Exercise 1.1. Classify the example PDEs given in lectures into linear / semilinear / quasilinear / fully nonlinear.

Exercise 1.2. Find three examples of well known PDE in mathematics or physics (other than the examples given in lectures). Write a sentence or two about the importance of each and classify them into linear / semilinear / quasilinear / fully nonlinear.

Exercise 1.3. Fill in the gaps of the proof of the Picard-Lindelöf theorem from lectures.
Exercise 1.4. By induction on $m \in \mathbb{N}$, show that if $x \in \mathbb{R}^{m}$ and $j \in \mathbb{N}$ then:

$$
\left(x_{1}+\ldots+x_{m}\right)^{j}=\sum_{|\alpha|=j}\binom{|\alpha|}{\alpha} x^{\alpha},
$$

where the multinomial coefficient is defined by:

$$
\binom{|\alpha|}{\alpha}=\frac{|\alpha|!}{\alpha!}=\frac{|\alpha|!}{\alpha_{1}!\alpha_{2}!, \cdots \alpha_{m}!} .
$$

[Hint: Note that the case $m=1$ is trivial and $m=2$ is the binomial theorem. Work by induction using $\left.\left(x_{1}+\ldots+x_{m-1}+x_{m}\right)^{j}=\left(x_{1}+\ldots+\left(x_{m-1}+x_{m}\right)\right)^{j}\right]$

Exercise $1.5\left(^{*}\right)$. Let $x \in \mathbb{R}^{n}$ and suppose that $f(x)=\sum_{\alpha} f_{\alpha} x^{\alpha}$ and $g(x)=\sum_{\alpha} g_{\alpha} x^{\alpha}$ are two formal power series.
a) Show that if $g \gg f$ then $D^{\beta} g \gg D^{\beta} f$ for any multiindex β, where we differentiate each formal series term by term.
b) Suppose that $g \gg f$ and g converges for $|x|<r$. Show that for any $s<r$:

$$
\sup _{|x| \leq s}|f(x)| \leq \sup _{|x| \leq s} g(x)
$$

c) By making an appropriate choice of majorant g, show that if f is real analytic at $x=0$ then there exist constants $s>0, C>0$ and $\rho>0$ such that:

$$
\begin{equation*}
\sup _{|x| \leq s}\left|D^{\beta} f(x)\right| \leq C \frac{|\beta|!}{\rho|\beta|} \tag{1}
\end{equation*}
$$

d) Conversely, suppose $f: B_{r}(0) \rightarrow \mathbb{R}$ is a smooth function such that (2) holds for some $s>0, C>0$ and $\rho>0$. Show that f is real analytic at 0 (you may assume the multivariable Taylor theorem).

[^0]e) Show that if $f: B_{r}(0) \rightarrow \mathbb{R}$ is real analytic at 0 , there exists s with $0<s<r$ such that f is real analytic at x_{0} for all $x_{0} \in B_{s}(0)$.
f) Suppose $U \subset \mathbb{R}^{n}$ is an open and connected set, and that $f: U \rightarrow \mathbb{R}$ is analytic on U. Show that if there exists a point $x \in U$ such that $D^{\beta} f(x)=0$ for all β, then $f=0$ on U.
g) (\dagger) If you are familiar with the Fourier transform.

Suppose $f \in L^{2}(\mathbb{R})$ and let $\hat{f} \in L^{2}(\mathbb{R})$ be its Fourier transform. Show that if $e^{b|k|} \hat{f}(k) \in L^{2}(\mathbb{R})$ for some $b>0$ then f is real analytic at each point in \mathbb{R}.
[Hint: Write $f^{(l)}(x)$ using the Fourier inversion formula and estimate this with the Cauchy-Schwartz inequality]

Exercise 1.6. Consider the following transport equation in two dimensions:

$$
\begin{equation*}
y \frac{\partial u}{\partial x}-x \frac{\partial u}{\partial y}=0 . \tag{2}
\end{equation*}
$$

i) Find the characteristic surfaces (in this case they will in fact be curves).
ii) Show that along a characteristic curve u is constant, and hence solve (3) subject to $u(x, 0)=f(x)$ for $x \geq 0$, where $f:[0, \infty) \rightarrow \mathbb{R}$ is given.
iii) Show directly from your solution that if f is real analytic at $x>0$ then u is analytic in a neighbourhood of $(x, 0)$.
iv) (\dagger) This approach to solving first order equations is called the method of characteristics. Write a brief account of this method for first order quasilinear equations in 2 dimensions (you may wish to look for example at F. John, Ch 1).

Exercise $1.7\left(^{*}\right)$. i) Show that $\{t=0\}$ is a characteristic surface of the one-dimensional heat equation:

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

ii) Suppose that u is a smooth solution to the heat equation in a neighbourhood of $\{t=0\}$ and that $u(0, x)=u_{0}(x)$. Show that all derivatives of u at $(t, x)=(0,0)$ can be expressed in terms of $u_{0}(x)$.
iii) Take $u_{0}(x)=\frac{1}{1+x^{2}}$. Show that the formal Taylor series for u about $(t, x)=(0,0)$ obtained in part $i i$) does not converge on any neighbourhood of the origin.
[This example is due to Kovalevskaya.]
Exercise 1.8. Consider Laplace's equation in two dimensions:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \tag{3}
\end{equation*}
$$

Construct a sequence of real analytic functions $\left(u_{k}\right)_{k=1}^{\infty}$ with $u_{k}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ solving (4) such that for any $l \in \mathbb{N}$:

$$
\sup _{x}\left|\left(\partial_{x}\right)^{l} u_{k}(x, 0)\right|+\sup _{x}\left|\left(\partial_{x}\right)^{l} \partial_{y} u_{k}(x, 0)\right| \rightarrow 0
$$

as $k \rightarrow \infty$, but such that for any $\epsilon>0$

$$
\sup _{x}\left|u_{k}(x, \epsilon)\right| \rightarrow \infty
$$

What does this mean for the well-posedness of the Cauchy problem for Laplace's equation?
[Hint: First solve the Cauchy problem for the initial surface $\{y=0\}$ with data $u(x, 0)=$ $\cos k x, u_{y}(x, 0)=0$ by seeking a solution of the form $u(x, y)=X(x) Y(y)$./

Exercise 1.9. Consider the general second order linear PDE in two dimensions:

$$
a u_{x x}+2 b u_{x y}+c u_{y y}+d u_{x}+e u_{y}+f=0
$$

where a, b, c, d, e, f are functions of x, y. Give a criterion for this equation to be elliptic at (x, y).

Exercise 1.10. Consider the wave equation in $1+1$ dimensions:

$$
\begin{equation*}
-\frac{\partial^{2} u}{\partial t^{2}}+\frac{\partial^{2} u}{\partial x^{2}}=0 \tag{4}
\end{equation*}
$$

i) Find all the characteristic surfaces.
ii) Show that a general solution has the form:

$$
u(t, x)=f(t-x)+g(t+x)
$$

iii) Find explicitly the solution to the Cauchy problem with data given on $\{t=0\}$:

$$
u(0, x)=u_{0}(x), \quad \partial_{t} u(0, x)=u_{1}(x)
$$

iv) Show that ${ }^{1}$

$$
\sup _{x}\left|\partial_{x} u(x, t)\right|+\sup _{x}\left|\partial_{t} u(x, t)\right| \lesssim \sup _{x}\left|u_{0}^{\prime}(x)\right|+\sup _{x}\left|u_{1}(x)\right| .
$$

Exercise 1.11. Consider the wave equation:

$$
\begin{equation*}
-\frac{\partial^{2} u}{\partial t^{2}}+\Delta u=0 \tag{5}
\end{equation*}
$$

for $u: \mathbb{R}^{1+3} \rightarrow \mathbb{R}$. Suppose that $\Sigma=\{\phi(x, y, z)=t\}$ is a hypersurface.

[^1]i) Show that Σ is everywhere characteristic if and only if ϕ obeys the eikonal equation:
$$
|\nabla \phi|^{2}=1 .
$$
ii) Find all planes in \mathbb{R}^{1+3} which are everywhere characteristic.
iii) Suppose $u_{0}, u_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ are everywhere real analytic. By explicitly casting the problem as a first order system, show that in a neighbourhood of $\{t=0\}$ there exists a unique real analytic solution to (6) satisfying $\left.u\right|_{t}=u_{0},\left.\partial_{t} u\right|_{t}=u_{1}$.

[^0]: Please send any corrections to cmw50@cam.ac.uk
 Questions marked (*) may be handed in, those marked (\dagger) are optional.

[^1]: ${ }^{1}$ We write $A \lesssim B$ to mean that there exists a universal constant C such that $A \leq C B$.

