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Exercise 1.1. Classify the example PDEs given in lectures into linear / semilinear /

quasilinear / fully nonlinear.

Exercise 1.2. Find three examples of well known PDE in mathematics or physics (other

than the examples given in lectures). Write a sentence or two about the importance of

each and classify them into linear / semilinear / quasilinear / fully nonlinear.

Exercise 1.3. Fill in the gaps of the proof of the Picard-Lindelöf theorem from lectures.

Exercise 1.4. By induction on m 2 N, show that if x 2 Rm
and j 2 N then:
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where the multinomial coefficient is defined by:
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[Hint: Note that the case m = 1 is trivial and m = 2 is the binomial theorem. Work by

induction using (x1 + . . .+ xm�1 + xm)j = (x1 + . . .+ (xm�1 + xm))j]

Exercise 1.5 (*). Let x 2 Rn
and suppose that f(x) =

P
↵
f↵x

↵
and g(x) =

P
↵
g↵x

↵

are two formal power series.

a) Show that if g � f then D
�
g � D

�
f for any multiindex �, where we differentiate

each formal series term by term.

b) Suppose that g � f and g converges for |x| < r. Show that for any s < r:

sup
|x|s

|f(x)|  sup
|x|s

g(x)

c) By making an appropriate choice of majorant g, show that if f is real analytic at

x = 0 then there exist constants s > 0, C > 0 and ⇢ > 0 such that:

sup
|x|s

���D�
f(x)

���  C
|�|!
⇢|�|

(1)

d) Conversely, suppose f : Br(0) ! R is a smooth function such that (2) holds for some

s > 0, C > 0 and ⇢ > 0. Show that f is real analytic at 0 (you may assume the

multivariable Taylor theorem).
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e) Show that if f : Br(0) ! R is real analytic at 0, there exists s with 0 < s < r such

that f is real analytic at x0 for all x0 2 Bs(0).

f) Suppose U ⇢ Rn
is an open and connected set, and that f : U ! R is analytic on U .

Show that if there exists a point x 2 U such that D
�
f(x) = 0 for all �, then f = 0 on

U .

g) (†) If you are familiar with the Fourier transform.

Suppose f 2 L
2(R) and let f̂ 2 L

2(R) be its Fourier transform. Show that if

e
b|k|

f̂(k) 2 L
2(R) for some b > 0 then f is real analytic at each point in R.

[Hint: Write f
(l)(x) using the Fourier inversion formula and estimate this with the

Cauchy-Schwartz inequality]

Exercise 1.6. Consider the following transport equation in two dimensions:

y
@u

@x
� x

@u

@y
= 0. (2)

i) Find the characteristic surfaces (in this case they will in fact be curves).

ii) Show that along a characteristic curve u is constant, and hence solve (3) subject to

u(x, 0) = f(x) for x � 0, where f : [0,1) ! R is given.

iii) Show directly from your solution that if f is real analytic at x > 0 then u is analytic

in a neighbourhood of (x, 0).

iv) (†) This approach to solving first order equations is called the method of characteris-

tics. Write a brief account of this method for first order quasilinear equations in 2
dimensions (you may wish to look for example at F. John, Ch 1).

Exercise 1.7 (*). i) Show that {t = 0} is a characteristic surface of the one-dimensional

heat equation:

@u

@t
=

@
2
u

@x2

ii) Suppose that u is a smooth solution to the heat equation in a neighbourhood of

{t = 0} and that u(0, x) = u0(x). Show that all derivatives of u at (t, x) = (0, 0) can

be expressed in terms of u0(x).

iii) Take u0(x) =
1

1+x2 . Show that the formal Taylor series for u about (t, x) = (0, 0)
obtained in part ii) does not converge on any neighbourhood of the origin.

[This example is due to Kovalevskaya.]

Exercise 1.8. Consider Laplace’s equation in two dimensions:

@
2
u

@x2
+

@
2
u

@y2
= 0 (3)
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Construct a sequence of real analytic functions (uk)1k=1 with uk : R2 ! R solving (4) such

that for any l 2 N:

sup
x

���(@x)luk(x, 0)
���+ sup

x

���(@x)l@yuk(x, 0)
��� ! 0

as k ! 1, but such that for any ✏ > 0

sup
x

|uk(x, ✏)| ! 1.

What does this mean for the well-posedness of the Cauchy problem for Laplace’s equation?

[Hint: First solve the Cauchy problem for the initial surface {y = 0} with data u(x, 0) =
cos kx, uy(x, 0) = 0 by seeking a solution of the form u(x, y) = X(x)Y (y).]

Exercise 1.9. Consider the general second order linear PDE in two dimensions:

auxx + 2buxy + cuyy + dux + euy + f = 0

where a, b, c, d, e, f are functions of x, y. Give a criterion for this equation to be elliptic

at (x, y).

Exercise 1.10. Consider the wave equation in 1 + 1 dimensions:

� @
2
u

@t2
+

@
2
u

@x2
= 0 (4)

i) Find all the characteristic surfaces.

ii) Show that a general solution has the form:

u(t, x) = f(t� x) + g(t+ x)

iii) Find explicitly the solution to the Cauchy problem with data given on {t = 0}:

u(0, x) = u0(x), @tu(0, x) = u1(x).

iv) Show that
1

sup
x

|@xu(x, t)|+ sup
x

|@tu(x, t)| . sup
x

��u00(x)
��+ sup

x

|u1(x)|.

Exercise 1.11. Consider the wave equation:

� @
2
u

@t2
+�u = 0, (5)

for u : R1+3 ! R. Suppose that ⌃ = {�(x, y, z) = t} is a hypersurface.

1We write A . B to mean that there exists a universal constant C such that A  CB.
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i) Show that ⌃ is everywhere characteristic if and only if � obeys the eikonal equation:

|r�|2 = 1.

ii) Find all planes in R1+3
which are everywhere characteristic.

iii) Suppose u0, u1 : R3 ! R are everywhere real analytic. By explicitly casting the

problem as a first order system, show that in a neighbourhood of {t = 0} there exists

a unique real analytic solution to (6) satisfying u|
t
= u0, @tu|t = u1.


