We consider a PDE problem that generalises in a fairly straightforward fashion the Cauchy problem for ODEs. As coordinates on \mathbb{R}^{n} we take $x=\left(x^{\prime}, t\right)$, where $x^{\prime}=\left(x^{1}, \ldots, x^{n-1}\right) \in \mathbb{R}^{n-1}$ and $t=x^{n}$. We set $B_{r}^{n}=\left\{t^{2}+\left|x^{\prime}\right|^{2}<r^{2}\right\}$ and $B_{r}^{n-1}=$ $\left\{\left|x^{\prime}\right|<r, t=0\right\}$.

We consider a system of equations for an unknown $\underline{u}(x) \in \mathbb{R}^{m}$. More concretely we seek a solution to:

$$
\begin{align*}
\underline{u}_{t} & =\sum_{j=1}^{n-1} \underline{\underline{B}}_{j}\left(\underline{u}, x^{\prime}\right) \cdot \underline{u}_{x_{j}}+\underline{c}\left(\underline{u}, x^{\prime}\right), \quad \text { on } B_{r}^{n} \tag{1}\\
\underline{u} & =0, \quad \text { on } B_{r}^{n-1} . \tag{2}
\end{align*}
$$

Problems of this type are known as Cauchy problems. Here we assume that we are given the real analytic functions:

$$
\begin{aligned}
\underline{\underline{B}}_{j} & : \mathbb{R}^{m} \times \mathbb{R}^{n-1} \rightarrow \operatorname{Mat}(m \times m), \quad j=1, \ldots, n-1 \\
\underline{c} & : \mathbb{R}^{m} \times \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{m}
\end{aligned}
$$

Note that we assume that $\underline{\underline{B}}_{j}, \underline{c}$ don't depend on t. We can always arrange this by introducing a new unknown u^{m+1} satisfying $u_{t}^{m+1}=1$ in B_{r}^{n} and $u^{m+1}=0$ on B_{r}^{n-1} and extending the system of equations accordingly.

We will write $\underline{\underline{B}}_{j}=\left(\left(b_{j}^{k l}\right)\right)$ and $\underline{c}=\left(c^{k}\right)$ so that in components (1) reads:

$$
\begin{equation*}
u_{t}^{k}=\sum_{j=1}^{n-1} \sum_{l=1}^{m} b_{j}^{k l}\left(\underline{u}, x^{\prime}\right) u_{x_{j}}^{l}+c^{k}\left(\underline{u}, x^{\prime}\right), \quad k=1, \ldots, m \tag{3}
\end{equation*}
$$

Example 1. Take $n=m=2$ and write $\underline{u}=(f, g)$.
a) We can consider the system

$$
\begin{aligned}
& \left.\begin{array}{l}
f_{t}=g_{x} \\
g_{t}=f_{x}+F \\
f=g=0
\end{array}\right\} \quad \text { in } B_{r}^{n} \\
& \text { on } B_{r}^{n-1}
\end{aligned}
$$

which is of the form (1) for

$$
\underline{\underline{B}}_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \underline{c}=\binom{0}{F} .
$$

Eliminating g we find that this system implies $f_{t t}-f_{x x}=F_{x}$ with $f=f_{t}=0$. This is the inhomogeneous wave equation in $1+1$ dimensions.
b) Alternatively, we can consider the system

$$
\begin{array}{ll}
f_{t}=g_{x} \\
g_{t}=-f_{x}+F & \\
f=g=0 & \text { in } B_{r}^{n} \\
& \text { on } B_{r}^{n-1}
\end{array}
$$

which is of the form (1) for

$$
\underline{\underline{B}}_{1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \underline{c}=\binom{0}{F}
$$

Eliminating g we find that this system implies $f_{t t}+f_{x x}=F_{x}$ with $f=f_{t}=0$. This is the inhomogeneous Laplace (or Poisson) equation in 2 dimensions.

The main result we shall show is that a solution to problem (1) subject to (2) admits a unique real analytic solution, at least for sufficiently small $r>0$.

Theorem 1 (Cauchy-Kovalevskaya). Assume $\left\{\underline{\underline{B}}_{j}\right\}_{j=1}^{n-1}$ and $\underline{\underline{c}}$ are analytic functions.
Then for sufficiently small $r>0$ there exists a unique real analytic function

$$
\begin{equation*}
\underline{u}=\sum_{\alpha} \underline{u}_{\alpha} x^{\alpha} \tag{4}
\end{equation*}
$$

solving the problem (1) subject to (2).
Proof (*). 1. Our strategy will be to compute the coefficients

$$
\underline{u}_{\alpha}=\frac{D^{\alpha} \underline{u}(0)}{\alpha!}
$$

in terms of $\underline{\underline{B}}_{j}, \underline{c}$ and show that the power series (4) we obtain converges on B_{r}^{n} for r sufficiently small.
2. As $\underline{\underline{B}}_{j}, \underline{c}$, we can write

$$
\underline{\underline{B}}_{j}\left(z, x^{\prime}\right)=\sum_{\gamma, \delta} \underline{\underline{B}}_{j, \gamma, \delta} z^{\gamma} x^{\delta}, \quad j=1, \ldots, n-1
$$

and

$$
\underline{c}\left(z, x^{\prime}\right)=\sum_{\gamma, \delta} \underline{c}_{\gamma, \delta} z^{\gamma} x^{\delta}
$$

where these power series converge if $|z|+\left|x^{\prime}\right|<s$ for some small $s>0$. Here $\gamma \in \mathbb{N}^{m}$, $\delta \in \mathbb{N}^{n}$ are multi-indices. We have that:

$$
\begin{equation*}
\underline{\underline{B}}_{j, \gamma, \delta}=\frac{D_{z}^{\gamma} D_{x}^{\delta} \underline{\underline{B}}_{j}(0,0)}{\gamma!\delta!}, \quad \underline{\underline{c}}_{\gamma, \delta}=\frac{D_{z}^{\gamma} D_{x}^{\delta} \underline{c}(0,0)}{\gamma!\delta!} \tag{5}
\end{equation*}
$$

for $j=1, \ldots, n-1$ and all multi-indices γ, δ. In components $\underline{\underline{B}}_{j, \gamma, \delta}=\left(\left(b_{j, \gamma, \delta}^{k l}\right)\right)$ and $\underline{c}_{\gamma, \delta}=\left(c_{\gamma, \delta}^{k}\right)$.
3. Since $\underline{u}\left(x^{\prime}, 0\right)=0$ by assumption (2), by differentiating in the x^{\prime} directions we deduce that

$$
\begin{equation*}
\underline{u}_{\alpha}=\frac{D^{\alpha} \underline{u}\left(x^{\prime}, 0\right)}{\alpha!}=0, \text { for all multi-indices } \alpha \text { with } \alpha_{n}=0 \tag{6}
\end{equation*}
$$

Setting $t=0$ in (1), and using that $\underline{u}\left(x^{\prime}, 0\right)=u_{x_{i}}\left(x^{\prime}, 0\right)=0$, we deduce that:

$$
\begin{aligned}
\underline{u}_{t}\left(x^{\prime}, 0\right) & =\sum_{j=1}^{n-1} \underline{\underline{B}}_{j}\left(0, x^{\prime}\right) \cdot \underline{u}_{x_{j}}\left(x^{\prime}, 0\right)+\underline{c}\left(0, x^{\prime}\right) \\
& =\underline{c}\left(0, x^{\prime}\right)
\end{aligned}
$$

Now, differentiating this equation in the x^{\prime} directions we deduce that if α is a multiindex of the form $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n-1}, 1\right)=\left(\alpha^{\prime}, 1\right)$ then:

$$
D^{\alpha} u^{k}(0)=D_{x}^{\alpha^{\prime}} c^{k}(0,0)
$$

We have thus computed \underline{u}_{α} for all α with $\alpha_{n} \leq 1$. We will proceed inductively to compute all \underline{u}_{α} by making use of the equation.
4. Suppose $\alpha=\left(\alpha^{\prime}, \alpha_{n}\right)$ for $\alpha_{n} \geq 1$ and let $\tilde{\alpha}=\left(\alpha^{\prime}, \alpha_{n}-1\right)$. We can act on (3) with $D^{\tilde{\alpha}}$ to deduce

$$
D^{\alpha} u^{k}=D^{\tilde{\alpha}}\left(\sum_{j=1}^{n-1} \sum_{l=1}^{m} b_{j}^{k l}\left(\underline{u}, x^{\prime}\right) u_{x_{j}}^{l}+c^{k}\left(\underline{u}, x^{\prime}\right)\right)
$$

Now, by the chain rule and Leibniz rule we can expand the right hand side to produce a polynomial expression in $D_{z}^{\gamma} D_{x}^{\delta} b_{j}^{k l}, D_{z}^{\gamma} D_{x}^{\delta} c^{k}$ and $D^{\beta} u^{l}$ where $\beta_{n} \leq \alpha_{n}-1$. Moreover the coefficients of this polynomial are non-negative (indeed even integers) as they arise as sums of multinomial coefficients. We deduce that:

$$
u_{\alpha}^{k}=q_{\alpha}^{k}\left(b_{j, \gamma, \delta}^{k l}, c_{\gamma, \delta}^{k}, u_{\beta}^{l}\right)
$$

where q_{α}^{k} is a polynomial with non-negative coefficients and $\beta_{n} \leq \alpha_{n}-1$ for each multi-index on the right-hand side. Since we know u_{β}^{l} for $\beta_{n}=0,1$ we can construct \underline{u}_{α} inductively for all α.
5. So far, we have shown that if a smooth solution \underline{u} of (1) subject to (2) exists, then we can find all of the derivatives of \underline{u} at $x=0$ in terms of known quantities. This tells us immediately that there is at most one analytic solution, since analytic function is determined by its Taylor expansion about a point. Now we make use of the method of majorants to show that the formal power series for \underline{u} about the origin indeed converges.
We suppose that

$$
\underline{\underline{B}}_{j}^{*} \gg \underline{\underline{B}}_{j}, \quad \text { for } j=1, \ldots, n-1, \quad \underline{c}^{*} \gg \underline{c}
$$

where

$$
\underline{\underline{B}}_{j}^{*}(z, x)=\sum_{\gamma, \delta} \underline{\underline{B}}_{j, \gamma, \delta}^{*} z^{\gamma} x^{\delta}, \quad \text { for } j=1, \ldots, n-1, \quad \underline{c}^{*}(z, x)=\sum_{\gamma, \delta} \underline{c}_{\gamma, \delta}^{*} z^{\gamma} x^{\delta}
$$

with these power series converging for $|x|+\left|x^{\prime}\right|<s$ for some (possibly smaller) s. In components we write $\underline{\underline{B}}_{j, \gamma, \delta}^{*}=\left(\left(b_{j, \gamma, \delta}^{* k l}\right)\right)$ and $\underline{c}_{\gamma, \delta}^{*}=\left(c_{\gamma, \delta}^{* k}\right)$. Then for all j, γ, δ we have:

$$
0 \leq\left|b_{j, \gamma, \delta}^{k l}\right| \leq b_{j, \gamma, \delta}^{* k l}, \quad 0 \leq\left|c_{\gamma, \delta}^{k}\right| \leq c_{\gamma, \delta}^{* k}
$$

We consider the modified Cauchy problem:

$$
\begin{align*}
& \underline{u}_{t}^{*}=\sum_{j=1}^{n-1} \underline{\underline{B}}_{j}^{*}\left(\underline{u}^{*}, x^{\prime}\right) \cdot \underline{u}_{x_{j}}^{*}+\underline{c}^{*}\left(\underline{u}^{*}, x^{\prime}\right), \quad \text { on } B_{r}^{n} \tag{7}\\
& \underline{u}^{*}=0, \quad \text { on } B_{r}^{n-1} \tag{8}
\end{align*}
$$

and as above seek a real analytic solution

$$
\underline{u}^{*}(x)=\sum_{\alpha} \underline{u}_{\alpha}^{*} x^{\alpha}, \quad \text { where } \quad \underline{u}_{\alpha}^{*}=\frac{D^{\alpha} \underline{u}^{*}(0)}{\alpha!}
$$

6. We claim that for each multi-index α :

$$
0 \leq\left|u_{\alpha}^{k}\right| \leq u_{\alpha}^{* k}
$$

The proof is by induction on α_{n}. For $\alpha_{n}=0$ we have $u_{\alpha}^{k}=u_{\alpha}^{* k}$. Suppose the inequality holds for $\alpha_{n}<N$. Let α be a multi-index with $\alpha_{n}=N$. We estimate:

$$
\begin{aligned}
\left|u_{\alpha}^{k}\right| & =\left|q_{\alpha}^{k}\left(b_{j, \gamma, \delta}^{k l}, c_{\gamma, \delta}^{k}, u_{\beta}^{l}\right)\right| \\
& \leq q_{\alpha}^{k}\left(\left|b_{j, \gamma, \delta}^{k l}\right|,\left|c_{\gamma, \delta}^{k}\right|,\left|u_{\beta}^{l}\right|\right) \\
& \leq q_{\alpha}^{k}\left(b_{j, \gamma, \delta}^{* k l}, c_{\gamma, \delta}^{* k}, u_{\beta}^{* l}\right) \\
& =u_{\alpha}^{* k}
\end{aligned}
$$

This uses crucially that q_{α}^{k} is a polynomial with positive coefficients, and moreover that $\beta_{n}<N$ for all terms on the right-hand side. We deduce that $\underline{u}^{*} \gg \underline{u}$, so to establish that the series for \underline{u} converges, it suffices to find $\underline{\underline{B}}_{j}^{*}, \underline{c}^{*}$ such that the corresponding series for \underline{u}^{*} converges near $x=0$.
7. We make a particular choice for $\underline{\underline{B}}_{j}^{*}, \underline{c}^{*}$ which enables us to solve the equation explicitly. We recall from lectures that

$$
\begin{aligned}
& \underline{\underline{B}}_{j}^{*}=\frac{C \rho}{\rho-\left(x_{1}+\ldots+x_{n-1}\right)-\left(z_{1}+\ldots+z_{m}\right)}\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1
\end{array}\right) \\
& \underline{c}^{*}=\frac{C \rho}{\rho-\left(x_{1}+\ldots+x_{n-1}\right)-\left(z_{1}+\ldots+z_{m}\right)}(1, \ldots, 1)
\end{aligned}
$$

will majorise $\underline{\underline{B}}_{j}, \underline{c}$ respectively provided that we fix C to be large enough and ρ small enough, and their power series about 0 will converge for $\left|x^{\prime}\right|+|z|<s$, for some sufficiently small s.

With these choices of majorants the modified equation (7) reads

$$
\begin{align*}
& \underline{u}_{t}^{*}=\frac{C \rho}{\rho-\left(x_{1}+\ldots+x_{n-1}\right)-\left(u^{* 1}+\ldots+u^{* m}\right)}\left(\sum_{l=1}^{m} \sum_{j=1}^{n-1} u_{x_{j}}^{* l}+1\right), \quad \text { on } B_{r}^{n}, \tag{9}\\
& \underline{u}^{*}=0, \quad \text { on } B_{r}^{n-1} . \tag{10}
\end{align*}
$$

This problem has an explicit solution, namely

$$
\underline{u}^{*}=v^{*}(1, \ldots, 1)
$$

where

$$
v^{*}(x)=\frac{1}{n m}\left(\rho-\left(x_{1}+\ldots+x_{n-1}\right)-\sqrt{\left(\rho-\left(x_{1}+\ldots+x_{n-1}\right)\right)^{2}-2 m n C r x_{n}}\right)
$$

V^{*} is analytic for $|x|<r$ provided $r>0$ is sufficiently small, thus \underline{u}^{*} is given by a convergent series and as $\underline{u}^{*} \gg \underline{u}$, the power series (4) converges for $|x|<r$.
8. Since the Taylor expansion of the analytic function

$$
F(x):=\underline{u}_{t}-\sum_{j=1}^{n-1} \underline{\underline{B}}_{j}\left(\underline{u}, x^{\prime}\right) \cdot \underline{u}_{x_{j}}+\underline{c}\left(\underline{u}, x^{\prime}\right)
$$

vanishes to all orders at $x=0$, we deduce that $F=0$ in B_{r}^{n} and so \underline{u} given by (4) is indeed a solution.

