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We consider a PDE problem that generalises in a fairly straightforward fashion
the Cauchy problem for ODEs. As coordinates on Rn we take x = (x′, t), where
x′ = (x1, . . . , xn−1) ∈ Rn−1 and t = xn. We set Bn

r = {t2 + |x′|2 < r2} and Bn−1
r =

{|x′| < r, t = 0}.
We consider a system of equations for an unknown u(x) ∈ Rm. More concretely we

seek a solution to:

ut =

n−1∑
j=1

B
j
(u, x′) · uxj + c(u, x′), on Bn

r , (1)

u = 0, on Bn−1
r . (2)

Problems of this type are known as Cauchy problems. Here we assume that we are given
the real analytic functions:

B
j
: Rm × Rn−1 → Mat(m×m), j = 1, . . . , n− 1

c : Rm × Rn−1 → Rm.

Note that we assume that B
j
, c don’t depend on t. We can always arrange this by

introducing a new unknown um+1 satisfying um+1
t = 1 in Bn

r and um+1 = 0 on Bn−1
r and

extending the system of equations accordingly.
We will write B

j
= ((bklj )) and c = (ck) so that in components (1) reads:

ukt =

n−1∑
j=1

m∑
l=1

bklj (u, x
′)ulxj + ck(u, x′), k = 1, . . . ,m. (3)

Example 1. Take n = m = 2 and write u = (f, g).

a) We can consider the system

ft = gx
gt = fx + F

}
in Bn

r

f = g = 0 on Bn−1
r

which is of the form (1) for

B
1
=

(
0 1
1 0

)
, c =

(
0
F

)
.

Eliminating g we find that this system implies ftt − fxx = Fx with f = ft = 0. This is
the inhomogeneous wave equation in 1+1 dimensions.
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b) Alternatively, we can consider the system

ft = gx
gt = −fx + F

}
in Bn

r

f = g = 0 on Bn−1
r

which is of the form (1) for

B
1
=

(
0 1
−1 0

)
, c =

(
0
F

)
.

Eliminating g we find that this system implies ftt + fxx = Fx with f = ft = 0. This is
the inhomogeneous Laplace (or Poisson) equation in 2 dimensions.

The main result we shall show is that a solution to problem (1) subject to (2) admits
a unique real analytic solution, at least for sufficiently small r > 0.

Theorem 1 (Cauchy–Kovalevskaya). Assume {B
j
}n−1j=1 and c are analytic functions.

Then for sufficiently small r > 0 there exists a unique real analytic function

u =
∑
α

uαx
α (4)

solving the problem (1) subject to (2).

Proof (*). 1. Our strategy will be to compute the coefficients

uα =
Dαu(0)

α!

in terms of B
j
, c and show that the power series (4) we obtain converges on Bn

r for r
sufficiently small.

2. As B
j
, c, we can write

B
j
(z, x′) =

∑
γ,δ

B
j,γ,δ

zγxδ, j = 1, . . . , n− 1,

and
c(z, x′) =

∑
γ,δ

cγ,δz
γxδ,

where these power series converge if |z|+ |x′| < s for some small s > 0. Here γ ∈ Nm,
δ ∈ Nn are multi-indices. We have that:

B
j,γ,δ

=
Dγ
zDδ

xBj
(0, 0)

γ!δ!
, c

γ,δ
=
Dγ
zDδ

xc(0, 0)

γ!δ!
, (5)

for j = 1, . . . , n − 1 and all multi-indices γ, δ. In components B
j,γ,δ

= ((bklj,γ,δ)) and
cγ,δ = (ckγ,δ).
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3. Since u(x′, 0) = 0 by assumption (2), by differentiating in the x′ directions we deduce
that

uα =
Dαu(x′, 0)

α!
= 0, for all multi-indices α with αn = 0. (6)

Setting t = 0 in (1), and using that u(x′, 0) = uxi(x
′, 0) = 0, we deduce that:

ut(x
′, 0) =

n−1∑
j=1

B
j
(0, x′) · uxj (x

′, 0) + c(0, x′)

= c(0, x′)

Now, differentiating this equation in the x′ directions we deduce that if α is a multi-
index of the form α = (α1, . . . , αn−1, 1) = (α′, 1) then:

Dαuk(0) = Dα′
x c

k(0, 0).

We have thus computed uα for all α with αn ≤ 1. We will proceed inductively to
compute all uα by making use of the equation.

4. Suppose α = (α′, αn) for αn ≥ 1 and let α̃ = (α′, αn − 1). We can act on (3) with Dα̃

to deduce

Dαuk = Dα̃

n−1∑
j=1

m∑
l=1

bklj (u, x
′)ulxj + ck(u, x′)


Now, by the chain rule and Leibniz rule we can expand the right hand side to produce
a polynomial expression in Dγ

zDδ
xb
kl
j , D

γ
zDδ

xc
k and Dβul where βn ≤ αn− 1. Moreover

the coefficients of this polynomial are non-negative (indeed even integers) as they arise
as sums of multinomial coefficients. We deduce that:

ukα = qkα(b
kl
j,γ,δ, c

k
γ,δ, u

l
β)

where qkα is a polynomial with non-negative coefficients and βn ≤ αn − 1 for each
multi-index on the right-hand side. Since we know ulβ for βn = 0, 1 we can construct
uα inductively for all α.

5. So far, we have shown that if a smooth solution u of (1) subject to (2) exists, then we
can find all of the derivatives of u at x = 0 in terms of known quantities. This tells
us immediately that there is at most one analytic solution, since analytic function is
determined by its Taylor expansion about a point. Now we make use of the method of
majorants to show that the formal power series for u about the origin indeed converges.

We suppose that

B∗
j
� B

j
, for j = 1, . . . , n− 1, c∗ � c

where

B∗
j
(z, x) =

∑
γ,δ

B∗
j,γ,δ

zγxδ, for j = 1, . . . , n− 1, c∗(z, x) =
∑
γ,δ

c∗γ,δz
γxδ,
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with these power series converging for |x|+ |x′| < s for some (possibly smaller) s. In
components we write B∗

j,γ,δ
= ((b∗klj,γ,δ)) and c

∗
γ,δ = (c∗kγ,δ). Then for all j, γ, δ we have:

0 ≤
∣∣∣bklj,γ,δ∣∣∣ ≤ b∗klj,γ,δ, 0 ≤

∣∣∣ckγ,δ∣∣∣ ≤ c∗kγ,δ.
We consider the modified Cauchy problem:

u∗t =
n−1∑
j=1

B∗
j
(u∗, x′) · u∗xj + c∗(u∗, x′), on Bn

r , (7)

u∗ = 0, on Bn−1
r . (8)

and as above seek a real analytic solution

u∗(x) =
∑
α

u∗αx
α, where u∗α =

Dαu∗(0)

α!
.

6. We claim that for each multi-index α:

0 ≤
∣∣∣ukα∣∣∣ ≤ u∗kα .

The proof is by induction on αn. For αn = 0 we have ukα = u∗kα . Suppose the inequality
holds for αn < N . Let α be a multi-index with αn = N . We estimate:∣∣∣ukα∣∣∣ = ∣∣∣qkα(bklj,γ,δ, ckγ,δ, ulβ)∣∣∣

≤ qkα(
∣∣∣bklj,γ,δ∣∣∣ , ∣∣∣ckγ,δ∣∣∣ , ∣∣∣ulβ∣∣∣)

≤ qkα(b∗klj,γ,δ, c
∗k
γ,δ, u

∗l
β )

= u∗kα

This uses crucially that qkα is a polynomial with positive coefficients, and moreover that
βn < N for all terms on the right-hand side. We deduce that u∗ � u, so to establish
that the series for u converges, it suffices to find B∗

j
, c∗ such that the corresponding

series for u∗ converges near x = 0.

7. We make a particular choice for B∗
j
, c∗ which enables us to solve the equation explicitly.

We recall from lectures that

B∗
j
=

Cρ

ρ− (x1 + . . .+ xn−1)− (z1 + . . .+ zm)

 1 · · · 1
...

. . .
...

1 · · · 1

 ,

c∗ =
Cρ

ρ− (x1 + . . .+ xn−1)− (z1 + . . .+ zm)
(1, . . . , 1)

will majorise B
j
, c respectively provided that we fix C to be large enough and ρ

small enough, and their power series about 0 will converge for |x′|+ |z| < s, for some
sufficiently small s.
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With these choices of majorants the modified equation (7) reads

u∗t =
Cρ

ρ− (x1 + . . .+ xn−1)− (u∗1 + . . .+ u∗m)

 m∑
l=1

n−1∑
j=1

u∗lxj + 1

 , on Bn
r , (9)

u∗ = 0, on Bn−1
r . (10)

This problem has an explicit solution, namely

u∗ = v∗(1, . . . , 1)

where

v∗(x) =
1

nm

(
ρ− (x1 + . . .+ xn−1)−

√
(ρ− (x1 + . . .+ xn−1))2 − 2mnCrxn

)
V ∗ is analytic for |x| < r provided r > 0 is sufficiently small, thus u∗ is given by a
convergent series and as u∗ � u, the power series (4) converges for |x| < r.

8. Since the Taylor expansion of the analytic function

F (x) := ut −
n−1∑
j=1

B
j
(u, x′) · uxj + c(u, x′)

vanishes to all orders at x = 0, we deduce that F = 0 in Bn
r and so u given by (4) is

indeed a solution.


