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1.1 Convolutions

If f, g are functions mapping R” to C, then we define the convolution of f and g to be:
(Frg)@) = | FWlglx=y)dy,

provided the integral exists. This will happen if (for example) f € CJ(R") and f € CO(R,,).

Lemma 1. Suppose f,g,h € C3°(R™). Then:

frg=gxf,  [fx(gxh)=(fxg)xh

and

/n(f*g)(x)d:v: Rnf(x)dx/ o(z)dz.

n

Proof. With the change of variables y = x — z, we have!

(fxg)(x)= [ fyg(z—y)dy = . f(x —2)g(2)dz = (g % f)(z)

]Rn

Next, we calculate:

gz —y - z)dz) dy
[ stw—wite - w)dw> dy

(y)g(w — y)dy) h(z — w)dw

Above we have made the substitution w = y + z to pass from the first to second line, and
we have used the fact that f,g,h € C§°(R"™) to invoke Fubini’s theorem when passing

MIf you're worried about a missing minus sign from the change of variables when n is odd, observe:

/_O:o k(z)dw = /.O_OO k(—y)d(—y) = — /c:c K(—y)dy — /_‘: F(—y)dy.



from the second to third line. Finally, we calculate:

[ o= [ ([ o) i

— [t [ g

where again, the fact that f,g € C§°(R") allows us to invoke Fubini. O

The assumption that the functions are smooth and compactly supported is certainly
overkill in this theorem. It would be enough, for example, to consider functions in CJ(R™),
or even weaker spaces, provided we can justify the application of Fubini’s theorem.

1.1.1 Differentiating convolutions

A remarkable property of the convolution is that the regularity of f x ¢ is determined by
the regularity of the smoother of f and g. This is a result of the following Lemma:

Theorem 2. Suppose f € L}, . (R") and g € CE(R™) for some k > 0. Then fxg € CK(R")
and

D¥(fxg) = f*D%,

for any multiindex with |a| < k.

Before we prove this, it’s convenient to prove a technical Lemma which will streamline
the proof.

Lemma 3. a) Suppose f € CY(R") and {z}2, C R™ is a sequence with z; — 0 as
1 — 00. Then for any x € R":

i) 7o, f(x) = f(x) as j — oc.
it) |72, f(@)] < (supgn | f]) Lpu(0) (%), for some R >0 and all j.

b) Suppose f € CL(R™) and {h;}32, C R s a sequence with hj — 0 as j — oco. Then for
any ¢ € R™:

i) A?jf(x) — D;f(x) as j — oo.
ii) ‘A?jf(a:)‘ < (supgn | Di f]) L gy (0)(x), for some R >0 and all j.

Proof. a) i) Recall 7., f(x) = f(x — z;). Clearly since z; — 0, f(z — z;) — f(z) as
j — oo by the continuity of f.
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ii) Since z; — 0, there exists some p > 0 such that z; € B,(0) for all j. Now

supp 7., f = supp f + z; C supp f + B,(0).

Since the sum of two bounded set is bounded, we conclude that there exists R > 0
such that supp 7., f C Bg(0). Thus 7., f = 7., fl, (o) and we estimate:

|7, f(@)| = |72, (@) | 1,0 (@) < sup |f1 1B 0)(T).

b) Suppose f € C}(R™) and {h;}321 C R is a sequence with hj — 0 as j — oo. Then for
any x € R™:

i) From the definition of the difference quotient and of the partial derivative:

A?jf(x) = fla+ hj;i) — /(@) — D, f(x), as j — oo.

ii) Since hj — 0, there is some k > 0 such that |h;| < k for all j. We have:

h.
supp A;” f C supp 7_pe, f Usupp f = (supp f — hje;) Usupp f
C <supp f+ Bp(0)> Usupp f
C BR(O)

for some R > 0 since the union of two bounded sets is bounded. Thus A?j f=

A?j J1p,0)- We also observe that by the mean value theorem, for any h € R,
there exists s € R with |s| < |h| such that

f(@+ hje) —
h

/(@) = D;f(x + se;)
thus
A7 (2)| < sup Dy .
Putting these two facts together, we readily find:
A 1@)] = [AF @) 140 (@) < sp D] 00 ().
O
Now, with this technical result in hand we can attack the proof our original theorem.

Proof of Theorem 2. 1. First we establish the result for £ = 0. We need to show that
if feLj,.(R") and g € CJ(R") then f g is continuous. To show this, it suffices
to show that fxg(z — 2;) — f*g(z) for any sequence {2;}32; with z; — 0. Now,

note that

frglx—2)= | fyglx—z —y)dy= [ [f(y)m,;9(x—y)dy.
R" R



Now, sending 7 — 0o, we are done, so long as we can justify interchanging the limit
and the integral. Note that for any fixed x and all j:

|f(y) 7y 9(z —y)| < sup 91 L 0) (2 — ) | f(y)]

for some R by the previous Lemma. Since f € L}, (R™) the right hand side is

integrable, and so by the dominated convergence theorem:

lim fxg(r—2) = /R lim f(y)7,9(7 — y)dy = - fWg(x —y)dy = fg(x).

j—o0 n j—00

2. Now suppose that f € L} (R™) and g € C}(R"). Clearly f % D;g is continuous by
the previous argument. To show f x g € C'(R"), it suffices to show that for any

z € R™ and any sequence {h;}72; C R with h; — 0 we have:

lim A} f xg(x) = f * Dig(x).
J—00

Note that

A?jf*g(x) _ f*g(.f-i-hj;i) —f*g(m)

:/n 1) <9($+hj€i —f?j)—g(:v—y)>dy

=/, FW)AY g(z — y)dy

so that again we are done provided we can send j — oo and interchange the limit
and the integral. An argument precisely analogous to the previous case allows us to

invoke the DCT and deduce that:

lim A f + g(x) = / lim f(y)A} gz —y)dy = f * Dig(x).
j—00 Rn J—00

3. The case where f € C'(’)“(R”) with k£ > 1 now follows by a simple induction. O

Exercise 1.1. Show that Theorem 2 holds under the alternative hypotheses:
a) f € LYR"), g € C*(R") with supg. |[D%g| < oo for all |a| < k.

b) f € L'(R™) with supp f compact, g € C¥(R™).

We have shown that when two functions are convolved, loosely speaking the resulting
function is at least as regular as the better of the two original functions. It is also
important to know how convolution modifies the support of a function.
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Lemma 4. Suppose f € Li. . (R") and g € C¥(R™) for some k > 0. Then?

loc.
supp (f *g) C supp f + supp g.
Proof. Recall:
[xg(x) = A fWg(z —y)dy.

Clearly, if f * g(x) # 0, then there must exist y € R™ such that y € supp f and
x—y=z€supp g. Thus x =y + 2z with y € supp f and z € supp g. This tells us that:

{r e R": fxg(x) # 0} Csupp f+ supp g.

Since supp f is closed and supp g is compact, we know that supp f + supp ¢ is closed,
thus

supp f*g={x € R": fxg(x) # 0} C supp f -+ supp g,

which is the result we require. O

Exercise 1.2. Show that if f € CF(R™) and g € C4(R") then fxg € Ci T (R™). Conclude
that D(R"™) is closed under convolution.

1.1.2 Approximation of the identity

An important use of the convolution is to construct smooth approximations to func-
tions in various function spaces. The following theorem is very useful in constructing
approximations:

Theorem 5. Suppose ¢ € C°(R™) satisfies:
i) p=0
i1) supp ¢ C B1(0)

i) [gn @(x)dr =1

Such a ¢ exists, for example we can take ¢p(x) = Cexp <4‘x|12_1) for x| < 1/2 and
¢(x) = 0 otherwise, with C' chosen suitably. Define:

selr) = 0 ().

Then:

2Gtrictly speaking, we haven’t defined the support of a measurable function. We can do this in several
ways, but the simplest is to define:

supp f = m{E CR": Eis closed, and f =0 a.e. on E}.

In other words supp f is the smallest closed set such that f vanishes almost everywhere on its complement.



a) If f € CE(R™), then ¢ * f is smooth, and
D (¢ % f) = D°f
uniformly on R™ for any multi-index with |a| < k.
b) If g € LP(R™) with 1 < p < oo, then ¢ x g is smooth, and
bekg—g  in LP(R).

¢) Suppose f € C*(R™) with supgn |D*f| < oo for |a| < k, and suppose g € L*(R™) with
9>0, [ong(x)dz =1. Set ge(y) = e "g (e 'y). Then f*g. € CFR"), and

D (f % ge) (x) = D f(x)
for any x € R™ for any multi-index with |o| < k.

Proof. a) Note that the rescaling of ¢ to produce ¢, is such that a change of variables
gives:
Rn
By Theorem 2, we have that D*(¢e x f) = ¢ x D f for any |a| < k. Using these two
facts, we calculate:

D*(gex f)(@) = D*f(@) = [ 6y)D*f(z —y)dy = D°f(@) | ocly)dy
= |, o) D fla=y) = D*f@)]dy
N / 6(2) [D f(x — €z) — D*f(x)] d2
B1(0)

where in the last line we made the substitution y = €z, and noted that ¢ has support in
B1(0), so we can restrict the range of integration. Now, since ¢ > 0, we can estimate:

[D%(¢e  f)(x) = D*f(2)] < /B o ¢(2) | D f(x — ez) = D*f(x)| dz

< swp DS ) - D) x [ o)
2€B1(0) B1(0)

= sup |D%f(z —ez) — D"f()|
z€B1(0)

since fR" ¢ = 1. Now, since D f is continuous and of compact support, it is uniformly
continuous on R™. Fix € > 0. There exists § such that for any v,w € R"™ with
|z —y| < §, we have

D% f(v) = D f(w)| <€

For any z € R", taking ¢ < 0, and v = = + ez, w = x with z € B;(0) we have
v —w| <4, so:
ID®f (& — e2) — DO f(x)] < ¢
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holds for any = € R", z € B1(0). We have therefore shown that for any € > 0, there
exists 0 such that for any ¢ < § we have:

sup |[D%(¢c x f)(z) — D f(x)] <&
zeR”

This is the statement of uniform convergence on R™.

b) For this proof, we shall require certain facts from Measure Theory. First we require
Minkowski’s Integral Identity (see Exercise 1.3). This states® that for F': R® x R® — C
a measurable function, we have the estimate:

L nm’y)d””pdy]; < [ [[reopa]

Now, following the calculation in the previous proof, we readily have that:

Gexa)a) =9(a)| < [ 0()lofe = e2) = gla)| d=

Integrating and applying Minkowski’s integral inequality, we have:

IN

¢(2) |9(x — €2) — g(x)[ d=
Rn

659~ dlley = | [ 16500 —g<x>|pdxf’
"]

I %

< [ L eerise - e - i a:

= [ )l = gl a2 (1.1)

To establish our result it will suffice to set € = ¢€;, where {¢;}32; C R is any sequence
with €; — 0, and show that H(bej *g— QHLP(R,L) — 0. Note that since HT€]'Zg‘ ‘LP(RH) —
Hg‘ |LP(R7L) we have:

3(2) || 7,29 = 9| 1oy < 26(2) N9l o eny

so the integrand is dominated uniformly in j by an integrable function. Now we claim
(another Measure Theoretic / Functional Analysis fact, see Lemma 7) that as y varies,
Ty : LP(R™) — LP(R™) is a continuous family of bounded linear operators. This means
that for each z € R" we have:

lim (|rej29 = 9] 1o any = 0-
Thus we can apply the Dominated Convergence Theorem to the integral on the right
hand side of 1.1, and conclude that

Jlim ||ge; %9 = 9| Lo gy = 0.

3There is more general statement for a map F : X x Y — C, which is measurable with respect to the
product measure p X v where (X, u) and (Y, v) are measure spaces.



¢) Again, by Theorem 2, we have that D®(f * g¢) = D“f % g. for any |o|] < k. By a
change of variables, we calculate:

D(f % go)(x) = / ge(y)D° (& — y)dy = / 9(u)D° f(z — ez)dz

n n

Now, clearly for each fixed z € R™:

9(2)D* f(x — e2) = g(2) D f ()

for z € R"™ as ¢ — 0. Furthermore,
9()D° (@ — €2)] < g(z) sup | D"

which is an integrable function of z, so by the Dominated convergence theorem, we
conclude:

D(f % go) () — D* f(x) / g(2)dz = D* f(z)

n

as € — 0.
O

The final application of convolutions is to the construction of cut-off functions. These
are often extremely useful for localising a problem to a particular region of interest for
some reason or other.

Lemma 6. Suppose Q C R" is open, and K C  is compact. Then there exists x € C§°(£2)
such that x = 1 in a neighbourhood of K.

Proof. Since K is compact and 0f2 is closed, there exists € > 0 such that d(K,0Q2) > 4e.
We define K. = K + B(0). As the sum of two compact sets, K, is compact. Moreover,
K. C €. Suppose ¢ is as in Theorem 5. Consider:

X ‘= ¢e*]lK€-

We have by Theorem 2 that x € C°°(R") and from Lemma 4 we deduce:

supp x = K. +supp ¢. C K + Bac(0) + Bc(0) = K + B3.(0) C Q.

Thus x € C§°(?). Now, suppose € K + B((0). Then x + B.(0) C K. and so:

x(z) = . be(Y) k. (z — y)dy
— [ o)t~ iy
<(0)

= ¢e(y)dy = 1.

Thus x(z) =1 for x € K + B(0), which is a neighbourhood of K. O
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The following exercise and Lemma are included for completeness, as they establish
results required for the proof of Theorem 5.

Exercise 1.3 (*). Suppose that F': R"” x R” — R is a positive integrable simple function,

a) Show that Minkowski’s integral inequality holds for the case p = 1:

/Rn /RRF(x,y)da; dyg/n/nW(ﬂ?,y)!dydx

b) Next prove Young’s inequality: if a,b € Ry and p,q > 1 with p~ + ¢~ =1 then:

al b1
ab < — + —
p q

Hint: sett = p~t, consider the function log [taP + (1 — t)b?] and use the concavity of
the logarithm

c¢) With p,q > 1 such that p~! + ¢~! = 1, show that if |fll, =1 and |[|g|[, = 1 then

/n |f(z)g(z)|dx < 1.

Deduce Hélder’s inequality:

/n |f(@)g(@)dx <|Ifll,llgll;,  forall feLP(R"), g,€LYR").

d) Set G(y) = (fgn F(uv,y)dac)p*1
21-

i) Show that if ¢ = ;55

p—1

(Gl = | [ Pl

LP(R™)

ii) Show that:

‘/np(x,.)dx ;(Rn) :/n ( 5 G(y)F(m,y)dy> i

iii) Applying Holder’s inequality, deduce:

‘ / Pz, )dz

e) Deduce that Minkowski’s integral inequality

[/n pdy];ﬁ/n [/an(fE,y)l”dy];dm

holds for any measurable function F' : R" x R™ — C, where 1 < p < c0.

p

< 1G] pogen) / 1F (@, o gy
Lr(Rm) Rn

/n F(x,y)dx
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Lemma 7. Suppose p € [1,00) and g € LP(R"). Let {2;};2; C R" be a sequence of
points such that z; — 0 as j — oo. Then:

|79 — 9] ’LP(R") — 0.

Proof. 1. First, suppose g = 1, where Q = (a1,b1) x (a2,b2) X ... X (an,by) is a
n-box, with side-lengths I,,, = b,, — a,,, for m = 1,...,n. Now, since when a box
is translated by a vector z; each side is translated by a distance of at most |z;],

and has area at most I".1  where I,,4; is the longest side-length we can crudely

estimate
HTng - gHLp(Rn) < 2n |z Iy

Note that this estimate requires p < oco: it does not hold for p = co. We conclude
that:

Jim |79 = 9l gy = 0

2. Now suppose g = 1 4, where A is a measurable set of finite measure. Fix € > 0. By
the Borel regularity of Lebesgue measure, there exists a compact K C A and an
open U D A such that |U \ K| < e. Since U is open, we can write U as a collection

of open n-boxes:
U= U Qa

aEd

Since K is compact, it is covered by a finite subset of these:

N
Kc|JQi:=B

i=1

Now, note that K ¢ B C U, so the symmetric difference AAB c U \ K. Thus*
ILa = 1| prny = [AAB| < e. By the paragraph 1 above, we know that there
exists J such that for all j > J we have:

|72, 15 - ]IBHLP(R”) <€
Therefore:
||7204 = ]IAHLP(R") =||r0a = 7215 + 72,15 — 15+ 15 — ]1A||LP(R")
< || - sz]lBHLp(]Rn) +||7 15 - ]IBHLP(]R") +1Ls — Lallpwn)
=214 - ]lBHLP(]R") + HTZj]lB o ]IBHLP(Rn)
< 3e

for all j > J. Thus

Jggo |79 = 9] ’LP(R") =0

4This is another point at which p # oo is crucial.
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3. Now suppose g is a simple function, i.e. g = Zf\; 1 9il 4, for g; € C and A; measurable
sets of finite measure. Then we have:

N
|79 — gHLP(R”) < 21 93l |72, 14, — 14, LP(R™)
-

so as j — oo we have:
jli}rgoHszg - gHLP(R”) =0.

4. Now suppose that g € LP(R™). Fix € > 0. Recall that there exists a simple function
g such that ||g — g”LP(Rn) < €. By the previous part, we can find J such that

HTng — gHLp(Rn) < e for all j > J. Now:

|70 — gHLP(]R“) =l -0+ 70 -9+ 35— gHLP(R")
= HTng - TngHLP(R") + HTng - gHLP(Rn) + g — QHLP(R”)
=219 = 3l o) + 1758 = 9l o eny

< 3e

Thus, we conclude that

jggo |79 — 9] ‘LP(R”) =0.

and we're done. O
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