In all the exercises, $U \subset \mathbb{R}^{n}$ denotes an open set, $k=0,1, \ldots$, and $1 \leq p<\infty$ unless otherwise stated.

Exercise 2.1. Show that the Hölder space $C^{0, \gamma}(\bar{U})$ defined in lectures is a Banach space. Show that if U is convex then $C^{1}(\bar{U}) \subset C^{0, \gamma}(\bar{U})$ for any $0<\gamma \leq 1$.
[Hint: use the mean value theorem]
Exercise 2.2. Show there exists a function $u \in W^{1, p}(U)$ which is unbounded on any open set.
[Hint: consider a suitable sum of shifted and scaled versions of the unbounded function given in lectures]

Exercise 2.3. Suppose $u, v \in W^{k, p}(U)$ and $|\alpha| \leq k$. Establish the following results:
i) $D^{\alpha} u \in W^{k-|\alpha|, p}(U)$ and $D^{\beta}\left(D^{\alpha} u\right)=D^{\alpha}\left(D^{\beta} u\right)$ for all β with $|\alpha|+|\beta| \leq k$.
ii) For each $\lambda, \mu \in \mathbb{R}, \lambda u+\mu v \in W^{k, p}(U)$ and $D^{\alpha}(\lambda u+\mu v)=\lambda D^{\alpha} u+\mu D^{\alpha} v$ for all $|\alpha| \leq k$.
iii) If $V \subset U$ is open, then $\left.u\right|_{V} \in W^{k, p}(V)$.
iv) If $\zeta \in C^{\infty}(\bar{U})$, then $\zeta u \in W^{k, p}(U)$.

Exercise $2.4\left(^{*}\right)$. Suppose U is connected and $u \in W^{1, p}(U)$ satisfies $D u=0$ almost everywhere in U. Show that u is constant almost everywhere in U.
[Hint: show that on any $V \subset \subset U$ the mollification $\eta_{\epsilon} \star u$ is constant for ϵ sufficiently small, and take a limit $\epsilon \rightarrow 0 . /$

Exercise 2.5. Suppose $u \in W^{k, p}\left(\mathbb{R}^{n}\right)$. Show that there exists a sequence $\left(u_{m}\right)_{m=1}^{\infty}$ such that $u_{m} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and $u_{m} \rightarrow u$ in $W^{k, p}\left(\mathbb{R}^{n}\right)$.
[Hint: First establish that for any ϵ there exists a compactly supported function χ such that $\left.\|\chi u-u\|_{W^{k, p}\left(\mathbb{R}^{n}\right)}<\epsilon\right]$

Exercise 2.6 $\left(^{*}\right)$. Suppose U is bounded and $u \in W^{1, p}(U)$ for some $1 \leq p<\infty$.
i) Suppose $F: \mathbb{R} \rightarrow \mathbb{R}$ is C^{1} with F^{\prime} bounded. Show that $v:=F(u) \in W^{1, p}(U)$ and $v_{x_{i}}=F^{\prime}(u) u_{x_{i}}$ for $i=1, \ldots, n$.
ii) Show that $|u| \in W^{1, p}(U)$, with $D_{i}|u|=\operatorname{sgn} u u_{x_{i}}$.
[Hint: Consider the functions $F_{\epsilon}(x)=\sqrt{x^{2}+\epsilon^{2}}-\epsilon$]

Exercise 2.7. Suppose $\Psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a C^{1}-diffeomorphism ${ }^{2}$ with inverse $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Let $U \subset \mathbb{R}^{n}$ be open and bounded, with Lipshitz boundary, and suppose $u \in C^{\infty}(\bar{U})$.
i) Show that there exists a constant C, independent of u, such that:

$$
\|u \circ \Phi\|_{W^{1, p}(\Psi(U))} \leq C\|u\|_{W^{1, p}(U)} .
$$

ii) Let $1 \leq p<\infty$. By considering a suitable approximating sequence, or otherwise, show that if $u \in W^{1, p}(U)$ then $u \circ \Phi \in W^{1, p}(\Psi(U))$
iii) (\dagger) Show that a similar result holds for $W^{k, p}$ provided Ψ is C^{k}.

Exercise 2.8. Finish the proof of the trace theorem from lectures: by choosing a partition of unity subordinate to a suitable collection of open sets, show that the problem can be reduced to the case of a straight boundary.

Exercise 2.9. Suppose $1 \leq q<\infty$ and $1 \leq p<n$. Suppose that the estimate

$$
\|u\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C\|D u\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

holds for all $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, where $C>0$ is a constant depending only on n, p. Show that p, q, n must satisfy:

$$
\frac{1}{q}=\frac{1}{p}-\frac{1}{n}
$$

[Hint: consider a family of functions $u_{\lambda}(x):=u(\lambda x)$ for some fixed $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and $\lambda>0$./

Exercise 2.10. Let U be bounded with C^{1} boundary. Suppose

$$
L u:=-\sum_{i, j=1}^{n}\left(a^{i j}(x) u_{x_{i}}\right)_{x_{j}}+\sum_{i=1}^{n} b^{i}(x) u_{x_{i}}+c(x) u
$$

where $a^{i j}, b^{i}, c \in C^{\infty}(\bar{U})$ and $a^{i j}=a^{j i}$ satisfy the uniform ellipticity condition.
i) Find a weak formulation for the Neumann problem:

$$
\begin{align*}
(L+\lambda) u=f & \text { in } U \\
\sum_{i, j=1}^{n} a^{i j}(x) u_{x_{i}} \nu_{j}=0 & \text { on } \partial U,
\end{align*}
$$

where ν is the outward unit normal to ∂U. In particular you should demonstrate that $u \in C^{2}(\bar{U})$ is a classical solution of (\star) if and only if it satisfies your criterion to be a weak solution.
ii) Show that if $\lambda>0$ is sufficiently large and $f \in L^{2}(U)$, (\star) admits a unique weak solution $u \in H^{1}(U)$.

[^0]Exercise 2.11 (\dagger, for those familiar with Fourier analysis). For $0 \leq s<\infty$ define $\hat{H}^{s}\left(\mathbb{R}^{n}\right)$ to be the set of functions $f \in L^{2}\left(\mathbb{R}^{n}\right)$ such that:

$$
\|f\|_{\hat{H}^{s}\left(\mathbb{R}^{n}\right)}^{2}:=\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\hat{f}(\xi)|^{2} d \xi<\infty
$$

where $\hat{f} \in L^{2}\left(\mathbb{R}^{n}\right)$ is Fourier-Plancherel transform of f.
i) Show that $\hat{H}^{s}\left(\mathbb{R}^{n}\right)$ is a Hilbert space.
ii) Show that if $k=0,1,2, \ldots$ there exists a constant $C_{k}>0$ such that:

$$
\frac{1}{C_{k}}\|f\|_{\hat{H}^{k}\left(\mathbb{R}^{n}\right)} \leq\|f\|_{H^{k}\left(\mathbb{R}^{n}\right)} \leq C_{k}\|f\|_{\hat{H}^{k}\left(\mathbb{R}^{n}\right)}
$$

for all ${ }^{3} f \in \mathscr{S}\left(\mathbb{R}^{n}\right)$. Deduce that $H^{k}\left(\mathbb{R}^{n}\right)=\hat{H}^{k}\left(\mathbb{R}^{n}\right)$.
iii) Assume $s>\frac{1}{2}$ and suppose $u \in \mathscr{S}\left(\mathbb{R}^{n}\right)$. Define $T u \in C^{\infty}\left(\mathbb{R}^{n-1}\right)$ by:

$$
T u\left(x^{\prime}\right)=u\left(x^{\prime}, 0\right), \quad x^{\prime} \in \mathbb{R}^{n-1} .
$$

a) Show that

$$
\widehat{T u}\left(\xi^{\prime}\right)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \hat{u}\left(\xi^{\prime}, \xi_{n}\right) d \xi_{n}
$$

b) Deduce that then:

$$
\left|\widehat{T u}\left(\xi^{\prime}\right)\right|^{2} \leq \frac{1}{2 \pi}\left(\int_{\mathbb{R}}\left(1+|\xi|^{2}\right)^{s}\left|\hat{u}\left(\xi^{\prime}, \xi_{n}\right)\right|^{2} d \xi_{n}\right)\left(\int_{\mathbb{R}} \frac{d \xi_{n}}{\left(1+|\xi|^{2}\right)^{s}}\right)
$$

c) By changing variables in the second integral above to $\xi_{n}=t \sqrt{1+\left|\xi^{\prime}\right|^{2}}$, conclude that there exists a constant $C(s)$ such that:

$$
\|T u\|_{\hat{H}^{s-\frac{1}{2}}\left(\mathbb{R}^{n-1}\right)} \leq C(s)\|u\|_{\hat{H}^{s}\left(\mathbb{R}^{n}\right)} .
$$

d) Conclude that T extends to a bounded linear operator $T: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow H^{s-\frac{1}{2}}\left(\mathbb{R}^{n-1}\right)$.
e) Suppose $v \in \mathscr{S}\left(\mathbb{R}^{n-1}\right)$ and let $\phi \in C_{c}^{\infty}(\mathbb{R})$ satisfy $\int_{\mathbb{R}} \phi(t) d t=\sqrt{2 \pi}$. Define u through its Fourier transform by:

$$
\hat{u}\left(\xi^{\prime}, \xi_{n}\right)=\frac{\hat{v}\left(\xi^{\prime}\right)}{\sqrt{1+\left|\xi^{\prime}\right|^{2}}} \phi\left(\frac{\xi_{n}}{\sqrt{1+\left|\xi^{\prime}\right|^{2}}}\right) .
$$

Show that there exists a constant $C>0$ such that:

$$
\|u\|_{\hat{H}^{s}\left(\mathbb{R}^{n}\right)} \leq C\|v\|_{\hat{H}^{s-\frac{1}{2}}\left(\mathbb{R}^{n-1}\right)}
$$

and that $T u=v$.

[^1]f) Conclude that $T: \hat{H}^{s}\left(\mathbb{R}^{n}\right) \rightarrow \hat{H}^{s-\frac{1}{2}}\left(\mathbb{R}^{n-1}\right)$ is surjective.

Exercise 2.12 (\dagger, hard). Suppose that for some $c \geq 0$ the inequality:

$$
\|u\|_{L^{\frac{n}{n-1}}\left(\mathbb{R}^{n}\right)} \leq c\|D u\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

holds all $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. Show that if U is a bounded set with ∂U of class C^{1} then the isoperimetric inequality holds:

$$
|U|^{\frac{n-1}{n}} \leq c|\partial U|
$$

with the same constant c. Deduce that $c \geq n^{-1}|B|^{-\frac{1}{n}}$, with B the unit ball in \mathbb{R}^{n}.

[^0]: ${ }^{2}$ i.e., both Ψ and its inverse Φ are continuously differentiable

[^1]: ${ }^{3}$ Recall u belongs to the Schwartz space $\mathscr{S}\left(\mathbb{R}^{n}\right)$ if $u \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $\sup _{x \in \mathbb{R}^{n}}\left|x^{\alpha} D^{\beta} u(x)\right|<\infty$ for all multiindices α, β.

