Unless otherwise stated, $U \subset \mathbb{R}^{n}$ is open and bounded with C^{1} boundary, and L is the operator:

$$
L u:=-\sum_{i, j=1}^{n}\left(a^{i j}(x) u_{x_{i}}\right)_{x_{j}}+\sum_{i=1}^{n} b^{i}(x) u_{x_{i}}+c(x) u
$$

for $a^{i j}=a^{j i}, b^{i}, c \in L^{\infty}(U)$, and $a^{i j}$ satisfying the uniform ellipticity condition:

$$
\sum_{i, j=1}^{n} a^{i j}(x) \xi_{i} \xi_{j} \geq \theta|\xi|^{2}
$$

for all $\xi \in \mathbb{R}^{n}$, almost every $x \in U$ and some $\theta>0$.
Exercise 3.1. For $\gamma>0$ sufficiently large let $L_{\gamma}^{-1}: L^{2}(U) \rightarrow H_{0}^{1}(U)$ be the bounded linear operator which maps $f \in L^{2}(U)$ to the weak solution $u \in H_{0}^{1}(U)$ of the boundary value problem:

$$
L u+\gamma u=f \quad \text { in } U, \quad u=0 \quad \text { on } \partial U .
$$

Show that $\operatorname{Ran} L_{\gamma}^{-1}$ is dense in $H_{0}^{1}(U)$.
[Hint: consider $f=L_{\gamma} \phi$ for $\phi \in C_{c}^{\infty}(U)$, and approximate the functions $\sum_{j=1}^{n} a^{i j} \phi_{x_{j}}$ in $L^{2}(U)$./

Exercise 3.2. Suppose that L is positive and formally self-adjoint. Let $\left\{w_{k}\right\}_{k=1}^{\infty}$ be an orthonormal basis for $L^{2}(U)$ consisting of eigenfunctions $w_{k} \in H_{0}^{1}(U)$ solving

$$
L w_{k}=\lambda_{k} w_{k} \quad \text { in } U, \quad w_{k}=0 \quad \text { on } \partial U
$$

in a weak sense, where $0<\lambda_{1} \leq \lambda_{2} \leq \ldots$.
i) If B is the bilinear form on $H_{0}^{1}(U)$ corresponding to L, show that B can be thought of as a new inner product on $H_{0}^{1}(U)$, defining an equivalent norm to $(\cdot, \cdot)_{H^{1}(U)}$.
ii) Show that:

$$
B\left[w_{k}, w_{l}\right]=\lambda_{k} \delta_{k l} .
$$

iii) Deduce that $\left\{\lambda_{k}^{-\frac{1}{2}} w_{k}\right\}_{k=1}^{\infty}$ is a basis for $H_{0}^{1}(U)$ which is orthonormal with respect to the inner product defined by B.
iv) Show that:

$$
\lambda_{1}=\min _{u \in H_{0}^{1}(U),\|u\|_{L^{2}(U)}=1} B[u, u] .
$$

Please send any corrections to cmw50@cam.ac.uk
Questions marked $(*)$ may be handed in, those marked (\dagger) are optional and may be tough.
v) (\dagger) Show that:

$$
\lambda_{k}=\max _{V \in \mathcal{V}_{k-1}}\left(\min _{u \in V,\|u\|_{L^{2}(U)}=1} B[u, u]\right)
$$

where $V \in \mathcal{V}_{k}$ if

$$
V=\left\{u \in H_{0}^{1}(U) \mid\left(u, v_{i}\right)_{L^{2}(U)}=0, i=1, \ldots, k\right\}
$$

for some k distinct vectors $v_{i} \in H_{0}^{1}(U), i=1, \ldots, k$. By convention $\mathcal{V}_{0}=\left\{H_{0}^{1}(U)\right\}$. In other words, \mathcal{V}_{k} is the set of codimension k subspaces of $H_{0}^{1}(U)$. This is the Courant minimax principle.

Exercise 3.3. Suppose that the boundary value problem:

$$
L u=f \quad \text { in } U, \quad u=0 \quad \text { on } \partial U .
$$

admits a weak solution $u \in H_{0}^{1}(U)$ for every $f \in L^{2}(U)$. Show that there exists a constant C such that:

$$
\|u\|_{L^{2}(U)} \leq C\|f\|_{L^{2}(U)}
$$

for all $f \in L^{2}(U)$ and $u \in H_{0}^{1}(U)$ solving (\triangle) in the weak sense.
[Hint: Assume the result is not true, so that a sequence of $u_{k} \in H_{0}^{1}(U)$ and $f_{k} \in L^{2}(U)$ solving (\triangle) exist with $\left\|u_{k}\right\|_{L^{2}(U)} \geq k\left\|f_{k}\right\|_{L^{2}(U)}$. Derive a contradiction.]

Exercise 3.4 $\left(^{*}\right)$. Let $U \subset \mathbb{R}^{n}$ be an open, not necessarily bounded set and assume $V \subset \subset U$. Suppose $u \in L^{2}(U)$ and define the $i^{\text {th }}$ difference quotient:

$$
\Delta_{i}^{h} u(x):=\frac{u\left(x+h e_{i}\right)-u(x)}{h}
$$

for $i=1, \ldots, n ; x \in V$ and $0<|h|<\operatorname{dist}(V, \partial U)$. Let $\Delta^{h} u=\left(\Delta_{1}^{h} u, \ldots, \Delta_{n}^{h} u\right)$.
i) a) Suppose $u \in C^{\infty}(U)$. Show that for $x \in V, 0<|h|<\frac{1}{2} \operatorname{dist}(V, \partial U)$:

$$
\left|u\left(x+h e_{i}\right)-u(x)\right| \leq|h| \int_{0}^{1}\left|D u\left(x+t h e_{i}\right)\right| d t
$$

b) Deduce that:

$$
\int_{V}\left|\Delta^{h} u(x)\right|^{2} d x \leq \sum_{i=1}^{n} \int_{V} \int_{0}^{1}\left|D u\left(x+t h e_{i}\right)\right|^{2} d t d x
$$

c) Conclude that:

$$
\left\|\Delta^{h} u\right\|_{L^{2}(V)} \leq \sqrt{n}\|D u\|_{L^{2}(U)}
$$

for all $0<|h|<\frac{1}{2} \operatorname{dist}(V, \partial U)$. Deduce that this inequality holds for all $u \in H^{1}(U)$.
ii) Now suppose that $u \in L^{2}(U)$ satisfies:

$$
\left\|\Delta^{h} u\right\|_{L^{2}(V)} \leq C
$$

for all $0<|h|<\frac{1}{2} \operatorname{dist}(V, \partial U)$ and some constant C.
a) Show that if $\phi \in C_{c}^{\infty}(V)$ and h is sufficiently small then:

$$
\int_{V} u(x)\left[\Delta_{i}^{h} \phi(x)\right] d x=-\int_{V}\left[\Delta_{i}^{-h} u(x)\right] \phi(x) d x
$$

b) Show there exists a sequence $h_{k} \rightarrow 0$ and $v_{i} \in L^{2}(V)$ with $\left\|v_{i}\right\|_{L^{2}(V)} \leq C$ such that

$$
\Delta_{i}^{-h_{k}} u \rightharpoonup v_{i}
$$

in $L^{2}(V)$ as $k \rightarrow \infty$.
c) Deduce that $D_{i} u=v_{i}$ in the weak sense, and hence $u \in H^{1}(V)$.

Exercise 3.5. Let $I=(a, b)$ for some $a<b$.
i) Let $x \in I$. Show that if $u \in C_{c}^{\infty}(I)$ then:

$$
|u(x)|^{2} \leq 2\|u\|_{L^{2}(I)}\left\|u^{\prime}\right\|_{L^{2}(I)}
$$

Deduce that there exists a bounded linear map $\delta_{x}: H_{0}^{1}(I) \rightarrow \mathbb{R}$ such that $\delta_{x}[u]=u(x)$ for $u \in C^{0}(I) \cap H_{0}^{1}(I)$, and find explicitly $v_{x} \in H_{0}^{1}(I)$ such that $\delta_{x}[u]=\left(v_{x}, u\right)_{H^{1}(I)}$ for all $u \in H_{0}^{1}(I)$, where we define as usual:

$$
\left(u_{1}, u_{2}\right)_{H^{1}(I)}=\int_{a}^{b}\left(u_{1}^{\prime} u_{2}^{\prime}+u_{1} u_{2}\right) d x
$$

ii) Consider the Sturm-Liouville operator:

$$
L u:=-\frac{d}{d x}\left(p(x) \frac{d u}{d x}\right)+q(x) u
$$

where $p, q \in L^{\infty}(I)$ with $p(x) \geq c>0$ and $q(x) \geq 0$ for almost every x.
a) Define a weak solution to the boundary value problem:

$$
L u=f \quad \text { in } I, \quad u(a)=u(b)=0
$$

for $f \in\left(H_{0}^{1}(I)\right)^{*}$ and show that there exists a unique weak solution to:

$$
L u=\delta_{x} \quad \text { in } I, \quad u(a)=u(b)=0
$$

b) Let $u, \tilde{u} \in H_{0}^{1}(I)$ be two non-trivial weak solutions to the eigenvalue problem:

$$
L u=\lambda u \quad \text { in } I, \quad u(a)=u(b)=0
$$

for some $\lambda \in \mathbb{R}$. Show that the Wronskian:

$$
W(x)=p(x)\left[u^{\prime}(x) \tilde{u}(x)-u(x) \tilde{u}^{\prime}(x)\right]
$$

admits a weak derivative which vanishes identically on $I .(\dagger)$ Conclude that there exists $\alpha \in \mathbb{R}$ such that $u(x)=\alpha \tilde{u}(x)$.
[Hint: Consider using $\phi \tilde{u}$ as a test function in the weak formulation of (\star) for some $\phi \in C_{c}^{\infty}(I)$./
c) Show that there exists an orthonormal basis for $L^{2}(I)$ consisting of eigenfunctions $u_{n} \in H_{0}^{1}(I)$ which are weak solutions to (\star) with $\lambda=\lambda_{n}$, where $0<\lambda_{1}<\lambda_{2}<\ldots$.
d) (\dagger) Show that if $p, q \in C^{\infty}(\bar{I})$, then $u_{n} \in C^{\infty}(\bar{I})$.
iii) (\dagger) Fix $y \in(a, b)$ Consider the modified Sturm-Liouville operator with a 'delta function potential ${ }^{4}$:

$$
L u:=-\frac{d}{d x}\left(p(x) \frac{d u}{d x}\right)+a \delta_{y} u
$$

where $a \in \mathbb{R}$. Define a weak solution to the boundary value problem:

$$
L u=f \quad \text { in } I, \quad u(a)=u(b)=0
$$

and show that either a weak solution to (\diamond) exists for every $f \in L^{2}(I)$ or else a solution to the homogeneous problem exists.

Exercise $3.6(\dagger)$. Let $n \geq 3$. For $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ define:

$$
\|u\|_{\dot{H}^{1}\left(\mathbb{R}^{n}\right)}:=\left(\int_{\mathbb{R}^{n}}|D u|^{2} d x\right)^{\frac{1}{2}}
$$

i) Show that $\|\cdot\|_{\dot{H}^{1}\left(\mathbb{R}^{n}\right)}$ defines a norm on $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. We denote by $\dot{H}^{1}\left(\mathbb{R}^{n}\right)$ the completion of $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ in this norm.
ii) Show that $H^{1}\left(\mathbb{R}^{n}\right) \subset \dot{H}^{1}\left(\mathbb{R}^{n}\right)$, and that the inclusion is proper.
iii) Show that there exists a constant C such that:

$$
\int_{\mathbb{R}^{n}} \frac{u^{2}}{|x|^{2}} d x \leq C\|u\|_{\dot{H}^{1}\left(\mathbb{R}^{n}\right)}^{2}
$$

for all $u \in \dot{H}^{1}\left(\mathbb{R}^{n}\right)$. Estimates such as this known as Hardy inequalities.
[Hint: Write $\frac{1}{|x|^{2}}=\frac{1}{n-2} \operatorname{div}\left(\frac{x}{|x|^{2}}\right)$ and integrate by parts]

[^0]iv) Show that for any f such that $|x| f \in L^{2}\left(\mathbb{R}^{n}\right)$ there exists a unique weak solution $u \in \dot{H}^{1}\left(\mathbb{R}^{n}\right)$ to Poisson's equation:
$$
-\Delta u=f \text { on } \mathbb{R}^{n}, \quad u \rightarrow 0 \text { as }|x| \rightarrow \infty
$$

You should carefully define what is meant by a weak solution in this context.
Exercise $3.7(\dagger)$. Repeat Exercise 3.4 replacing $L^{2}(U)$ with $L^{p}(U)$ everywhere, for some $1<p<\infty$. For part $i i$) you will first need to prove that if X is a reflexive Banach space then every bounded sequence in X admits a weakly convergent subsequence. What goes wrong in the case $p=1$?

Exercise $3.8(\dagger)$. Let $U \subset \mathbb{R}^{n}$ be open and suppose $1 \leq p<\infty$. Let $L_{k}^{p}(U)$ be the set of vectors $v=\left(v^{\alpha}\right)_{|\alpha| \leq k}$ whose components are indexed by multiindices of order at most k, such that each $v^{\alpha} \in L^{p}(U)$. Define:

$$
\|v\|_{L_{k}^{p}(U)}:=\left(\sum_{|\alpha| \leq k}\left\|v^{\alpha}\right\|_{L^{p}(U)}^{p}\right)^{\frac{1}{p}}
$$

i) Show that $L_{k}^{p}(U)$ is separable for $1 \leq p<\infty$ and reflexive for $1<p<\infty$.
ii) Show that the map $\iota: W^{k, p}(U) \rightarrow L_{k}^{p}(U)$ given by:

$$
\iota: u \mapsto\left(D^{\alpha} u\right)_{|\alpha| \leq k}
$$

is a bounded linear map satisfying:

$$
\|u\|_{W^{k, p}(U)}=\|\iota(u)\|_{L_{k}^{p}(U)}, \quad \forall u \in W^{k, p}(U)
$$

i.e. an isometry. Deduce that ι is injective.
iii) Show that $\iota\left(W^{k, p}(U)\right)$ is a closed subspace of $L_{k}^{p}(U)$ and deduce that $W^{k, p}(U)$ is separable for $1 \leq p<\infty$ and reflexive for $1<p<\infty$.

[^0]: ${ }^{4}$ such operators appear in physics, for example in quantum mechanics.

