2
∥f∥V ′

Thus uN is bounded in L2((0, T ), V ). Again, by being more careful, we show:

Proposition 5.22. The sequence uN :=
∑N

1 ak(t)ϕk converges to v in
L2((0, T ), V ) for any T > 0.

Proof.

∥un − um∥2L2((0,T ),V ) =

∫ T

0

m∑
k=n

λkak(t)
2dt

≤ 1

ν

m∑
k=n

ak(0)
2 +

T

ν2

m∑
k=n

|fk|2

λk

The RHS converges to zero as n ∧m→ ∞ since both series converge.

Corollary 5.23. AuN converges to Av in L2((0, T ), V ′).

Proof.

∥AuN − Av∥2L2((0,T ),V ′) =

∫ T

0

∥AuN − Av∥2V ′ds

≤ ∥A∥2V ′

∫ T

0

∥uN − v∥2V ds

→ 0
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We are yet to show v solves the Stokes problem in V ′. From (5.4), we know
the uN solve the finite dimensional problem:

˙uN + νAuN = PNf

Integrating,

uN(t)− uN(0) + ν

∫ t

0

AuN(s)ds = PNft (5.10)

We consider each term separately as N → ∞. Since uN → v in C([0, T ], H),
we have uN(t) → v(t) and uN(t) → u0 in H, and therefore in V ′. Also
PNf → f in V ′. The next lemma deals with the remaining term:

Lemma 5.24.
∫ t

0
AuN(s) →

∫ t

0
Av(s)ds in V ′ as N → ∞ for all t ∈ [0, T ].

Proof.

∥
∫ t

0

AuN(s)− Av(s)ds∥V ′ ≤
∫ t

0

∥AuN(s)− Av(s)∥V ′ds

≤ T 1/2

(∫ t

0

∥AuN − Av∥2V ′ds

)1/2

→ 0 (Corollary 5.23)

Thus the limit of (5.10) in V ′ as N → ∞ is

v(t)− u0 + ν

∫ t

0

Av(s)ds = ft in V ′

∴ v(t) = u0 +

∫ t

0

−νAv(s) + fds

∴ v̇ = −νAv(s) + f in V ′

by definition of v̇ and v(0) = u0 as desired. Note that we used the fact
−νAv+f ∈ L1((0, T ), V ′), which is true since Av ∈ L2((0, T ), V ) and f ∈ V ′

is independent of time.

We summarise this section:



48

Theorem 5.25. (Stokes weak existence) The time dependent Stokes
problem (5.3) has a weak solution v ∈ L2((0, T ), V )∩C([0, T ], H)∩Cloc((0, T ), V )
for all T > 0.

5.3. Uniqueness of weak solutions

Lemma 5.26. (Lions-Magenes) If u ∈ L2((0, T ), V ) and u̇ ∈ L2((0, T ), V ′)
then

⟨u̇, u⟩V ′,V =
1

2

d

dt
|u(t)|2

Moreover, |u(t)|2 is absolutely continuous on (0, T ) and,

|u(t)|2 − |u(s)|2 = 2

∫ t

s

⟨u̇(r), u(r)⟩V ′,V dr

for all t, s ∈ (0, T ).

Suppose u1, u2 ∈ L2((0, T ), V ) solve (5.3) with different initial conditions and
w := u1 − u2. Then

ẇ + νAw = 0 in V ′

with w(0) = u1(0)− u2(0) and w ∈ L2((0, T ), V ).

⟨ẇ, w⟩V ′,V + ν∥w∥2 = 0

∴
1

2

d

dt
|w(t)|2 + ν∥w∥2 = 0 (Lions-Magenes)

By Poincare, ∥w(t)∥ ≥ λ1|w(t)|, so

1

2

d

dt
|w(t)|2 + νλ1|w(t)|2 ≤ 0

∴ |w(t)|2 ≤ e−2νλ1t|w(0)|2 (Gronwall)

We summarise with the following theorem

Theorem 5.27. (Stokes weak well-posedness) If u1, u2 ∈ L2((0, T ), V )
are weak solutions to the time dependent Stokes equation (5.3), then

|u1(t)− u2(t)| ≤ e−νλ1t/2|u1(0)− u2(0)|

It follows that u1 and u2 converge to the same equilibrium as t→ ∞. More-
over, well-posedness holds in the C([0, T ], H) norm. In particular, the solu-
tions are uniquely determined by their initial conditions.
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We can also establish well-posedness for the L2([0, T ], V ) norm,

Proposition 5.28. Let u1, u2 ∈ L2((0, T ), V ) weak solutions to (5.3). Then,

∥u1 − u2∥L2((0,T ),V ) ≤
1√
2ν

|u1(0)− u2(0)|

Proof. We have
1

2

d

dt
|w(t)|2 + ν∥w∥2 = 0

Integrating,

1

2
(|w(T )|2 − |w(0)|2) + ν

∫ T

0

∥w∥2ds = 0

∴ ν

∫ T

0

∥w∥2ds ≤ 1

2
|w(0)|2

6. The Navier Stokes equation

6.1. Existence of weak solutions

The 3D NSE is given by
u̇− ν∆u+ (u · ∇)u+∇p = f

∇ · u = 0

u(0) = u0

for some known u0 ∈ H and f ∈ V ′ independent of time. Applying the usual
Helmholtz decoupling, we seek to solve,{

u̇+ νAu+B(u, u) = f in V ′

u(0) = u0 ∈ H
(6.1)

where we have asserted the equation should hold in V ′ as this section is
devoted to weak solutions. We combine all of the methods used to solve the
previous equations. Write u =

∑∞
1 ak(t)ϕk, uN =

∑N
1 ak(t)ϕk ∈ HN as usual.

Following the formal manipulations at the beginning of Section 5.2, we have

ȧk + νλkak +
∑
l,m≥1

alam(B(ϕl, ϕm), ϕk) = ⟨f, ϕk⟩V ′,V
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Unlike the previous case, we cannot solve this explicitly so we use Galerkin.
The Galerkin system is given by:{

ȧk + νλkak +
∑

l,m≤N alam(B(ϕl, ϕm), ϕk) = ⟨f, ϕk⟩
ak(0) = (u0, ϕk)

(6.2)

for k ≤ N .

Lemma 6.1. (Picard-Lindelof) Let f(t, s) : [0, 1]×Rd → Rd be continuous
in t and locally Lipschitz in s, and t0 ∈ (0, 1). Then the classical ODE{

ż = f(t, z)

z(t0) = z0

has a unique C1 solution in the interval [t0 − ϵ, t0 + ϵ] for some ϵ > 0.

Example 6.2. Not necessarily global, e.g. ż = z2 blows up in finite time.

Rewriting the Galerkin system, we have

˙uN = −νAuN − PNB(uN , uN) + PNf (6.3)

= F (uN)

This equation is in the finite dimensional space HN , so Picard-Lindelof may
be used. F is trivially continuous in time as it is constant. Moreover A+PNf
is Lipschitz in space because it is affine. It remains to show PNB(·, ·) is too.

∥PN(B(x, x)−B(y, y))∥ ≤ ∥B(u, u− v)∥+ ∥B(u− v, v)∥
≤ C(∥u∥1/2|u|1/2 + ∥v∥1/2|v|1/2)∥u− v∥

by Proposition 4.4, noting all norms are equivalent in finite dimensions. It
follows that PNB(·, ·) is locally Lipschitz. Applying Picard-Lindelof to F :
[−1, T ]×R3 → R3, where T is arbitrarily large, we see (6.3) has unique short
time solutions with initial condition specified at any t0 ∈ [0,∞).

Proposition 6.3. There is a unique global solution to the Galerkin system
(6.3) for each N .

Proof. Fix N and let y be the unique solution of (6.3) around t = 0 and
suppose the largest interval of existence of u is [0, τ). Note the interval must
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be half-open otherwise it is closed and we can extend it by Picard-Lindelof.
Then limt→τ∥y(t)∥∞ = ∞ otherwise we can extend it to the limit. Since
norms in N -dimensions are equivalent, we have limt→τ |y(t)| = ∞. We show
this is impossible.

Let (6.3) act on y, then

(ẏ, y) + ν(Ay, y) + (PNB(y, y), y) = (PNf, y)

∴
1

2

d

dt
|y|2 + ν∥y∥2 + 0 ≤ ∥f∥V ′∥y∥ (6.4)

We wish to use Gronwall, but we have both |y| and ∥y∥ in the mix and the
∥y∥ terms have different powers. To proceed, we do a magic trick that we will
use time and time again. Recall the trivial inequality a2+ b2 ≥ 2ab. We want
both ∥y∥2 terms to have related coefficients2, thus we apply this inequality
to a =

√
ν∥y∥ and b = 1√

ν
∥f∥V ′ to get

1

2

d

dt
|y|2 + ν∥y∥2 ≤ 1

2ν
∥f∥2V ′ +

1

2
ν∥y∥2

∴
1

2

d

dt
|y|2 + 1

2
νλ1|y|2 ≤

1

2ν
∥f∥2V ′

Thus by Gronwall,

|y(t)|2 ≤ e−λ1νt|u0|2 +
∥f∥2V ′

2ν2λ1
(6.5)

In particular, |y| is bounded, a contradiction.

We conclude from uniqueness of Lindelof-Picard, there is a unique solution
to (6.3) for t ∈ [0,∞] which we call uN that lives in HN , thus determining co-
efficients (ak,N)

N
k=1 such that uN =

∑N
1 ak,N(t)ϕk. However,

∑N
1 ak,N+1(t)ϕk

also solves (6.3) so we deduce there is a single choice of coefficients (ak)
∞
1

such that uN =
∑N

1 ak(t)ϕk.

From (6.5) we also learn, for any t > 0 arbitrary,

|uN(t)|2 ≤ |u0|2 +
∥f∥2V ′

2ν2λ1
∴ ∥uN∥C([0,T ],H) ≤ K0 (6.6)

2Or for a physicist, the same dimensions
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for some constant K0 = K0(u0, f, ν, λ). By Banach-Alaoglu, there is a sub-
sequence uNj

converging weakly to some v ∈ L∞([0, T ], H)3. The NSE has a
non-linear term unlike the Stokes equation, and weak convergence does not
play nice with non-linearities.

Example 6.4. yn = sinnx→ 0 weakly in C([0, 1]) but y2n = 1
2
− 1

2
cos 2nx→

1
2
weakly, not 0.

We aim to get strong convergence (perhaps along a further subequence) in
some norm. To do this, we will apply a compactness theorem in which we
require bounds on more norms. We just estimated the |uN(t)| norms, and
next we try ∥uN(t)∥. Recall that in the Proposition 6.3 we quickly discarded
estimates involving ∥y∥ for |y|. This is our first lead. Again, letting (6.4) act
on uN ,

( ˙uN , uN) + ν(AuN , uN) + (B(uN ,uN), uN) = ⟨f, uN⟩V ′,V

∴
1

2

d

dt
|uN |2 + ν∥uN∥2 + 0 ≤ ∥f∥V ′ |uN |

≤ ∥f∥V ′
∥u∥
λ
1/2
1

≤ ∥f∥2V ′

2λ1ν
+

1

2
ν∥u∥2

d

dt
|uN |2 + ν∥uN∥2 ≤

∥f∥2V ′

λ1ν

Integrating from 0 to T ,

|uN(T )|2 − |uN(0)|2 + ν

∫ T

0

∥uN(s)∥2ds ≤
∥f∥2V ′

νλ1
T

∴ |uN(T )|2 + ν

∫ T

0

∥uN(s)∥2ds ≤ |u0|2 +
∥f∥2V ′T

νλ1︸ ︷︷ ︸
=:K1

Thus ∥uN∥L2((0,T ),V ) ≤ K1 for all N , noting K1 is independent of N . By
Banach-Alaoglu, we have further convergent subsequence converging v in
L2((0, T ), V ) weak∗. We summarise our two results so far, and will see a
useful theorem applies.

3Banach Alaoglu can only be applied to a dual space, so we cannot apply it to
C([0, T ], H).
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Lemma 6.5. Let uN be the unique global solutions to (6.3) described in
Proposition 6.3. Then there is a subsequence uNj

and v ∈ L∞((0, T ), H) ∩
L2((0, T ), V ) such that{

uNj
→ v L∞((0, T ), H) weak∗

uNj
→ v L2((0, T ), V ) weak∗

(6.7)

Our candidate solution to (6.1) is v, but one will have a hard time show-
ing it indeed solves the equation using only the weak* convergence we have
established. We will now try to prove strong convergence in a suitable space.

Theorem 6.6. (Aubin-Lions Compactness) Suppose we have a sequence
of Banach space embeddings:

X1

compact
↪−−−−→ X0

cont.
↪−−−−→ X−1

For 1 ≤ p, q ≤ ∞, let

W = {u ∈ Lp((0, T ), X1) : u̇ ∈ Lq((0, T ), X−1)}

a subspace of Lp((0, T ), X1). Then,

(i) if p <∞ then W is compactly embedded in Lp((0, T ), X0).

(ii) If p = ∞ and q > 1 then W is compactly embedded in C([0, T ], X0).

Corollary 6.7. We have uN → v in L2((0, T ), H) strongly along a subse-
quence

Proof. We apply Aubin-Lions. Recall V
cpct.
↪−−→ H

cont.
↪−−→ V ′. We know that uN

is bounded in L2((0, T ), V ). The second condition, ˙uN ∈ Lq((0, T ), V ′), is
trivial for all q, because the Picard-Lindelof solutions uN are in C1([0, T ], V ′)
for any T > 0 (Proposition 6.3)4 and C([0, T ], V ′) ⊂ Lq((0, T ), V ′) for any q.
The conclusion follows.

To take limits in (6.3), we need to know ˙uN converges to v̇ and in what sense.

4In fact they are in C1([0, T ], C∞) since all norms in finite dimensions are equivalent.
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Proposition 6.8. The norms ∥ ˙uN∥L4/3((0,T ),V ′) are uniformly bounded in N

and in particular we have ˙uN → v̇ weakly in L4/3((0, T ), V ′).

Proof. From (6.3), we have

∥ ˙uN∥V ′ ≤ ν∥AuN∥V ′ + ∥PNB(uN , uN)∥V ′ + ∥f∥V ′

We show each term is bounded. Observe (or recall from Proposition 3.24),
∥AuN∥V ′ = supw∈V,∥w∥=1((u,w)) = ∥u∥, so∫ T

0

∥AuN∥2V ′ =

∫ T

0

∥uN∥2 ≤ K1
2

where we recall K1
2
is the constant bounding ∥uN∥L2((0,T ),V ). Lastly, for the

non-linearity we use our usual estimate

∥PNB(uN , uN)∥V ′ ≤ C∥uN∥1/2|uN |1/2∥uN∥
≤ CK

1/2
0 ∥uN∥3/2

Thus, ∫ T

0

∥PNB(uN , uN)∥4/3V ′ ≤ C4/3K
2/3
0

∫ T

0

∥uN∥2

is uniformly bounded in N . The last statement is Banach Alaoglu.

Remark 6.9. The only obstruction to getting ˙uN bounded in L2((0, T ), V ′)
is having PNB(uN , uN) bounded in L2((0, T ), V ′). To obtain this, we would
need a uniform bound on

C2K0

∫ T

0

∥uN∥3

i.e. uN bounded in L3, which we do not have. In 2D, one follows our methods
and gets uN bounded in L4, thus in L3.

We summarise what we have:

Lemma 6.10. Let uN be the unique global solutions to (6.3) described in
Proposition 6.3. Then there is a subsequence uNj

and v ∈ L∞((0, T ), H) ∩
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L2((0, T ), V ) with v̇ ∈ L4/3((0, T ), V ′) such that
uNj

→ v L∞((0, T ), H) weak∗
uNj

→ v L2((0, T ), V ) weak∗
˙uNj

→ v̇ L4/3((0, T ), V ′) weak∗
uNj

→ v L2((0, T ), H) strongly

(6.8)

Theorem 6.11. The limit v from Lemma 6.10 solves the 3D NSE (6.1)
weakly (i.e. in V ′).

Proof. Without loss of generality, assume the subsequence in Lemma 6.10 is
the whole sequence. Equation (6.3) states

˙uN + νAuN + PNB(uN , uN) = PNf

We analyse each term, applying Lemma 6.10. We know ˙uN → v̇ in L4/3((0, T ), V ′)
weakly. AlsoAuN → Av in L2((0, T ), V ′) weakly since uN → v in L2((0, T ), V )
weakly. Further, PNf → f in L2((0, T ), V ′). It remains to deal with the non-
linearity. Assuming this for now, we have

v̇ + νAv +B(v, v) = f in L4/3((0, T ), V ′)

and so by standard measure theory, we have, for almost all t ∈ (0, T ),

v̇(t) + νAv(t) +B(v, v)(t) = f in V ′

as desired. We now turn to the non-linearity. It is straightforward to check
B(uN , uN) is bounded in L4/3((0, T ), V ′).

Claim PNB(uN , uN) → B(v, v) in L2((0, T ), V ′) weakly.

We need, for all w ∈ V ,

lim
N→∞

∣∣∣∣∫ T

0

⟨PNB(uN , uN)−B(v, v), w⟩V ′,V ds

∣∣∣∣ = 0
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Suffices to show for w = ϕk.∣∣∣ ∫ T

0

⟨PNB(uN , uN)−B(v, v), ϕk⟩V ′,V ds
∣∣∣

≤
∫ T

0

|⟨B(uN − v, uN), ϕk⟩|+ |⟨B(v, uN − v), ϕk⟩| (N > k)

≤ C

∫ T

0

|uN − v|1/2∥uN − v∥1/2∥uN∥∥ϕk∥+ ∥v∥∥uN − v∥1/2|uN − v|1/2∥ϕk∥

≤ 2C∥ϕk∥
∫ T

0

|uN − v|1/2(∥uN∥+ ∥v∥)3/2

≤ 2C∥ϕk∥
(∫ T

0

|uN − u|2
)1/4(∫ T

0

(∥uN∥+ ∥v∥)2
)3/4

(Holder)

≤ 2C∥ϕk∥∥uN − v∥1/2L2((0,T ),H)

(∫ T

0

(∥uN∥+ ∥v∥)2
)3/4

where to get the second inequality we switched uN − v with ϕk. It remains
to show the above display tends to zero. Indeed, ∥uN − v∥L2((0,T ),H) → 0 by
Lemma 6.10 and the other term is bounded since ∥uN∥L2((0,T ),V ) is.

Remark 6.12.

� We showed that (6.1) holds for almost all t. In our approach, this is
the best we can do because we defined v to be a limit of Lp functions,
which are only defined almost everywhere. In the next section, we show
v has a continuous representative, so we can talk about properties of v
holding everywhere. However, we do not show that v̇ has a continuous
representative, so we cannot say the (6.1) holds for all t.

� Weak solutions are not unique in general.

6.2. Regularity of weak solutions

Notation 6.13. In this section, v is any weak solution of (6.1), not neces-
sarily the solution constructed in Theorem 6.11.

Proposition 6.14. Suppose v ∈ L2((0, T ), V ). Then there is a representative
of v in C([0, T ], V ′).
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Proof.

∥v(t)− v(s)∥V ′ = ∥ν
∫ t

s

Av(u)du+

∫ t

s

B(v, v)du+ (t− s)f∥V ′

≤ ν

∫ t

s

∥v(u)∥du+
∫ t

s

∥B(v, v)∥V ′du+ |t− s|∥f∥V ′

≤ ν
√

|t− s|

√∫ t

s

∥v(u)∥2du+ |s− t|1/4
(∫ t

s

∥B(v, v)∥4/3V ′

)3/4

+

∫
|t− s|∥f∥V ′

→ 0 as s→ t.

Remark 6.15. From the above proof we see that since we’re on a bounded
interval (0, T ), the last inequality implies Holder continuity with exponent
1
4
. From now on, we use v to refer to the continuous representative, not the
Lp-equivalence class. We skipped showing that B(v, v) ∈ L4/3((0, T ), V ′), but
this is easy to check.

We now show an even stronger form of continuity.

Notation 6.16. Define Hweak to be H equipped with its weak topology.
Thus v is Hweak-continuous if t→ t0 then (v(t), h) → (v(t0), h) for all h ∈ H.

Proposition 6.17. Suppose v ∈ L2((0, T ), V ) ∩ L∞((0, T ), H). Then v ∈
C([0, T ], Hweak).

Proof.

Claim ∃K > 0 such that |v(t)| ≤ K for all t ∈ [0, T ].

By assumption we have a constant K and E ⊂ [0, T ] with v(t) < K and
|E| = 0 for all t /∈ E. Suppose t0 ∈ E and take tn ∈ Ec such that tn → t0.
By the previous proposition, v(tn) → v(t0) in V ′. But also, |v(tn)| ≤ K
implies v(tn) converges weakly in H (possibly along a subsequence, which
we relabel). Thus v(t0) ∈ H and by the standard weak convergence result,
|v(t0)| ≤ lim inf |v(tn)| ≤ K as desired.

For all w ∈ V ,

(v(t), w) = ⟨v(t), w⟩V ′,V → ⟨v(t0), w⟩V ′,V = (v(t0), w).
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as t → t0, since v ∈ C([0, T ], V ′). It remains to extend this to all w ∈ H.
Indeed, let wn ∈ V such that wn → w in H. Then,

|(v(t)− v(t0), w)| ≤ |(v(t)− v(t0), w − wn)|+ |(v(t)− v(t0), wn)|
≤ 2K|w − wn|+ |(v(t)− v(t0), wn)|

∴ lim sup
t→t0

|(v(t)− v(t0), w)| ≤ 2K|w − wn|+ 0

→ 0

as n→ ∞.

Remark 6.18. This proposition didn’t directly use the fact v was a solution
of the 3D NSE, only that v ∈ C([0, T ], V ′). The weak solution we found in
the previous subsection satisfies the hypotheses of this proposition.

6.3. The Energy Inequality

Notation 6.19. In this section, v is the weak solution of (6.1) obtained in
Theorem 6.11.

We have
v̇ + νAv +B(v, v) = f in L4/3((0, T ), V ′)

Then, acting on v,∫ T

0

⟨v̇, v⟩V ′,V + ν∥v∥2 + 0dt =

∫ T

0

⟨f, v⟩V ′,V dt

∴
1

2
|v(t)|2 + ν

∫ T

0

∥v(t)∥2dt︸ ︷︷ ︸
final energy

=

∫ T

0

⟨f, v⟩dt+ 1

2
|u0|2︸ ︷︷ ︸

input energy

This is a nice result for the physicists. Unfortunately, it is wrong. We are
not allowed to act on v since we only know v ∈ L2((0, T ), V ), where as
L4/3((0, T ), V ′) = (L4((0, T ), V ))∗. In 2D, our previous methods would give
v ∈ L4((0, T ), V ), so this would work. Instead, we have:

Definition 6.20. A solution v to (6.1) is a Leray-Hopf solution if v ∈
L2([0, T ], V ) ∩ L∞([0, T ], H)
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1

2
|v(t)|2 + ν

∫ t

t0

∥v(s)∥2ds ≤
∫ t

t0

⟨f, v⟩ds+ 1

2
|v(t0)|2, ∀t > t0

for t0 = 0 and almost all t0 ∈ (0, T ). In words, energy can only be dissipated
over time.

Theorem 6.21. (Energy Inequality) The Galerkin solution v is Leray-
Hopf.

Proof. The argument given above works for the Galerkin system uN solving
(6.3) since the uN are even smooth with smooth derivatives, so certainly in
L4. Thus,

1

2
|uN(t)|2 + ν

∫ t

t0

∥uN(s)∥2ds =
∫ t

t0

⟨f, uN⟩ds+
1

2
|uN(t0)|2

Assume uN converges to v in L2((0, T ), H) (else take a subsequence). Then
there is a set E ⊂ [0, T ] of full measure such that uN(t) → v(t) in H for all
t ∈ E. Moreover, 0 ∈ E since uN(t) → u0 = v(0). Therefore,

(i) |uN(t)| → |v(t)| for all t ∈ E

(ii)
∫ t

t0
⟨f, uN⟩dt→

∫ t

t0
⟨f, v⟩dt

(iii) uN → v in L2((0, T ), V ) weakly, so

lim inf
N

∫ t

t0

∥uN(s)∥2ds ≥
∫ t

t0

lim inf
N

∥uN(s)∥2ds (Fatou)

≥
∫ t

t0

∥v(s)∥2ds (Weak convergence)

Hence for t, t0 ∈ E,

1

2
|v(t)|2 + ν

∫ t

t0

∥v(s)∥2ds ≤
∫ t

t0

⟨f, v⟩ds+ 1

2
|v(t0)|2

Lastly, we upgrade to ‘∀t’. Suppose t /∈ E and take tn ∈ E with tn → t.
We know v is Hweak-continuous, so v(tn) → v(t) weakly in H thus |v(t)|2 ≤
lim infn |v(tn)|2. The integrals are continuous in t with t0 fixed, thus

1

2
|v(t)|2 + ν

∫ t

t0

∥v(s)∥2ds ≤
∫ t

t0

⟨f, v⟩ds+ 1

2
|v(t0)|2
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Remark 6.22.

� The inequality says final energy is less than input energy. Thus there
is some unknown dissipation in the system.

� We used the fact our solutions came from Galerkin. It is unknown
whether there is a weak solution u to (6.1) with u ∈ L∞((0, T ), H) ∩
L2((0, T ), V ) with u̇ ∈ L4/3((0, T ), V ′) (i.e. the regularity of the Galerkin
solution shown in Lemma 6.10) which is not a Leray-Hopf solution.
Without regularity assumptions, one can show there are solutions with
the inequality the other way around, i.e. energy is increasing over time.

6.4. Existence of strong solutions

We seek to solve {
u̇+ νAu+B(u, u) = f in H

u(0) = u0
(6.9)

with f ∈ H and u0 ∈ V known. From the sections on weak solutions, we
know the Galerkin system{

˙uN + νAuN + PNB(uN , uN) = PNf

uN(0) = PNu0
(6.10)

has a unique solution for each N . We recall from (6.6) that we have a uniform
bound supN sup0≤t≤T |uN(t)| ≤ K0. The hope is that now, with the assump-
tion f, u0 ∈ H, we can find a uniform bound on ∥uN(t)∥. Unfortunately, this
is too much to ask5, and instead what we can obtain is a uniform bound on
a short time interval:

Proposition 6.23. (Young’s inequality) If a, b ≥ 0 and 1/p + 1/q = 1
then ab ≤ ap

p
+ bq

q

Lemma 6.24. The norms ∥uN∥C((0,T ∗),V ) are uniformly bounded on a short
time interval i.e. there is a T ∗ ∈ (0, T ] and constant K ′ such that

sup
N

sup
0≤t≤T ∗

∥uN∥ ≤ K ′

5If you manage to do it, email me before you email anyone else.
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Proof. Previously we wanted to bound |uN | so we let the equation (6.10) act
on uN . To bound the V -norm, we act on AuN .

1

2

d

dt
∥uN∥2 + ν|AuN |2 + (B(uN , uN), AuN) = (f, AuN) (6.11)

and we recall

|(B(uN , uN), AuN)| ≤ ∥uN∥∥∇uN∥L3|AuN |
≤ ∥uN∥C∥uN∥1/2|AuN |1/2|AuN |
≤ C∥uN∥3/2|AuN |3/2

≤ C4

4ν3/2
∥uN∥6 +

3ν

4
|AuN |2 (Young p = 4)

where the fudging constants have been inserted so that the units match.
Or alternatively, so that we have a ‘νAuN ’ term. We also apply Young’s
inequality in a clever way to the other term,

|(f, AuN)| ≤ |f ||AuN | ≤
2|f |2

ν
+
ν

8
|AuN |2

which prevents the |AuN |2 terms cancelling in a moment. Thus (6.11) be-
comes

1

2

d

dt
∥uN∥2 + ν|AuN |2 ≤

2|f |2

ν
+
ν

8
|AuN |2 +

1

4ν3/2
∥uN∥6 +

3ν

4
|AuN |2

∴
1

2

d

dt
∥uN∥2 +

ν

8
|AuN |2 ≤

2|f |2

ν
+

1

4ν3/2
∥uN∥6 (6.12)

∴
d

dt
∥uN∥2 ≤ C1(∥uN∥2 + C2)

3

for some constants C1, C2 > 0 depending on |f | and ν but not N . Everything
in the proof so far has been similar to what we have done before, and now
we do something tricky. Let zN = ∥uN∥3 + C2. Then,

˙zN ≤ C1z
3
N

It remains to show zN is bounded independently of N on some short time
interval. Since zN is continuous, we can find TN > 0 such that

zN(t) ≤ 2zN(0), ∀t ∈ [0, TN ]
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We define TN to be the supremum time with this property. If TN is finite, we
must have equality by continuity. Moreover,

˙zN(t) ≤ 8C1|zN(0)|3, t ∈ [0, TN ]

≤ 8C1(∥u0∥2 + C2)
3

∴ zN(t) ≤ 8C1(∥u0∥2 + C2)
3t+ zN(0)

∴ 2zN(0) ≤ 8C1(∥u0∥2 + C2)
3TN + zN(0)

∴ TN ≥ zN(0)

8C1(∥u0∥2 + C2)3

Thus, regardless of whether it is finite or not, we have TN ≥ T ∗ where

T ∗ :=
C2

8C1(∥u0∥2 + C2)3

Hence, on [0, T ∗], we have ∥uN(t)∥ ≤ 2∥u0∥2 + C2 =: K ′.

Lemma 6.25. The norms ∥uN∥L2((0,T ∗),D(A)) are uniformly bounded. Conse-
quently, AuN → Av in L2((0, T ∗), D(A)) weakly along a subsequence.

Proof. Some information was discarded during the proof of the previous
lemma. Returning to (6.12) and integrating,

(∥uN(T ∗)∥2 − ∥u0∥2) +
ν

4

∫ T ∗

0

|AuN |2ds ≤ cT ∗

∴ ν

∫ T ∗

0

|AuN |2 ≤ ∥u0∥2 + cT ∗

for some constant c depending on onK ′, |f |, and ν. We know that AuN → Av
in L2((0, T ∗), V ′) weakly along a subsequence from Theorem 6.11, hence
by Banach-Alaoglu AuN → Av in L2((0, T ∗), D(A)) along a further sub-
sequence.

Corollary 6.26. We have uN → v strongly in L2((0, T ∗), V ) along a subse-
quence, where v is the same limit from Lemma 6.10. Moreover, uN → v in
L2((0, T ∗), D(A)) weakly
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Proof. We note that everything from the section on weak solutions still holds,

in particular Lemma 6.10. We haveD(A)
cpct.
↪−−→ V

cont.
↪−−→ H. The sequence uN is

bounded in L2((0, T ∗), D(A)) by the previous lemma and ˙uN ∈ Lq((0, T ∗), H)
for any q for the same reason as in Corollary 6.7. Thus, by Aubin-Lions, uN
has a L2((0, T ∗), V ) convergent subsequence and the conclusion follows. The
‘Moreover’ is Banach Alaoglu on the previous lemma.

Solving the NSE (6.9) in H is to say that v̇(t) + νAv(t) + B(v, v)(t) = f in
H for almost all t ∈ [0, T ∗]. This is equivalent to

v̇ + νAv +B(v, v) = f in L2((0, T ∗), H)

since equal in Lp is equivalent to being equal almost everywhere. The previous
Corollary 6.26 gives v and Av in L2((0, T ∗), H), but we do not yet know about
v̇ and B(v, v). We recall in the case of weak solutions, we only had B(v, v) in
L4/3, which is weaker than in L2. In this case we will obtain what we want,
and a little more.

Lemma 6.27. We have PNB(uN , uN) uniformly bounded in L4((0, T ∗), H)
andB(v, v) ∈ L4((0, T ∗), H). Moreover, PNB(uN , uN) → B(v, v) in L4((0, T ∗), H)
weakly along a subsequence.

Proof. Since we are in finite dimensions, we know PNB(uN , uN) ∈ H.

|PNB(uN , uN)| ≤ sup
w∈H
|w|=1

(B(uN , uN), w)

= sup
|w|=1

∫
Ω

(uN · ∇)uN · w

Note that unlike in the weak case, we put the L2 norm on w and not the L6

norm.

≤ ∥uN∥L6∥∇uN∥L3

≤ C∥uN∥∥∇uN∥H3/2

≤ C∥uN∥∥uN∥1/2|uN |1/2

≤ C(K ′)3/2|AuN |1/2

where the last inequality is Lemma 6.24. Thus PNB(uN , uN) is uniformly
bounded in L4((0, T ∗), H). Recall from Theorem 6.11 that PNB(uN , uN) →
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B(v, v) in L2((0, T ∗), V ′) along a subsequence. Hence, after applying a stan-
dard Banach-Alaoglu argument we have PNB(uN , uN) → B(v, v) in L4((0, T ∗), H)
weakly along a subsequence.

Corollary 6.28. We have ˙uN uniformly bounded in L2((0, T ∗), H). Conse-
quently, ˙uN → v̇ in L2((0, T ∗), H) weakly along a subsequence.

Proof. We know

| ˙uN | ≤ ν|AuN |+ |PNB(uN , uN)|+ |f |

Each term on the RHS is bounded in L2((0, T ∗), H), hence so is ˙uN . The
usual Banach-Alaoglu argument gives ˙uN → v̇ in L2((0, T ∗), H) along a sub-
sequence, noting ˙uN → v̇ in L4/3((0, T ∗), V ′) along a subsequence from The-
orem 6.11.

Corollary 6.29. The limit of the Galerkin system v satisfies (6.9) for t ∈
[0, T ∗], where T ∗ > 0 is a constant depending only on ∥u0∥, |f |2, and ν.
Moreover, v ∈ L2((0, T ∗), D(A)) ∩ C((0, T ∗), V ) and v̇ ∈ L2((0, T ∗), H).

Proof. Let w ∈ L2((0, T ∗), H) arbitrary act on the Galerkin equation (6.10).
The previous lemmas give weak convergence of each term as N → ∞, and
we see (6.9) holds.

6.5. Regularity of strong solutions

Let v be any solution to (6.9) in L2((0, T ), D(A)), i.e.

v̇ + νAv +B(v, v) = f in L2((0, T ), D(A))

Acting on v ∈ L2((0, T ), D(A)),∫ T

0

(v̇, v) + ν(Av, v) + (B(v, v), v)dt =

∫ T

0

(f, v)dt

∴
∫ T

0

1

2

d

dt
|v|2 + ν∥v∥2 + 0dt =

∫ T

0

(f, v)dt

∴
1

2
v(T )2 + ν

∫ T

0

∥v(t)∥2dt+
∫ T

0

(f, v)dt+ |u0|2
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gives the Energy equality. Note this is the same proof given at the beginning
of Section 6.3 (which is now correct).

We now prove another regularity result.

Proposition 6.30. The map t → ∥v(t)∥ is continuous and moreover v ∈
C([0, T ], Vweak).

Proof. Letting (6.9) act on Av ∈ L2((0, T ∗), H),

(v̇, Av) + ν|Av|2 + (B(v, v), Av) = (f, Av)

∴
1

2

d

dt
∥v∥2 + ν|Av|2 + (B(v, v), Av) = (f, Av) (Lions-Magenes)

Integrating for s, t arbitrary,

∥v(s)∥2 − ∥v(t)∥2 = −2ν

∫ s

t

|Av|2 + 2

∫ s

t

(B(v, v), Av) +

∫ s

t

(f, Av)

and so the first claim is proven provided (B(v, v), Av) ∈ L1 (as the others
are).

|(B(v, v), Av)| ≤ ∥v∥∥v∥1/2|Av|1/2|Av|
= ∥v∥3/2|Av|3/2

≤ (K ′)3/2|Av3/2|

Hence (B(v, v), Av) ∈ L4/3(0, T ) ⊂ L1(0, T ).

For the second claim, the proof is identical to Proposition 6.17 with the
Sobolev spaces shifted up by one.

:C

6.6. Uniqueness of strong solutions

Let u, v be two solutions to (6.9) on the interval (0, T ) satisfying the regularity
conclusions in Corollary 6.29 and w = u− v. Then,

ẇ + νAw +B(u,w) +B(w, u)−B(w,w) = 0 in L2((0, T ), H)
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Acting on w ∈ L2((0, T ), H),

(ẇ, w) + ν(Aw,w) + (B(w, u), w) = 0

∴
1

2

d

dt
|w|2 + ν∥w∥2 + (B(w, u), w) = 0

∴
1

2

d

dt
|w|2 + ν∥w∥2 ≤ |(B(w, u), w)|

≤ |w|1/2∥w∥1/2∥u∥∥w∥

≤ |w|1/2∥w∥3/2∥u∥

We are faced with the same situation that we have seen many times before,
where we wish to remove ∥w∥ from the picture so that Gronwall can be
applied. To do this, we apply Young’s inequality on the RHS with a fudging
constant ν3/4 so that the coefficients of ∥w∥2 on each side are comparable (or
so that ‘dimensions match’):

ν3/4∥w∥3/2(ν−3/4|w|1/2∥u∥) ≤ 3

4
ν∥w∥2 + 1

4
(ν−3|w|2∥u∥4)

and so we have

1

2

d

dt
|w|2 ≤ 1

4ν3
|w|2∥u∥4

∴ |w(t)|2 ≤ eC
∫ t
0 ∥u∥

4dτ |w(0)|2 (Gronwall)

for some constant C depending on ν. We conclude that if w(0) = 0 (i.e.
u(0) = v(0)) then w = 0 and even if we don’t assume this we have the
stability estimate:

Theorem 6.31. (Strong NSE well posedness) Let u, v be two solutions
to (6.9) on (0, T ) except possibly with different initial conditions. Then for
all t ∈ (0, T ),

|v(t)− u(t)| ≤ c|v(0)− u(0)|
for some constant c depending on ν and T (or alternatively, a function grow-

ing like eC
∫ t
0 ∥u∥

4dτ ). In particular, solutions are uniquely determined by their
initial condition.

Remark 6.32. In 2D, one shows weak solutions are unique and strong so-
lutions exist globally. For 3D, this yields the Millenium Prize.
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6.7. Weak solutions are strong solutions

In the previous section, we showed that assuming f ∈ H, the weak solution
found in Section 6.1 is actually a strong solution. In this section, we show
any weak solution with the same level of regularity is also a strong solution.

Theorem 6.33. Let u ∈ C([0, T ], Hweak)∩L2((0, T ), V ) and u̇ ∈ L4/3((0, T ), V ′)
with u(0) = u0 ∈ V be a solution to (6.1) satisfying the energy inequality for
all t:

1

2
|u(t)|2 + ν

∫ t

0

∥u(s)∥2ds ≤
∫ t

0

(f, u(s))ds+
1

2
|u0|2

Suppose that a (unique) solution v to (6.9) exists on [0, T ] with v(0) = u0.
Then u(t) = v(t) for all t ∈ [0, T ].

Proof. Let w(t) = u(t)− v(t) ∈ V ′ then

ẇ + νAw +B(v, w) +B(w, v)−B(w,w) = 0

holds in L4/3((0, T ), V ′) – the weakest space each term belongs to. Following
the idea of the proof of Theorem 6.31, we would want to act on w now. Unfor-
tunately, we can’t as we don’t know w ∈ L4((0, T ), V ) = (L4/3((0, T ), V ′))∗.
We use ‘Serrin’s trick’6

u̇+ νAu+B(u, u) = f in L4/3((0, T ), V ′)

∴ ⟨u̇, v⟩V ′,V + ν((u, v)) + ⟨B(u, u), v⟩V ′,V = (f, v) (6.13)

since v ∈ L∞((0, T ), V ) ⊂ L4((0, T ), V ) and this holds in L1(0, T ) since each
term is integrable. Also,

v̇ + νAv +B(v, v) = f in L2((0, T ), H)

but u ∈ L2((0, T ), V ) ⊂ L2((0, T ), H) so we can take the action:

⟨v̇, u⟩+ ν((v, u)) + ⟨B(v, v), u⟩ = (f, u) (6.14)

Summing (6.13) and (6.14),

⟨u̇, v⟩+ ⟨v̇, u⟩+ 2ν((v, u)) + ⟨B(u, u), v⟩+ ⟨B(v, v), u⟩ = (f, u+ v)

6More accurately due to a graduate student of Serrin
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in L4/3((0, T ), V ′). Note d
dt
(u, v) = ⟨u̇, v⟩+ ⟨v̇, u⟩ by Lions-Magenes7 and

⟨B(u, u), v⟩+ ⟨B(v, v), u⟩ = ⟨B(u, u), v⟩ − ⟨B(v, u), v

= ⟨B(w, u), v⟩
= ⟨B(w,w), v⟩

Hence

d

dt
(u, v) + 2ν((v, u))− ⟨B(w, v), w⟩ = (f, u+ v) (6.15)

Now,

|w|2 = |u|2 + |v|2 − 2(u, v)

≤ 2

∫ t

0

(f, u+ v)ds− 2ν

∫ t

0

∥u(s)∥2 + ∥v(s)∥2ds− 2(u, v) + 2|u0|2

by the energy inequality on u and v. Substituting (6.15),

= 4ν

∫
((v, u))− 2

∫
⟨B(w, v), w⟩ − 2ν

∫
∥u(s)∥2 + ∥v(s)∥2

= 2

∫
⟨B(w, v), w⟩ − 2ν

∫
∥w∥2

Then,
1

2

d

dt
|w|2 + ν∥w∥2 − ⟨B(w, v), w⟩ ≤ 0

which is what we would have if we let the original equation (6.33) act on w!
Now we estimate as usual,

1

2

d

dt
|w|2 + ν∥w∥2 ≤ ∥w∥∥v∥∥w∥1/2|w|1/2

≤ 3ν∥w∥2

4
+

∥v∥4|w|2

4

∴
d

dt
|w|2 + 1

2
ν∥w∥2 ≤ 1

2
∥v∥4|w|2

∴
d

dt
|w|2 ≤ 1

2
∥v∥4|w|2

and we conclude by Gronwall that |w| ≡ 0.

7This requires an extension of Lions-Magenes to Lp,Lq with 1/p + 1/q = 1 as well as
the polarisation identity
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