Unless otherwise stated, $U \subset \mathbb{R}^{n}$ is open and bounded with C^{1} boundary, $U_{T}=$ $(0, T) \times U, \Sigma_{t}=\{t\} \times U$ for $t \in[0, T]$ and $\partial^{*} U_{T}=[0, T] \times \partial U$.

Exercise 4.1. $\left(^{*}\right)$ Suppose L is a uniformly elliptic operator on U, with associated bilinear form B. Assume $a^{i j}, b^{i}, c \in C^{m+1}(U)$ and $f \in L^{2}(U) \cap H_{l o c .}^{m}(U)$. Suppose $u \in H^{1}(U)$ satisfies:

$$
B[u, v]=(f, v)_{L^{2}(U)}, \quad \text { for all } v \in H_{0}^{1}(U)
$$

i) Show that $u \in H_{l o c .}^{m+2}$ and for any V, W with $V \subset \subset W \subset \subset U$ we have the estimate:

$$
\|u\|_{H^{m+2}(V)} \leq C\left(\|f\|_{H^{m}(W)}+\|u\|_{L^{2}(W)}\right)
$$

ii) Deduce that if $a^{i j}, b^{i}, c, f \in C^{\infty}(U)$, then $u \in C^{\infty}(U)$.
iii) Conclude that if L is a uniformly elliptic operator with smooth coefficients on a bounded domain, the eigenfunctions of L are smooth away from the boundary.
[Hint: For part i), proceed by induction. The $m=0$ case was covered in lectures. For the induction step, consider as a test function $v=-D_{i} \tilde{v}$ for some $\tilde{v} \in C_{c}^{\infty}(U)$ and integrate by parts.]

Exercise 4.2. (*) Suppose U has a smooth $\left(C^{\infty}\right)$ boundary. Show that any $u \in$ $H_{0}^{1}(U) \cap H^{k}(U)$ may be approximated in $H^{k}(U)$ by a sequence $u_{m} \in C^{\infty}(\bar{U})$ such that $u_{m}=0$ on ∂U.
[Hint: Note that you cannot simply cut u off near the boundary and mollify. Make sure you understand why!]

Exercise 4.3. Let $n \leq 3$, and assume ∂U is C^{2}. Consider the nonlinear boundary value problem:

$$
-\Delta u+u+|u|^{p}=f, \quad \text { in } U, \quad u=0 \quad \text { on } \partial U
$$

For some $p>1$.
i) Show that if $f \in L^{2}(U)$ satisfies $\|f\|_{L^{2}(U)}<\epsilon$ for some sufficiently small ϵ, then a solution exists with $u \in H^{2}(U)$.
ii) (\dagger) What happens for $n>3$?
[Hint: Show that the map which takes $w \in H^{2}(U)$ to the solution of

$$
-\Delta u+u=f-w^{p}, \quad \text { in } U, \quad u=0 \quad \text { on } \partial U
$$

is a contraction map on $B_{b}:=\left\{u \in H^{2}(U) \mid\|u\|_{H^{2}(U)} \leq b\right\}$ for some $b>0$, and invoke the contraction mapping principle]

Exercise 4.4. Suppose $\left(u_{m}\right)_{m=1}^{\infty}$ is a sequence with $u_{m} \in L^{2}\left(U_{T}\right) \cap L^{\infty}\left((0, T) ; L^{2}(U)\right)$ such that there exists $u \in L^{2}\left(U_{T}\right)$ with $u_{m} \rightharpoonup u$ in $L^{2}\left(U_{T}\right)$. Suppose further that:

$$
\left\|u_{m}\right\|_{L^{\infty}\left((0, T) ; L^{2}(U)\right)} \leq K .
$$

for K uniform in m. Show that in fact $u \in L^{\infty}\left((0, T) ; L^{2}(U)\right)$.
Exercise 4.5. Let $f \in L^{2}\left(U_{T}\right)$ and $\psi \in L^{2}(U)$. Consider the parabolic initial boundary value problem:

$$
\left\{\begin{array}{cl}
u_{t}+L u=f & \text { in } U_{T}, \\
u=\psi & \text { on } \Sigma_{0}, \\
u=0 & \text { on } \partial^{*} U_{T} .
\end{array}\right.
$$

where:

$$
L u:=-\sum_{i, j=1}^{n}\left(a^{i j}(t, x) u_{x_{i}}\right)_{x_{j}}+\sum_{i=1}^{n} b^{i}(t, x) u_{x_{i}}+c(t, x) u
$$

with $a^{i j}=a^{j i}, b^{i}, c \in C^{1}\left(\overline{U_{T}}\right)$ satisfies the uniform ellipticity condition:

$$
\sum_{i, j=1}^{n} a^{i j}(t, x) \xi_{i} \xi_{j} \geq \theta|\xi|^{2}
$$

for some $\theta>0$ and all $(t, x) \in U_{T}, \xi \in \mathbb{R}^{n}$. We say $u \in L^{2}\left((0, T) ; H_{0}^{1}(U)\right)$ is a weak solution of (\diamond) if:

$$
\int_{U_{T}}\left\{-u v_{t}+\sum_{i, j=1}^{n} a^{i j} u_{x_{i}} v_{x_{j}}+\sum_{i=1}^{n} b^{i} u_{x_{i}} v+c u v\right\} d x d t=\int_{\Sigma_{0}} \psi v d x+\int_{U_{T}} f v d x d t
$$

holds for all $v \in H^{1}\left(U_{T}\right)$ such that $v=0$ on $\Sigma_{T} \cup \partial^{*} U_{T}$.
i) Show that if $u \in C^{2}\left(\overline{U_{T}}\right)$ then in fact u solves (\diamond) in the classical sense.
ii) Show that a weak solution, if it exists, is unique.
iii) Establish that for any $\psi \in L^{2}(U), f \in L^{2}\left(U_{T}\right)$ there exists a weak solution satisfying:

$$
\int_{U_{T}}\left(u^{2}+|D u|^{2}\right) d x d t \leq C\left(\|\psi\|_{L^{2}(U)}^{2}+\|f\|_{L^{2}\left(U_{T}\right)}^{2}\right)
$$

for some $C>0$, and verify that in fact $u \in L^{\infty}\left((0, T) ; L^{2}(U)\right)$.
iv) Show that if $\psi \in H_{0}^{1}(U)$ then in fact

$$
u \in L^{2}\left((0, T) ; H^{2}(U)\right) \cap L^{\infty}\left((0, T) ; H_{0}^{1}(U)\right) \cap H^{1}\left((0, T) ; L^{2}(U)\right)
$$

and establish estimates for the norm of u in each of these spaces.
v) Let $S_{T}=(0, T) \times \mathbb{R}^{n}$. Suppose that $a^{i j}, b^{i}, c \in C^{1}\left(\overline{S_{T}}\right)$ and that the uniform ellipticity condition holds in S_{T}.
a) Let $f \in L^{2}\left(S_{T}\right)$ and $\psi \in L^{2}\left(\mathbb{R}^{n}\right)$. Define a weak solution $u \in L^{2}\left((0, T) ; H^{1}\left(\mathbb{R}^{n}\right)\right)$ to the Cauchy problem

$$
\left\{\begin{array}{cl}
u_{t}+L u=f & \text { in }(0, T) \times \mathbb{R}^{n}, \\
u=\psi & \text { on }\{0\} \times \mathbb{R}^{n} .
\end{array}\right.
$$

and show that if additionally $u \in C^{2}\left(\overline{(0, T) \times \mathbb{R}^{n}}\right)$, then a weak solution according to your definition solves (\star) in a classical sense.
b) By solving the finite problem on a suitable sequence of domains, show that if $\psi \in L^{2}\left(\mathbb{R}^{n}\right), f \in L^{2}\left(S_{T}\right)$, then there exists a unique weak solution to (\star).
c) Show that if $\psi \in H^{1}\left(\mathbb{R}^{n}\right)$ then

$$
u \in L^{2}\left((0, T) ; H^{2}\left(\mathbb{R}^{n}\right)\right) \cap L^{\infty}\left((0, T) ; H_{0}^{1}\left(\mathbb{R}^{n}\right)\right) \cap H^{1}\left((0, T) ; L^{2}\left(\mathbb{R}^{n}\right)\right)
$$

vi) (\dagger) Suppose $b^{i} \equiv 0$. By making the obvious changes to the function spaces required to consider complex valued u, establish similar results for the initial-boundary value problem for the Schrödinger-type equation:

$$
\left\{\begin{array}{cl}
i u_{t}+L u=f & \text { in } U_{T} \\
u=\psi & \text { on } \Sigma_{0} \\
u=0 & \text { on } \partial^{*} U_{T}
\end{array}\right.
$$

and extend your conclusions to the Cauchy problem.
Exercise 4.6. Let $\mathbb{R}_{*}^{3}:=\mathbb{R}^{3} \backslash\{0\}, S_{*, T}:=\mathbb{R}_{*}^{3} \times(-T, T)$ and $|x|=r$. You may assume the result that if $u=u(r, t)$ is radial, we have

$$
\Delta u(|x|, t)=\Delta u(r, t)=\frac{\partial^{2} u}{\partial r^{2}}(r, t)+\frac{2}{r} \frac{\partial u}{\partial r}(r, t)
$$

i) Suppose $f, g \in C_{c}^{2}(\mathbb{R})$. Show that

$$
u(x, t)=\frac{f(r+t)}{r}+\frac{g(r-t)}{r}
$$

is a solution of the wave equation on $S_{*, T}$ which vanishes for large $|x|$.
ii) Show that if $f \in C_{c}^{3}(\mathbb{R})$ is an odd function (i.e. $f(s)=-f(-s)$ for all s) then

$$
u(x, t)=\frac{f(r+t)+f(r-t)}{2 r}
$$

extends as a C^{2} function which solves the wave equation on S_{T}, with

$$
u(0, t)=f^{\prime}(t)
$$

iii) By considering a suitable sequence of functions f, or otherwise, deduce that there exists no constant C independent of u such that the estimate

$$
\sup _{S_{T}}\left(|D u|+\left|u_{t}\right|\right) \leq C \sup _{\Sigma_{0}}\left(|D u|+\left|u_{t}\right|\right)
$$

holds for all solutions $u \in C^{2}\left(S_{T}\right)$ of the wave equation which vanish for large $|x|$.

Exercise 4.7. Let $S_{T}=(0, T) \times \mathbb{R}^{3}$ and $\Sigma_{t}=\{t\} \times \mathbb{R}^{3}$. Consider the semilinear Cauchy problem:

$$
\left\{\begin{array}{cl}
u_{t t}-\Delta u=\lambda u^{3} & \text { in } S_{T} \tag{b}\\
u=\psi & \text { on } \Sigma_{0} \\
u_{t}=\psi^{\prime} & \text { on } \Sigma_{0}
\end{array}\right.
$$

where $\psi \in H^{1}\left(\mathbb{R}^{3}\right), \psi^{\prime} \in L^{2}\left(\mathbb{R}^{3}\right)$ and $\lambda \in \mathbb{R}$ is a constant. Let $X:=L^{\infty}\left([0, T], H^{1}\left(\mathbb{R}^{3}\right)\right) \cap$ $W^{1, \infty}\left([0, T], L^{2}\left(\mathbb{R}^{3}\right)\right)$, and equip this space with the norm:

$$
\|f\|_{X}:=\sup _{t \in(0, T)}\left(\|f\|_{H^{1}\left(\Sigma_{t}\right)}+\left\|f_{t}\right\|_{L^{2}\left(\Sigma_{t}\right)}\right)
$$

i) Suppose $w \in X$ satisfies:

$$
\|w\|_{X} \leq 8\left(\|\psi\|_{H^{1}\left(\mathbb{R}^{3}\right)}+\left\|\psi^{\prime}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}\right):=b
$$

Show that if u is the unique weak solution to the linear Cauchy problem:

$$
\left\{\begin{array}{cl}
u_{t t}-\Delta u=w^{3} & \text { in } S_{T} \\
u=\psi & \text { on } \Sigma_{0} \\
u_{t}=\psi^{\prime} & \text { on } \Sigma_{0}
\end{array}\right.
$$

then u satisfies:

$$
\|u\|_{X} \leq\left[C T b^{3}+\frac{b}{2}\right](1+T)
$$

for some $C>0$ independent of u, T.
[Hint: Recall the Sobolev embedding $H^{1}\left(\mathbb{R}^{3}\right) \hookrightarrow L^{6}\left(\mathbb{R}^{3}\right)$]
ii) Let $A: X \rightarrow X$ be the map $w \mapsto u$. Show that for T sufficiently small, A maps B_{b} to itself, where:

$$
B_{b}=\left\{u \in X:\|u\|_{X} \leq b\right\}
$$

is the closed ball of radius b in X.
iii) Suppose that $w, v \in B_{b}$. Show that:

$$
\|A w-A v\|_{X} \leq C_{b} T(1+T)\|w-v\|_{X}
$$

for some constant C depending on b but not T. Deduce that (b) admits a unique solution $u \in X$, provided $T<T_{0}$ for some $T_{0}=T_{0}\left(\psi, \psi^{\prime}\right)$.
iv) Show that for $\lambda>0$ a solution exists to the equation $u_{t t}-\Delta u=\lambda u^{3}$ of the form $u(t, x)=\alpha(t-\tau)^{\beta}$, where α, β are to be determined. Deduce that there exist solutions to (b) arising from initial data with finite energy which become singular in finite time.
v) (\dagger, for those with some knowledge of relativity) By a conformal transformation mapping the Minkowski space into a finite region of the Einstein static universe $S^{3} \times \mathbb{R}$, show that solutions to (b) arising from sufficiently small ${ }^{5}$ data exist for all time.

[^0]
[^0]: ${ }^{5}$ in a sense that you should determine

