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Exercise 1.1. Classify the example PDEs given in lectures into linear / semilinear /
quasilinear / fully nonlinear.

Exercise 1.2. Find three examples of well known PDE in mathematics or physics (other
than the examples given in lectures). Write a sentence or two about the importance of
each and classify them into linear / semilinear / quasilinear / fully nonlinear.

Exercise 1.3. Fill in the gaps of the proof of the Picard-Lindelf theorem from lectures.
Exercise 1.4. By induction on m € N, show that if x € R™ and j € N then:
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where the multinomial coefficient is defined by:
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[Hint: Note that the case m = 1 is trivial and m = 2 is the binomial theorem. Work by
induction using (x1 + ...+ Tm_1 +Tm)! = (1 + ... + (Xm—1 + Tm))’/

Exercise 1.5 (*). Let x € R" and suppose that f(z) =) fox® and g(z) = >, gax®
are two formal power series.

a) Show that if g > f then DPg > DFf for any multiindex /3, where we differentiate
each formal series term by term.

b) Suppose that g > f and g converges for |z| < r. Show that for any s < r:

¢) By making an appropriate choice of majorant g, show that if f is real analytic at
x = 0 then there exist constants s > 0, C' > 0 and p > 0 such that:

sup Dﬁf(:c)’ < C% (1)
p

lz|<s

d) Conversely, suppose f : B.(0) — R is a smooth function such that (2) holds for some
s> 0,C >0 and p > 0. Show that f is real analytic at 0 (you may assume the
multivariable Taylor theorem).

Please send any corrections to cmw50@cam.ac.uk
Questions marked (%) may be handed in, those marked (}) are optional.



e) Show that if f: B,(0) — R is real analytic at 0, there exists s with 0 < s < r such
that f is real analytic at z¢ for all g € Bs(0).

f) Suppose U C R" is an open and connected set, and that f: U — R is analytic on U.
Show that if there exists a point € U such that D f(x) = 0 for all 3, then f = 0 on
U.

g) (1) If you are familiar with the Fourier transform.
Suppose f € L*[R) and let f € L*(R) be its Fourier transform. Show that if
Pkl f (k) € L*(R) for some b > 0 then f is real analytic at each point in R.

[Hint: Write f(x) using the Fourier inversion formula and estimate this with the
Cauchy-Schwartz inequality]

Exercise 1.6. Consider the following transport equation in two dimensions:
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i) Find the characteristic surfaces (in this case they will in fact be curves).

ii) Show that along a characteristic curve u is constant, and hence solve (3) subject to
u(z,0) = f(x) for > 0, where f :[0,00) — R is given.

iii) Show directly from your solution that if f is real analytic at > 0 then w is analytic
in a neighbourhood of (z,0).

iv) (1) This approach to solving first order equations is called the method of characteris-
tics. Write a brief account of this method for first order quasilinear equations in 2
dimensions (you may wish to look for example at F. John, Ch 1).

Exercise 1.7 (*). i) Show that {t = 0} is a characteristic surface of the one-dimensional
heat equation:
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ii) Suppose that u is a smooth solution to the heat equation in a neighbourhood of
{t = 0} and that u(0,z) = ug(x). Show that all derivatives of u at (¢,x) = (0,0) can
be expressed in terms of ugp(x).

iii) Take ug(z) = H% Show that the formal Taylor series for u about (¢,z) = (0,0)
obtained in part z) does not converge on any neighbourhood of the origin.
|This example is due to Kovalevskaya.|

Exercise 1.8. Consider Laplace’s equation in two dimensions:
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Construct a sequence of real analytic functions (ug)?e, with ug, : R? — R solving (4) such
that for any [ € N:

sup | (0 ) ug (1, 0)‘ + sup ’(ax)lﬁyuk(x, 0)| =0

T

as k — oo, but such that for any ¢ > 0

sup |ug(z, €)] = 0.
x

What does this mean for the well-posedness of the Cauchy problem for Laplace’s equation?

[Hint: First solve the Cauchy problem for the initial surface {y = 0} with data u(x,0) =
coskx, uy(x,0) = 0 by seeking a solution of the form u(z,y) = X(x)Y (y)./

Exercise 1.9. Consider the general second order linear PDE in two dimensions:
AUgy + 20Uzy + Clyy + dug +euy + f =0

where a, b, c,d, e, f are functions of x,y. Give a criterion for this equation to be elliptic
at (z,vy).

Exercise 1.10. Consider the wave equation in 1 + 1 dimensions:
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i) Find all the characteristic surfaces.
ii) Show that a general solution has the form:
u(t,z) = f(t —x) + g(t + x)
iii) Find explicitly the solution to the Cauchy problem with data given on {t = 0}:
u(0,x) = up(z), (0, ) = uy(z).
iv) Show that!

sup |0yu(z, t)] + sup [Gpu(, t)] < sup |up(x)| + sup [ui (z)].
x x z z

Exercise 1.11. Consider the wave equation:

d%u

—w‘f‘Au:O, (5)

for u : R1*3 — R. Suppose that ¥ = {¢(x,y, z) = t} is a hypersurface.

We write A < B to mean that there exists a universal constant C' such that A < CB.



i) Show that ¥ is everywhere characteristic if and only if ¢ obeys the eikonal equation:

Vo> = 1.

ii) Find all planes in R'*3 which are everywhere characteristic.

iii) Suppose ug,u; : R® — R are everywhere real analytic. By explicitly casting the
problem as a first order system, show that in a neighbourhood of {t = 0} there exists
a unique real analytic solution to (6) satisfying u|, = uo, Osul, = u1.



