In all the exercises, $U \subset \mathbb{R}^n$ denotes an open set, $k = 0, 1, ..., and 1 \leq p < \infty$ unless otherwise stated.

Exercise 2.1. Show that the Hölder space $C^{0,\gamma}(\overline{U})$ defined in lectures is a Banach space. Show that if U is convex then $C^1(\overline{U}) \subset C^{0,\gamma}(\overline{U})$ for any $0 < \gamma \leq 1$.

[Hint: use the mean value theorem]

Exercise 2.2. Show there exists a function $u \in W^{1,p}(U)$ which is unbounded on any open set.

[Hint: consider a suitable sum of shifted and scaled versions of the unbounded function given in lectures]

Exercise 2.3. Suppose $u, v \in W^{k,p}(U)$ and $|\alpha| \leq k$. Establish the following results:

- i) $D^{\alpha}u \in W^{k-|\alpha|,p}(U)$ and $D^{\beta}(D^{\alpha}u) = D^{\alpha}(D^{\beta}u)$ for all β with $|\alpha| + |\beta| \le k$.
- ii) For each $\lambda, \mu \in \mathbb{R}$, $\lambda u + \mu v \in W^{k,p}(U)$ and $D^{\alpha}(\lambda u + \mu v) = \lambda D^{\alpha}u + \mu D^{\alpha}v$ for all $|\alpha| \leq k$.
- iii) If $V \subset U$ is open, then $u|_V \in W^{k,p}(V)$.
- iv) If $\zeta \in C^{\infty}(\overline{U})$, then $\zeta u \in W^{k,p}(U)$.

Exercise 2.4 (*). Suppose U is connected and $u \in W^{1,p}(U)$ satisfies Du = 0 almost everywhere in U. Show that u is constant almost everywhere in U.

[Hint: show that on any $V \subset U$ the mollification $\eta_{\epsilon} \star u$ is constant for ϵ sufficiently small, and take a limit $\epsilon \to 0$.]

Exercise 2.5. Suppose $u \in W^{k,p}(\mathbb{R}^n)$. Show that there exists a sequence $(u_m)_{m=1}^{\infty}$ such that $u_m \in C_c^{\infty}(\mathbb{R}^n)$ and $u_m \to u$ in $W^{k,p}(\mathbb{R}^n)$.

[Hint: First establish that for any ϵ there exists a compactly supported function χ such that $||\chi u - u||_{W^{k,p}(\mathbb{R}^n)} < \epsilon$]

Exercise 2.6 (*). Suppose U is bounded and $u \in W^{1,p}(U)$ for some $1 \le p < \infty$.

- i) Suppose $F : \mathbb{R} \to \mathbb{R}$ is C^1 with F' bounded. Show that $v := F(u) \in W^{1,p}(U)$ and $v_{x_i} = F'(u)u_{x_i}$ for $i = 1, \ldots, n$.
- ii) Show that $|u| \in W^{1,p}(U)$, with $D_i|u| = \operatorname{sgn} u \ u_{x_i}$.

[Hint: Consider the functions $F_{\epsilon}(x) = \sqrt{x^2 + \epsilon^2} - \epsilon$]

Please send any corrections to cmw50@cam.ac.uk

Questions marked (*) may be handed in, those marked (†) are optional.

Exercise 2.7. Suppose $\Psi : \mathbb{R}^n \to \mathbb{R}^n$ is a C^1 -diffeomorphism² with inverse $\Phi : \mathbb{R}^n \to \mathbb{R}^n$. Let $U \subset \mathbb{R}^n$ be open and bounded, with Lipshitz boundary, and suppose $u \in C^{\infty}(\overline{U})$.

i) Show that there exists a constant C, independent of u, such that:

$$||u \circ \Phi||_{W^{1,p}(\Psi(U))} \le C ||u||_{W^{1,p}(U)}.$$

- ii) Let $1 \leq p < \infty$. By considering a suitable approximating sequence, or otherwise, show that if $u \in W^{1,p}(U)$ then $u \circ \Phi \in W^{1,p}(\Psi(U))$
- iii) (†) Show that a similar result holds for $W^{k,p}$ provided Ψ is C^k .

Exercise 2.8. Finish the proof of the trace theorem from lectures: by choosing a partition of unity subordinate to a suitable collection of open sets, show that the problem can be reduced to the case of a straight boundary.

Exercise 2.9. Suppose $1 \le q < \infty$ and $1 \le p < n$. Suppose that the estimate

$$||u||_{L^q(\mathbb{R}^n)} \le C ||Du||_{L^p(\mathbb{R}^n)}$$

holds for all $u \in C_c^{\infty}(\mathbb{R}^n)$, where C > 0 is a constant depending only on n, p. Show that p, q, n must satisfy:

$$\frac{1}{q} = \frac{1}{p} - \frac{1}{n}.$$

[Hint: consider a family of functions $u_{\lambda}(x) := u(\lambda x)$ for some fixed $u \in C_c^{\infty}(\mathbb{R}^n)$ and $\lambda > 0.$]

Exercise 2.10. Let U be bounded with C^1 boundary. Suppose

$$Lu := -\sum_{i,j=1}^{n} \left(a^{ij}(x)u_{x_i} \right)_{x_j} + \sum_{i=1}^{n} b^i(x)u_{x_i} + c(x)u$$

where $a^{ij}, b^i, c \in C^{\infty}(\overline{U})$ and $a^{ij} = a^{ji}$ satisfy the uniform ellipticity condition.

i) Find a weak formulation for the Neumann problem:

$$(L+\lambda)u = f \qquad \text{in } U,$$

$$\sum_{i,j=1}^{n} a^{ij}(x)u_{x_i}\nu_j = 0 \qquad \text{on } \partial U,$$
 (*)

where ν is the outward unit normal to ∂U . In particular you should demonstrate that $u \in C^2(\overline{U})$ is a classical solution of (\star) if and only if it satisfies your criterion to be a weak solution.

ii) Show that if $\lambda > 0$ is sufficiently large and $f \in L^2(U)$, (\star) admits a unique weak solution $u \in H^1(U)$.

²i.e., both Ψ and its inverse Φ are continuously differentiable

Exercise 2.11 (†, for those familiar with Fourier analysis). For $0 \le s < \infty$ define $\hat{H}^s(\mathbb{R}^n)$ to be the set of functions $f \in L^2(\mathbb{R}^n)$ such that:

$$||f||_{\hat{H}^{s}(\mathbb{R}^{n})}^{2} := \int_{\mathbb{R}^{n}} (1 + |\xi|^{2})^{s} \left| \hat{f}(\xi) \right|^{2} d\xi < \infty,$$

where $\hat{f} \in L^2(\mathbb{R}^n)$ is Fourier-Plancherel transform of f.

- i) Show that $\hat{H}^{s}(\mathbb{R}^{n})$ is a Hilbert space.
- ii) Show that if k = 0, 1, 2, ... there exists a constant $C_k > 0$ such that:

$$\frac{1}{C_k} ||f||_{\hat{H}^k(\mathbb{R}^n)} \le ||f||_{H^k(\mathbb{R}^n)} \le C_k ||f||_{\hat{H}^k(\mathbb{R}^n)}.$$

for all³ $f \in \mathscr{S}(\mathbb{R}^n)$. Deduce that $H^k(\mathbb{R}^n) = \hat{H}^k(\mathbb{R}^n)$.

iii) Assume $s > \frac{1}{2}$ and suppose $u \in \mathscr{S}(\mathbb{R}^n)$. Define $Tu \in C^{\infty}(\mathbb{R}^{n-1})$ by:

$$Tu(x') = u(x', 0), \qquad x' \in \mathbb{R}^{n-1}.$$

a) Show that

$$\widehat{Tu}(\xi') = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \widehat{u}(\xi', \xi_n) d\xi_n.$$

b) Deduce that then:

$$\left|\widehat{Tu}(\xi')\right|^2 \le \frac{1}{2\pi} \left(\int_{\mathbb{R}} (1+|\xi|^2)^s \left| \hat{u}(\xi',\xi_n) \right|^2 d\xi_n \right) \left(\int_{\mathbb{R}} \frac{d\xi_n}{\left(1+|\xi|^2\right)^s} \right)$$

c) By changing variables in the second integral above to $\xi_n = t\sqrt{1 + |\xi'|^2}$, conclude that there exists a constant C(s) such that:

$$||Tu||_{\hat{H}^{s-\frac{1}{2}}(\mathbb{R}^{n-1})} \le C(s) ||u||_{\hat{H}^{s}(\mathbb{R}^{n})}.$$

- d) Conclude that T extends to a bounded linear operator $T: H^s(\mathbb{R}^n) \to H^{s-\frac{1}{2}}(\mathbb{R}^{n-1}).$
- e) Suppose $v \in \mathscr{S}(\mathbb{R}^{n-1})$ and let $\phi \in C_c^{\infty}(\mathbb{R})$ satisfy $\int_{\mathbb{R}} \phi(t) dt = \sqrt{2\pi}$. Define u through its Fourier transform by:

$$\hat{u}(\xi',\xi_n) = \frac{\hat{v}(\xi')}{\sqrt{1+|\xi'|^2}}\phi\left(\frac{\xi_n}{\sqrt{1+|\xi'|^2}}\right)$$

Show that there exists a constant C > 0 such that:

$$||u||_{\hat{H}^{s}(\mathbb{R}^{n})} \leq C ||v||_{\hat{H}^{s-\frac{1}{2}}(\mathbb{R}^{n-1})}$$

and that Tu = v.

³Recall u belongs to the Schwartz space $\mathscr{S}(\mathbb{R}^n)$ if $u \in C^{\infty}(\mathbb{R}^n)$ and $\sup_{x \in \mathbb{R}^n} |x^{\alpha} D^{\beta} u(x)| < \infty$ for all multiindices α, β .

f) Conclude that $T: \hat{H}^s(\mathbb{R}^n) \to \hat{H}^{s-\frac{1}{2}}(\mathbb{R}^{n-1})$ is surjective.

Exercise 2.12 (†, hard). Suppose that for some $c \ge 0$ the inequality:

$$||u||_{L^{\frac{n}{n-1}}(\mathbb{R}^n)} \le c ||Du||_{L^1(\mathbb{R}^n)}$$

holds all $u \in C_c^{\infty}(\mathbb{R}^n)$. Show that if U is a bounded set with ∂U of class C^1 then the isoperimetric inequality holds:

$$|U|^{\frac{n-1}{n}} \le c|\partial U|,$$

with the same constant c. Deduce that $c \ge n^{-1}|B|^{-\frac{1}{n}}$, with B the unit ball in \mathbb{R}^n .