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1.1 Convolutions

If f , g are functions mapping Rn to C, then we define the convolution of f and g to be:

(f ? g)(x) =

∫
Rn
f(y)g(x− y)dy,

provided the integral exists. This will happen if (for example) f ∈ C0
0 (Rn) and f ∈ C0(Rn).

Lemma 1. Suppose f, g, h ∈ C∞0 (Rn). Then:

f ? g = g ? f, f ? (g ? h) = (f ? g) ? h.

and ∫
Rn

(f ? g)(x)dx =

∫
Rn
f(x)dx

∫
Rn
g(x)dx.

Proof. With the change of variables y = x− z, we have1

(f ? g)(x) =

∫
Rn
f(y)g(x− y)dy =

∫
Rn
f(x− z)g(z)dz = (g ? f)(x)

Next, we calculate:

[f ? (g ? h)] (x) =

∫
Rn
f(y)

(∫
Rn
g(z)h(x− y − z)dz

)
dy

=

∫
Rn
f(y)

(∫
Rn
g(w − y)h(x− w)dw

)
dy

=

∫
Rn

(∫
Rn
f(y)g(w − y)dy

)
h(x− w)dw

= [(f ? g) ? h] (x)

Above we have made the substitution w = y + z to pass from the first to second line, and
we have used the fact that f, g, h ∈ C∞0 (Rn) to invoke Fubini’s theorem when passing

1If you’re worried about a missing minus sign from the change of variables when n is odd, observe:∫ ∞
−∞

k(x)dx =

∫ −∞
∞

k(−y)d(−y) = −
∫ −∞
∞

k(−y)dy =

∫ ∞
−∞

k(−y)dy.
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from the second to third line. Finally, we calculate:∫
Rn

(f ? g)(x)dx =

∫
Rn

(∫
Rn
f(y)g(x− y)dy

)
dx

=

∫
Rn

(∫
Rn
f(y)g(x− y)dx

)
dy

=

∫
Rn

(
f(y)

∫
Rn
g(z)dz

)
dy

=

∫
Rn
f(x)dx

∫
Rn
g(z)dy.

where again, the fact that f, g ∈ C∞0 (Rn) allows us to invoke Fubini.

The assumption that the functions are smooth and compactly supported is certainly
overkill in this theorem. It would be enough, for example, to consider functions in C0

0 (Rn),
or even weaker spaces, provided we can justify the application of Fubini’s theorem.

1.1.1 Differentiating convolutions

A remarkable property of the convolution is that the regularity of f ? g is determined by
the regularity of the smoother of f and g. This is a result of the following Lemma:

Theorem 2. Suppose f ∈ L1
loc.(Rn) and g ∈ Ck0 (Rn) for some k ≥ 0. Then f ?g ∈ Ck(Rn)

and
Dα(f ? g) = f ? Dαg,

for any multiindex with |α| ≤ k.

Before we prove this, it’s convenient to prove a technical Lemma which will streamline
the proof.

Lemma 3. a) Suppose f ∈ C0
0(Rn) and {zi}∞i=1 ⊂ Rn is a sequence with zi → 0 as

i→∞. Then for any x ∈ Rn:

i) τzjf(x)→ f(x) as j →∞.

ii)
∣∣τzjf(x)

∣∣ ≤ (supRn |f |)1BR(0)(x), for some R > 0 and all j.

b) Suppose f ∈ C1
0 (Rn) and {hj}∞j=1 ⊂ R is a sequence with hj → 0 as j →∞. Then for

any x ∈ Rn:

i) ∆
hj
i f(x)→ Dif(x) as j →∞.

ii)
∣∣∣∆hj

i f(x)
∣∣∣ ≤ (supRn |Dif |)1BR(0)(x), for some R > 0 and all j.

Proof. a) i) Recall τzjf(x) = f(x − zj). Clearly since zj → 0, f(x − zj) → f(x) as
j →∞ by the continuity of f .
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ii) Since zj → 0, there exists some ρ > 0 such that zj ∈ Bρ(0) for all j. Now

supp τzjf = supp f + zj ⊂ supp f +Bρ(0).

Since the sum of two bounded set is bounded, we conclude that there exists R > 0
such that supp τzjf ⊂ BR(0). Thus τzjf = τzjf1BR(0) and we estimate:∣∣τzjf(x)

∣∣ =
∣∣τzjf(x)

∣∣1BR(0)(x) ≤ sup
Rn
|f |1BR(0)(x).

b) Suppose f ∈ C1
0 (Rn) and {hj}∞j=1 ⊂ R is a sequence with hj → 0 as j →∞. Then for

any x ∈ Rn:

i) From the definition of the difference quotient and of the partial derivative:

∆
hj
i f(x) =

f(x+ hjei)− f(x)

h
→ Dif(x), as j →∞.

ii) Since hj → 0, there is some k > 0 such that |hj | ≤ k for all j. We have:

supp ∆
hj
i f ⊂ supp τ−heif ∪ supp f = (supp f − hjei) ∪ supp f

⊂
(
supp f +Bρ(0)

)
∪ supp f

⊂ BR(0)

for some R > 0 since the union of two bounded sets is bounded. Thus ∆
hj
i f =

∆
hj
i f1BR(0). We also observe that by the mean value theorem, for any h ∈ R,

there exists s ∈ R with |s| < |h| such that

f(x+ hjei)− f(x)

h
= Dif(x+ sei)

thus ∣∣∣∆hj
i f(x)

∣∣∣ ≤ sup
Rn
|Dif | .

Putting these two facts together, we readily find:∣∣∣∆hj
i f(x)

∣∣∣ =
∣∣∣∆hj

i f(x)
∣∣∣1BR(0)(x) ≤ sup

Rn
|Dif |1BR(0)(x).

Now, with this technical result in hand we can attack the proof our original theorem.

Proof of Theorem 2. 1. First we establish the result for k = 0. We need to show that
if f ∈ L1

loc.(Rn) and g ∈ C0
0(Rn) then f ? g is continuous. To show this, it suffices

to show that f ? g(x− zj)→ f ? g(x) for any sequence {zj}∞j=1 with zj → 0. Now,
note that

f ? g(x− zj) =

∫
Rn
f(y)g(x− zj − y)dy =

∫
Rn
f(y)τzjg(x− y)dy.
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Now, sending j →∞, we are done, so long as we can justify interchanging the limit
and the integral. Note that for any fixed x and all j:∣∣f(y)τzjg(x− y)

∣∣ ≤ sup
Rn
|g|1BR(0)(x− y) |f(y)|

for some R by the previous Lemma. Since f ∈ L1
loc.(Rn) the right hand side is

integrable, and so by the dominated convergence theorem:

lim
j→∞

f ? g(x− zj) =

∫
Rn

lim
j→∞

f(y)τzjg(x− y)dy =

∫
Rn
f(y)g(x− y)dy = f ? g(x).

2. Now suppose that f ∈ L1
loc.(Rn) and g ∈ C1

0 (Rn). Clearly f ? Dig is continuous by
the previous argument. To show f ? g ∈ C1(Rn), it suffices to show that for any
x ∈ Rn and any sequence {hj}∞j=1 ⊂ R with hj → 0 we have:

lim
j→∞

∆
hj
i f ? g(x) = f ? Dig(x).

Note that

∆
hj
i f ? g(x) =

f ? g(x+ hjei)− f ? g(x)

h

=

∫
Rn
f(y)

(
g(x+ hjei − y)− g(x− y)

h

)
dy

=

∫
Rn
f(y)∆

hj
i g(x− y)dy

so that again we are done provided we can send j →∞ and interchange the limit
and the integral. An argument precisely analogous to the previous case allows us to
invoke the DCT and deduce that:

lim
j→∞

∆
hj
i f ? g(x) =

∫
Rn

lim
j→∞

f(y)∆
hj
i g(x− y)dy = f ? Dig(x).

3. The case where f ∈ Ck0 (Rn) with k > 1 now follows by a simple induction.

Exercise 1.1. Show that Theorem 2 holds under the alternative hypotheses:

a) f ∈ L1(Rn), g ∈ Ck(Rn) with supRn |Dαg| <∞ for all |α| ≤ k.

b) f ∈ L1(Rn) with supp f compact, g ∈ Ck(Rn).

We have shown that when two functions are convolved, loosely speaking the resulting
function is at least as regular as the better of the two original functions. It is also
important to know how convolution modifies the support of a function.
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Lemma 4. Suppose f ∈ L1
loc.(Rn) and g ∈ Ck0 (Rn) for some k ≥ 0. Then2

supp (f ? g) ⊂ supp f + supp g.

Proof. Recall:

f ? g(x) =

∫
Rn
f(y)g(x− y)dy.

Clearly, if f ? g(x) 6= 0, then there must exist y ∈ Rn such that y ∈ supp f and
x− y = z ∈ supp g. Thus x = y + z with y ∈ supp f and z ∈ supp g. This tells us that:

{x ∈ Rn : f ? g(x) 6= 0} ⊂ supp f + supp g.

Since supp f is closed and supp g is compact, we know that supp f + supp g is closed,
thus

supp f ? g = {x ∈ Rn : f ? g(x) 6= 0} ⊂ supp f + supp g,

which is the result we require.

Exercise 1.2. Show that if f ∈ Ck0 (Rn) and g ∈ C l0(Rn) then f ?g ∈ Ck+l0 (Rn). Conclude
that D(Rn) is closed under convolution.

1.1.2 Approximation of the identity

An important use of the convolution is to construct smooth approximations to func-
tions in various function spaces. The following theorem is very useful in constructing
approximations:

Theorem 5. Suppose φ ∈ C∞0 (Rn) satisfies:

i) φ ≥ 0

ii) supp φ ⊂ B1(0)

iii)
∫
Rn φ(x)dx = 1

Such a φ exists, for example we can take φ(x) = C exp
(

1
4|x|2−1

)
for |x| < 1/2 and

φ(x) = 0 otherwise, with C chosen suitably. Define:

φε(y) =
1

εn
φ
(y
ε

)
.

Then:
2Strictly speaking, we haven’t defined the support of a measurable function. We can do this in several

ways, but the simplest is to define:

supp f =
⋂
{E ⊂ Rn : E is closed, and f = 0 a.e. on Ec}.

In other words supp f is the smallest closed set such that f vanishes almost everywhere on its complement.
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a) If f ∈ Ck0 (Rn), then φε ? f is smooth, and

Dα (φε ? f)→ Dαf

uniformly on Rn for any multi-index with |α| ≤ k.

b) If g ∈ Lp(Rn) with 1 ≤ p <∞, then φε ? g is smooth, and

φε ? g → g in Lp(Rn).

c) Suppose f ∈ Ck(Rn) with supRn |Dαf | <∞ for |α| ≤ k, and suppose g ∈ L1(Rn) with
g ≥ 0,

∫
Rn g(x)dx = 1. Set gε(y) = ε−ng

(
ε−1y

)
. Then f ? gε ∈ Ck(Rn), and

Dα (f ? gε) (x)→ Dαf(x)

for any x ∈ Rn for any multi-index with |α| ≤ k.

Proof. a) Note that the rescaling of φ to produce φε is such that a change of variables
gives: ∫

Rn
φε(y)dy = 1.

By Theorem 2, we have that Dα(φε ? f) = φε ? D
αf for any |α| ≤ k. Using these two

facts, we calculate:

Dα(φε ? f)(x)−Dαf(x) =

∫
Rn
φε(y)Dαf(x− y)dy −Dαf(x)

∫
Rn
φε(y)dy

=

∫
Rn
φε(y) [Dαf(x− y)−Dαf(x)] dy

=

∫
B1(0)

φ(z) [Dαf(x− εz)−Dαf(x)] dz

where in the last line we made the substitution y = εz, and noted that φ has support in
B1(0), so we can restrict the range of integration. Now, since φ ≥ 0, we can estimate:

|Dα(φε ? f)(x)−Dαf(x)| ≤
∫
B1(0)

φ(z) |Dαf(x− εz)−Dαf(x)| dz

≤ sup
z∈B1(0)

|Dαf(x− εz)−Dαf(x)| ×
∫
B1(0)

φ(z)dx

= sup
z∈B1(0)

|Dαf(x− εz)−Dαf(x)|

since
∫
Rn φ = 1. Now, since Dαf is continuous and of compact support, it is uniformly

continuous on Rn. Fix ε̃ > 0. There exists δ such that for any v, w ∈ Rn with
|x− y| < δ, we have

|Dαf(v)−Dαf(w)| < ε̃

For any x ∈ Rn, taking ε < δ, and v = x + εz, w = x with z ∈ B1(0) we have
|v − w| < δ, so:

|Dαf(x− εz)−Dαf(x)| < ε̃
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holds for any x ∈ Rn, z ∈ B1(0). We have therefore shown that for any ε̃ > 0, there
exists δ such that for any ε < δ we have:

sup
x∈Rn

|Dα(φε ? f)(x)−Dαf(x)| < ε̃.

This is the statement of uniform convergence on Rn.

b) For this proof, we shall require certain facts from Measure Theory. First we require
Minkowski’s Integral Identity (see Exercise 1.3). This states3 that for F : Rn×Rn → C
a measurable function, we have the estimate:[∫

Rn

∣∣∣∣∫
Rn
F (x, y)dx

∣∣∣∣p dy] 1
p

≤
∫
Rn

[∫
Rn
|F (x, y)|p dy

] 1
p

dx

Now, following the calculation in the previous proof, we readily have that:

|(φε ? g)(x)− g(x)| ≤
∫
Rn
φ(z) |g(x− εz)− g(x)| dz

Integrating and applying Minkowski’s integral inequality, we have:

||φε ? g − g||Lp(Rn) =

[∫
Rn
|(φε ? g)(x)− g(x)|p dx

] 1
p

≤
[∫

Rn

∣∣∣∣∫
Rn
φ(z) |g(x− εz)− g(x)| dz

∣∣∣∣p dx] 1
p

≤
∫
Rn

[∫
Rn
φ(z)p |g(x− εz)− g(x)|p dx

] 1
p

dz

=

∫
Rn
φ(z) ||τεzg − g||Lp(Rn) dz (1.1)

To establish our result it will suffice to set ε = εj , where {εj}∞j=1 ⊂ R is any sequence
with εj → 0, and show that

∣∣∣∣φεj ? g − g∣∣∣∣Lp(Rn) → 0. Note that since
∣∣∣∣τεjzg∣∣∣∣Lp(Rn) =

||g||Lp(Rn) we have:

φ(z)
∣∣∣∣τεjzg − g∣∣∣∣Lp(Rn) ≤ 2φ(z) ||g||Lp(Rn)

so the integrand is dominated uniformly in j by an integrable function. Now we claim
(another Measure Theoretic / Functional Analysis fact, see Lemma 7) that as y varies,
τy : Lp(Rn)→ Lp(Rn) is a continuous family of bounded linear operators. This means
that for each z ∈ Rn we have:

lim
j→∞

∣∣∣∣τεjzg − g∣∣∣∣Lp(Rn) = 0.

Thus we can apply the Dominated Convergence Theorem to the integral on the right
hand side of 1.1, and conclude that

lim
j→∞

∣∣∣∣φεj ? g − g∣∣∣∣Lp(Rn) = 0.

3There is more general statement for a map F : X × Y → C, which is measurable with respect to the
product measure µ× ν where (X,µ) and (Y, ν) are measure spaces.
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c) Again, by Theorem 2, we have that Dα(f ? gε) = Dαf ? gε for any |α| ≤ k. By a
change of variables, we calculate:

Dα(f ? gε)(x) =

∫
Rn
gε(y)Dαf(x− y)dy =

∫
Rn
g(y)Dαf(x− εz)dz

Now, clearly for each fixed x ∈ Rn:

g(z)Dαf(x− εz)→ g(z)Dαf(x)

for z ∈ Rn as ε→ 0. Furthermore,

|g(z)Dαf(x− εz)| ≤ g(z) sup
Rn
|Dαf |

which is an integrable function of z, so by the Dominated convergence theorem, we
conclude:

Dα(f ? gε)(x)→ Dαf(x)

∫
Rn
g(z)dz = Dαf(x)

as ε→ 0.

The final application of convolutions is to the construction of cut-off functions. These
are often extremely useful for localising a problem to a particular region of interest for
some reason or other.

Lemma 6. Suppose Ω ⊂ Rn is open, and K ⊂ Ω is compact. Then there exists χ ∈ C∞0 (Ω)
such that χ = 1 in a neighbourhood of K.

Proof. Since K is compact and ∂Ω is closed, there exists ε > 0 such that d(K, ∂Ω) > 4ε.
We define Kε = K +B2ε(0). As the sum of two compact sets, Kε is compact. Moreover,
Kε ⊂ Ω. Suppose φε is as in Theorem 5. Consider:

χ := φε ? 1Kε .

We have by Theorem 2 that χ ∈ C∞(Rn) and from Lemma 4 we deduce:

supp χ = Kε + supp φε ⊂ K +B2ε(0) +Bε(0) = K +B3ε(0) ⊂ Ω.

Thus χ ∈ C∞0 (Ω). Now, suppose x ∈ K +Bε(0). Then x+Bε(0) ⊂ Kε and so:

χ(x) =

∫
Rn
φε(y)1Kε(x− y)dy

=

∫
Bε(0)

φε(y)1Kε(x− y)dy

= φε(y)dy = 1.

Thus χ(x) = 1 for x ∈ K +Bε(0), which is a neighbourhood of K.
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The following exercise and Lemma are included for completeness, as they establish
results required for the proof of Theorem 5.

Exercise 1.3 (*). Suppose that F : Rn×Rn → R is a positive integrable simple function,

a) Show that Minkowski’s integral inequality holds for the case p = 1:∫
Rn

∣∣∣∣∫
Rn
F (x, y)dx

∣∣∣∣ dy ≤ ∫
Rn

∫
Rn
|F (x, y)| dydx

b) Next prove Young’s inequality: if a, b ∈ R+ and p, q > 1 with p−1 + q−1 = 1 then:

ab ≤ ap

p
+
bq

q

Hint: set t = p−1, consider the function log [tap + (1− t)bq] and use the concavity of
the logarithm

c) With p, q > 1 such that p−1 + q−1 = 1, show that if ||f ||p = 1 and ||g||q = 1 then∫
Rn
|f(x)g(x)| dx ≤ 1.

Deduce Hölder’s inequality:∫
Rn
|f(x)g(x)| dx ≤ ||f ||p ||g||q , for all f ∈ Lp(Rn), g,∈ Lq(Rn).

d) Set G(y) =
(∫

Rn F (x, y)dx
)p−1

i) Show that if q = p
p−1 :

||G||Lq(Rn) =

∣∣∣∣∣∣∣∣∫
Rn
F (x, ·)dx

∣∣∣∣∣∣∣∣p−1
Lp(Rn)

ii) Show that: ∣∣∣∣∣∣∣∣∫
Rn
F (x, ·)dx

∣∣∣∣∣∣∣∣p
Lp(Rn)

=

∫
Rn

(∫
Rn
G(y)F (x, y)dy

)
dx

iii) Applying Hölder’s inequality, deduce:∣∣∣∣∣∣∣∣∫
Rn
F (x, ·)dx

∣∣∣∣∣∣∣∣p
Lp(Rn)

≤ ||G||Lq(Rn)
∫
Rn
||F (x, ·)||Lp(Rn) dx

e) Deduce that Minkowski’s integral inequality[∫
Rn

∣∣∣∣∫
Rn
F (x, y)dx

∣∣∣∣p dy] 1
p

≤
∫
Rn

[∫
Rn
|F (x, y)|p dy

] 1
p

dx

holds for any measurable function F : Rn × Rn → C, where 1 ≤ p <∞.
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Lemma 7. Suppose p ∈ [1,∞) and g ∈ Lp(Rn). Let {zj}∞j=1 ⊂ Rn be a sequence of
points such that zj → 0 as j →∞. Then:∣∣∣∣τzjg − g∣∣∣∣Lp(Rn) → 0.

Proof. 1. First, suppose g = 1Q, where Q = (a1, b1) × (a2, b2) × . . . × (an, bn) is a
n-box, with side-lengths Im = bm − am for m = 1, . . . , n. Now, since when a box
is translated by a vector zj each side is translated by a distance of at most |zj |,
and has area at most In−1max., where Imax is the longest side-length we can crudely
estimate ∣∣∣∣τzjg − g∣∣∣∣Lp(Rn) ≤ 2n |zj | In−1max .

Note that this estimate requires p <∞: it does not hold for p =∞. We conclude
that:

lim
j→∞

∣∣∣∣τzjg − g∣∣∣∣Lp(Rn) = 0.

2. Now suppose g = 1A, where A is a measurable set of finite measure. Fix ε > 0. By
the Borel regularity of Lebesgue measure, there exists a compact K ⊂ A and an
open U ⊃ A such that |U \K| < ε. Since U is open, we can write U as a collection
of open n-boxes:

U =
⋃
α∈A

Qα

Since K is compact, it is covered by a finite subset of these:

K ⊂
N⋃
i=1

Qi := B.

Now, note that K ⊂ B ⊂ U , so the symmetric difference A∆B ⊂ U \K. Thus4

||1A − 1B||Lp(Rn) = |A∆B| < ε. By the paragraph 1 above, we know that there
exists J such that for all j ≥ J we have:∣∣∣∣τzj1B − 1B∣∣∣∣Lp(Rn) < ε

Therefore:∣∣∣∣τzj1A − 1A∣∣∣∣Lp(Rn) =
∣∣∣∣τzj1A − τzj1B + τzj1B − 1B + 1B − 1A

∣∣∣∣
Lp(Rn)

≤
∣∣∣∣τzj1A − τzj1B∣∣∣∣Lp(Rn) +

∣∣∣∣τzj1B − 1B∣∣∣∣Lp(Rn) + ||1B − 1A||Lp(Rn)
= 2 ||1A − 1B||Lp(Rn) +

∣∣∣∣τzj1B − 1B∣∣∣∣Lp(Rn)
< 3ε

for all j ≥ J . Thus
lim
j→∞

∣∣∣∣τzjg − g∣∣∣∣Lp(Rn) = 0.

4This is another point at which p 6=∞ is crucial.
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3. Now suppose g is a simple function, i.e. g =
∑N

i=1 gi1Ai for gi ∈ C and Ai measurable
sets of finite measure. Then we have:

∣∣∣∣τzjg − g∣∣∣∣Lp(Rn) ≤ N∑
i=1

|gi|
∣∣∣∣τzj1Ai − 1Ai∣∣∣∣Lp(Rn)

so as j →∞ we have:
lim
j→∞

∣∣∣∣τzjg − g∣∣∣∣Lp(Rn) = 0.

4. Now suppose that g ∈ Lp(Rn). Fix ε > 0. Recall that there exists a simple function
g̃ such that ||g − g̃||Lp(Rn) < ε. By the previous part, we can find J such that∣∣∣∣τzj g̃ − g̃∣∣∣∣Lp(Rn) < ε for all j ≥ J . Now:∣∣∣∣τzjg − g∣∣∣∣Lp(Rn) =

∣∣∣∣τzjg − τzj g̃ + τzj g̃ − g̃ + g̃ − g
∣∣∣∣
Lp(Rn)

≤
∣∣∣∣τzjg − τzj g̃∣∣∣∣Lp(Rn) +

∣∣∣∣τzj g̃ − g̃∣∣∣∣Lp(Rn) + ||g̃ − g||Lp(Rn)
= 2 ||g − g̃||Lp(Rn) +

∣∣∣∣τzj g̃ − g∣∣∣∣Lp(Rn)
< 3ε

Thus, we conclude that

lim
j→∞

∣∣∣∣τzjg − g∣∣∣∣Lp(Rn) = 0.

and we’re done.
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